Disturbance rejection tube model predictive levitation control of maglev trains

Yirui Han , Xiuming Yao , Yu Yang

High-speed Railway ›› 2024, Vol. 2 ›› Issue (1) : 57 -63.

PDF (4352KB)
High-speed Railway ›› 2024, Vol. 2 ›› Issue (1) : 57 -63. DOI: 10.1016/j.hspr.2024.01.001
Research article
review-article

Disturbance rejection tube model predictive levitation control of maglev trains

Author information +
History +
PDF (4352KB)

Abstract

Magnetic levitation control technology plays a significant role in maglev trains. Designing a controller for the levitation system is challenging due to the strong nonlinearity, open-loop instability, and the need for fast response and security. In this paper, we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control (DO-TMPLC) scheme combined with a feedback linearization strategy for the levitation system. The proposed strategy incorporates state constraints and control input constraints, i.e., the air gap, the vertical velocity, and the current applied to the coil. A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system. Then, a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances. Furthermore, we analyze the recursive feasibility and input-to-state stability of the closed-loop system. The simulation results indicate the efficacy of the proposed control strategy.

Keywords

Maglev trains / Levitation system / Constrained control / Disturbance observer / Model predictive control

Cite this article

Download citation ▾
Yirui Han, Xiuming Yao, Yu Yang. Disturbance rejection tube model predictive levitation control of maglev trains. High-speed Railway, 2024, 2(1): 57-63 DOI:10.1016/j.hspr.2024.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundationof China (62273029).

References

[1]

H. Lee, K. Kim, J. Lee. Review of maglev train technologies. IEEE Trans. Magn., 42(7)(2006), pp. 1917-1925.

[2]

Z. Wang, X. Li, Y. Xie, et al., Maglev train signal processing architecture based on non-linear discrete tracking differentiator. Sensors, 18(6)(2018) 1697.

[3]

Z. Zhang, Y. Liu, T. Zhou, et al., Analysis of electromechanical characteristics in air-core integrated linear synchronous motor for EDS maglev train with pitching operation condition. IEEE Trans. Veh. Technol., 71(7)(2022), pp. 6938-6947.

[4]

H. Han, D. Kim, Electromagnet, magnetic levitation, Dordrecht, Netherlands, Springer (2016) 75–84.

[5]

J. Sujay, S. Madhu. Research review on magnetic levitation trains. Int. J. Appl. Eng. Res., 10(33)(2015), pp. 26808-26814.

[6]

P. Marco, A. Jorge, A. Jose, et al., Edward magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci. Rep., 6 (2016), pp. 18579-18588.

[7]

F. Li, Y. Sun, J. Xu, et al., Control methods for levitation system of EMS-type maglev vehicles: an overview. Energies, 16(7)(2023), pp. 2995-3021.

[8]

Y. Xu, Z. Long, Z. Zhao, et al., Real-time stability performance monitoring and evaluation of maglev trains levitation system: a data-driven approach. IEEE Trans. Intell. Transp. Syst., 23(3)(2022), pp. 1912-1923.

[9]

R. Wai, J. Lee, K. Chuang. Real-time PID control strategy for maglev transportation system via particle swarm optimization. IEEE Trans. Ind. Electron., 58(2)(2011), pp. 629-646.

[10]

F. Lin, L. Teng, P. Shieh. Intelligent sliding-mode control using RBFN for magnetic levitation system. IEEE Trans. Ind. Electron., 54(3)(2007), pp. 1752-1762.

[11]

J. Wang, L. Zhao, L. Yu. Adaptive terminal sliding mode control for magnetic levitation system with enhanced disturbance compensation. IEEE Trans. Ind. Electron., 68(1)(2021), pp. 756-766.

[12]

X. Su, X. Yang, P. Shi, et al., Fuzzy control of non-linear electromagnetic suspension systems. Mechatron, 24(4)(2014), pp. 328-335.

[13]

C. Chen, J. Xu, L. Rong, et al., Neural-networkdtate-observation-based adaptive inversion control method of maglev train. IEEE Trans. Veh. Technol., 71(4)(2022), pp. 3660-3669.

[14]

A. Huang, Y. Lin, C. Kai. Adaptive control of horizontal magnetic levitation system subject to external disturbances. Proc. 7th IEEE Conf. Ind. Electron. Appl. Shanghai, China 2012; 467-471.

[15]

S. Jiang, D. Shen, T. Zhang, et al., Non-linear robust composite levitation control for high-speed EMS trains with input saturation and track irregularities. IEEE Trans. Intell. Transp. Syst., 23(11)(2022), pp. 20323-20336.

[16]

J. Huang, Z. Wu, J. Shi, et al., Influence of track irregularities in high-speed maglev transportation systems. Smart Struct. Syst., 21(5)(2018), pp. 571-582.

[17]

D. Mayne, B. Rawlings, C. Rao, et al., Constrained model predictive control: stability and optimality. Automat, 36(6)(2000), pp. 789-814.

[18]

L. Dutta, D. Kumar. A linear model predictive control design for magnetic levitation system. Proc. Inter. Conf. Comput. Perform. Evalu. 2020; 39-43.

[19]

T. Bachle, S. Hentzelt, K. Graichen. Non-linear model predictive control of a magnetic levitation system. Control Eng. Pract., 21(9)(2013), pp. 1250-1258.

[20]

M. Klauco, M. Kaluz, M. Kvasnica. Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system. Control Eng. Pract., 60 (2017), pp. 99-105.

[21]

Y. Zhang, B. Xian, S. Ma. Continuous robust tracking control for magnetic levitation system with unidirectional input constraint. IEEE Trans. Ind. Electron., 62(9)(2015), pp. 5971-5980.

[22]

S. Patrick, E. Peter, D. Florian. Non-linear model predictive control for a maglev vehicle regarding magnetic saturation and guideway irregularities. IFAC-Pap. Online, 52(15)(2019), pp. 145-250.

[23]

W. Hu, Y. Zhou, Z. Zhang, et al., Model predictive control for hybrid levitation systems of Maglev trains with state constraints. IEEE Trans. Veh. Technol., 70(10)(2021), pp. 9972-9985.

[24]

W. Chen, J. Yang, L. Guo, et al., Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron., 63(2)(2016), pp. 1083-1095.

[25]

Z. Yang, S. Hara, S. Kanae, et al., Robust output feedback control of a class of non-linear systems using a disturbance observer. IEEE Trans. Control Syst. Technol., 19(2)(2011), pp. 256-268.

[26]

Z. Sun, N. Cheung, S. Zhao, et al., The application of disturbance observer-based sliding mode control for magnetic levitation systems. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 224(8)(2010), pp. 1635-1644.

[27]

J. Liu, X. Liu, K. Wang. Disturbance observer based robust adaptive control of Maglev system. Proc. 15th IEEE Conf. Ind. Electron. Appl. Kristiansand, Nor. 2020; 1796-1801.

[28]

S. Kim, C. Ahn. Variable cut-off frequency algorithm-based non-linear position controller for magnetic levitation system applications. IEEE Trans. Syst. Man. Cyber, 51(7)(2021), pp. 4599-4605.

[29]

C. Liu, Y. Xing, T. Wang, Research of CNC electromagnetic levitation height selftuning quantization scale factor fuzzy control, in: Chinese Control Dec. (Ed.), Mianyang, China (2021) 1810-1813.

[30]

H.K. Khalil, Non-linear systems, 3rd ed., Upper Saddle River, USA: Prentice- Hall., (2002).

[31]

S. Li, J. Yang, W. Chen, et al., Disturbance observer-based control methods and applications (1st ed.), Raton: CRC Press (2014).

[32]

H. Chen, F. ALLGöWER. A quasi-infinite horizon non-linear model predictive control scheme with guaranteed stability. Automatica, 34(10)(1998), pp. 1205-1217.

AI Summary AI Mindmap
PDF (4352KB)

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/