The genus Paris: a fascinating resource for medicinal and botanical studies

Xiao Ye , Yang Tao , Xiu-Lan Pu , Hong Hu , Jing Chen , Chun-Lin Tan , Xin Tan , Sheng-Hong Li , Yan Liu

Horticulture Research ›› 2025, Vol. 12 ›› Issue (3) : 327

PDF (2706KB)
Horticulture Research ›› 2025, Vol. 12 ›› Issue (3) : 327 DOI: 10.1093/hr/uhae327
Review Articles

The genus Paris: a fascinating resource for medicinal and botanical studies

Author information +
History +
PDF (2706KB)

Abstract

The genus Paris, comprising a series of distinctive medicinal plants, has been utilized globally for its therapeutic properties over centuries. Modern pharmacological studies have demonstrated that secondary metabolites from Paris species exhibit significant pharmacological activities, including anticancer, hemostatic, anti-inflammatory, antimicrobial, and other effects. Additionally, the unique morphological traits and large genome size of Paris species have continuously captured the interest of botanists and horticulturalists. Nonetheless, the conservation of wild Paris populations is threatened due to the lengthy reproductive cycle and overexploitation, posing considerable challenges to their development and sustainable use. This review provides a comprehensive overview of the botanical characteristics, historical medicinal uses, pharmacological effects, and toxicity evaluation of secondary metabolites in Paris species. It also covers the molecular biological research conducted on the genus Paris and proposes key research questions and important directions for future solutions. We advocate the expansion and implementation of multi-omics approaches, as well as molecular and genetic technologies recently advanced in model plant research, to intensively study Paris species. This will facilitate the comprehensive understanding of gene function and molecular mechanisms underlying specialized metabolite formation in Paris.

Cite this article

Download citation ▾
Xiao Ye, Yang Tao, Xiu-Lan Pu, Hong Hu, Jing Chen, Chun-Lin Tan, Xin Tan, Sheng-Hong Li, Yan Liu. The genus Paris: a fascinating resource for medicinal and botanical studies. Horticulture Research, 2025, 12(3): 327 DOI:10.1093/hr/uhae327

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

We are grateful to Wenji Zhao, Jingxian Zeng, Xiang Li, Mingxu Zhao, Xianhong Feng, Rui Dong, and Nadezhda Naida for their help in providing photographs and image processing. This work was supported by the National Natural Science Foundation of China (82222072, U1902214, 32300318, 32400068 and 82404605), the China Postdoctoral Science Foundation (2022M720546, 2022MD723713, 2024M750284, 2024M760309 and GZC20230332), the China National Postdoctoral Program For Innovative Talents (BX20220048), the Natural Science Foundation of Sichuan Province (2024NSFSC1324, 2022NSFSC1362, 24NSFSC4937, and 2022JDJQ0055), the Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows (BX202318), and the Xinglin Talent Program of Chengdu University of Traditional Chinese Medicine (BSH2023030).

Author contributions

S.L., Y.L., and Y.T. designed and coordinated the review; X.Y. and Y.T. structured, drafted, and revised the manuscript. X.P., H.H., J.C., C.T., and X.T. contributed to figure preparation and critical revision of the manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Data

Supplementary data are available at Horticulture Research online.

References

[1]

Pellicer J, Kelly LJ, Leitch IJ. et al. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol. 2014;201: 1484-97

[2]

Ji YH. A Monograph of Paris (Melanthiaceae). Beijing: Springer and Science Press; 2021:

[3]

State Pharmacopoeia Commission of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China. 2020 ed. Beijing: China Pharmaceutical Science and Technology Press; 2020 [in Chinese]

[4]

Wang YF, Jiang Y, Yang CJ. et al. Research progress on chemical constituents, pharmacological activities, and clinical applica-tions of Paris polyphylla var. yunnanensis. Chin Tradit Herb. Drugs. 2022;53:7633- 48 [in Chinese]

[5]

Lau CB-S, Long CL. Medicinal Plants and Mushrooms of Yunnan Province of China. Boca Raton: CRC Press; 2021

[6]

Cunningham AB, Brinckmann JA, Bi YF. et al. Paris in the spring: a review of the trade, conservation and opportunities in the shift from wild harvest to cultivation of Paris polyphylla (Trilliaceae). J Ethnopharmacol. 2018;222: 208-16

[7]

Huang LQ, Xiao PG, Wang YY. Investigation on Resources of Rare and Endangered Medicinal Plants in China. Shanghai: Shanghai Science and Technology Press; 2012 [in Chinese]

[8]

Kunwar RM, Adhikari YP, Sharma HP. et al. Distribution, use, trade and conservation of Paris polyphylla Sm. in Nepal. Glob Ecol Conserv. 2020;23:e01081

[9]

Shah SA, Mazumder PB, Choudhury MD. Medicinal properties of Paris polyphylla Smith: a review. J Herb Med Toxicol. 2012;6: 27-33

[10]

Negi JS, Bisht VK, Bhandari AK. et al. Paris polyphylla: chemi-cal and biological prospectives. Anti Cancer Agents Med Chem. 2014;14: 833-9

[11]

Li S, Zhang Y, Guo YJ. et al. Monpa, memory, and change: an ethnobotanical study of plant use in Medog County, south-east Tibet, China. J Ethnobiol Ethnomed. 2020;16:5

[12]

Lalsangluaii F, Chinlampianga M, Shukla AC. Efficacy and potency of Paris polyphylla Smith, an ethno-medicinal plant of Mizoram. Sci Technol J. 2013;1: 36-40

[13]

Mayirnao H, Bhat AA. Evaluation of antioxidant and antimi-crobial activity of Paris polyphylla Sm. Asian J Pharm Clin Res. 2017;10: 315-9

[14]

Lepcha DL, Chhetri A, Chhetri DR. Antioxidant and cytotoxic attributes of Paris polyphylla smith from Sikkim Himalaya. Phar-macogn J. 2019;11: 705-11

[15]

Li H. The Genus Paris (Trilliaceae). Beijing: Science Press; 1998 [in Chinese]

[16]

Zhao L, Wang QH, Ren ZX. et al. Paris fargesii Franch. var. macrosepala, a new variety of Paris L. (Melanthiaceae) from Hunan, China. J Trop Subtrop Bot. 2022;30:543- 8 [in Chinese]

[17]

Linnaeus C. Species Plantarum. Stockholm: Laurentius Salvius; 1753 [in Latin]

[18]

De-Jusseau AL. Genera Plantarum Secundum Ordines Naturales Disposita. Paris: viduam Herissant and Theophilum Barrois; 1789 [in French]

[19]

Zomlefer WB, Judd W, Whitten M. et al. A synopsis of Melan-thiaceae (Liliales) with focus on character evolution in tribe Melanthieae. Aliso. 2006;22: 566-78

[20]

Ruchisansakun S, Sraphet S, Yothawut C. et al. Revision on the genus Paris in Thailand, with a new species Paris siamensis. Plants (Basel). 2023;12:430

[21]

Kim C, Kim SC, Kim JH. Historical biogeography of Melanthi-aceae: a case of out-of-North America through the Bering land bridge. Front Plant Sci. 2019;10:396

[22]

Nga NQ, Huyen PT, Truong PV. et al. Taxonomy of the genus Paris L. (Melanthiaceae) in Vietnam. Tap Chi Sinh Hoc. 2016;38: 333-9

[23]

Tao AE, Zhao FY, Li RS. et al. Industrialization condition and development strategy of Paridis rhizoma. Chin Tradit Herb Drugs. 2020;51:4809- 15 [in Chinese]

[24]

Deb CR, Jamir S, Jamir NS. Studies on vegetative and reproduc-tive ecology of Paris polyphylla Smith: a vulnerable medicinal plant. Am J Plant Sci. 2015;6: 2561-8

[25]

Wang YF, Li G, Tang L. et al. Breeding system of Paris polyphylla var. yunnanensis. Chin J Chin Mat Med 2013;38:2773-8 [in Chinese]

[26]

Jacquemyn H, Brys R, Hutchings MJ. Biological flora of the British Isles: Paris quadrifolia L. J Ecol. 2008;96: 833-44

[27]

Wang ML, Li WQ, Qiang Q. et al. Clonal propagation and assessment of biomass production and saponin content of elite accessions of wild Paris polyphylla var. yunnanensis. Plants (Basel). 2023;12:2983

[28]

Rawat JM, Pandey S, Rawat B. et al. In vitro production of steroidal saponin, total phenols and antioxidant activity in callus suspension culture of Paris polyphylla Smith: an impor-tant Himalayan medicinal plant. Front Plant Sci. 2023;14: 1225612

[29]

Wang ML, Chen JQ, Zhang XD. et al. Gibberellin A 3 induces polyaerial shoot formation and increases the propagation rate in Paris polyphylla rhizomes. IndCropProd. 2021;167:113511

[30]

Srivustuvu JG. The botanical identity of ‘Vacha’ (‘Bachh’) of the Ayurvedic literature. Q J Crude Drug Res. 1971;11: 1734-42

[31]

Jiang L, Kang LP, Liu DH. et al. Herbal textual research on origins of Chonglou. China Journal of Chinese Materia Medica. 2017; 42: 3469-73 [in Chinese]

[32]

Fiechter A, Beppu T, Bisaria VS. History of Modern Biotechnology I. Berlin: Springer; 2000

[33]

Qin XJ, Zhang LJ, Zhang Y. et al. Polyphyllosides A-F, six new spirostanol saponins from the stems and leaves of Paris poly-phylla var. chinensis. Bioorg Chem. 2020;99:103788

[34]

Guan X, Li RS, Duan BZ. et al. Advances in research on chemical constituents and pharmacological effects of Paris genus and prediction and analysis of quality markers. Chin Tradit Herb Drugs. 2019;50:4838- 52 [in Chinese]

[35]

Wang YM, Fan Q, Xiang J. et al. Structural characterization and discrimination of Paris polyphylla var. yunnanensis byamolecu-lar networking strategy coupled with ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2020;34:e8760

[36]

Wen YS, Ni W, Qin XJ. et al. Steroidal saponins with cytotoxic activity from the rhizomes of Paris polyphylla var. yunnanensis. Phytochem Lett. 2015;12: 31-4

[37]

Xiao CM, Huang J, Zhong XM. et al. Two new homo-aro-cholestane glycosides and a new cholestane glycoside from the roots and rhizomes of Paris polyphylla var. pseudothibetica. Helv Chim Acta. 2009;92: 2587-95

[38]

Qin XJ, Yu MY, Ni W. et al. Steroidal saponins from stems and leaves of Paris polyphylla var. yunnanensis. Phytochemistry. 2016;121: 20-9

[39]

Wang J, Li D, Ni W. et al. Molecular networking uncovers steroidal saponins of Paris tengchongensis. Fitoterapia. 2020;145: 104629

[40]

Guo X, Qiao Q, Jin Y. et al. Optimization of ultrasound-assisted extraction of two saponins from Paris polyphylla var. yunnanensis leaves using response surface methodology. Front Sustain Food Syst. 2024;8:8

[41]

Ju J, Zhu ZM, Du ZK. Optimization of the extraction technology of saponins from Paris polyphylla with central composite design-response surface method. China Pharmacy. 2015;26:3967- 9 [in Chinese]

[42]

Zhang XJ, Wang Y, Fan T. Optimization in microwave extraction process of polyphyllin I by orthogonal experiment. Chem Bioeng. 2023;40:26- 30 [in Chinese]

[43]

Jin Y, Qiao Q, Dong L. et al. Response surface optimization for water-assisted extraction of two saponins from Paris polyphylla var. yunnanensis leaves. Molecules. 2024;29:1652

[44]

Liu JZ, Lin ZX, Kong WH. et al. Ultrasonic-assisted extraction-synergistic deep eutectic solvents for green and efficient incremental extraction of Paris polyphylla saponins. J Mol Liq. 2022;368:120644

[45]

Tian XL, Liu JZ, Jiang LJ. et al. Efficient extraction and opti-mization procedures of polyphyllins from Paris polyphylla var chinensis by deep eutectic solvent coupled with ultrasonic-assisted extraction. Microchem J. 2024;196:109692

[46]

Zhang T, Liu H, Liu XT. et al. Qualitative and quantitative analysis of steroidal saponins in crude extracts from Paris polyphylla var. yunnanensis and P. polyphylla var. chinensis by high performance liquid chromatography coupled with mass spectrometry. J Pharm Biomed Anal. 2010;51: 114-24

[47]

Wu DR, Yang XW, Zhao Q. et al. Exploration of the profiles of steroidal saponins from Rhizoma Paridis and their metabolites in rats by UPLC-Q-TOF-MS_MS. Phytochem Anal. 2024;35: 621-33

[48]

Guan LJ, Ju BY, Zhao M. et al. Influence of drying process on furostanoside and spirostanoside profiles of Paridis Rhizoma by combination of HPLC, UPLC and UPLC-QTOF-MS/MS analy-ses. J Pharm Biomed Anal. 2021;197:113932

[49]

Kang LP, Yu K, Zhao Y. et al. Characterization of steroidal glycosides from the extract of Paris polyphylla var. yunnanensis by UPLC/Q-TOF MSE. J Pharm Biomed Anal. 2012;62: 235-49

[50]

Yang YG, Li F, Xu HB. et al. Discrimination and evaluation of wild Paris using UHPLC-QTOF-MS and FT-IR spectroscopy in combination with multivariable analysis. Int J Anal Chem. 2023;2023: 1-11

[51]

Yang YG, Zhang J, Zhang JY. et al. Research progress in chemical constituents in plants ofParisL. and their pharmacological effects. Chin Tradit Herb Drugs. 2016;47:3301- 23 [in Chinese].

[52]

Sun CL, Ni W, Yan H. et al. Steroidal saponins with induced platelet aggregation activity from the aerial parts of Paris verti-cillata. Steroids. 2014;92: 90-5

[53]

Ding YG, Zhao YL, Zhang J. et al. The traditional uses, phy-tochemistry, and pharmacological properties of Paris L. (Lili-aceae): a review. J Ethnopharmacol. 2021;278:114293

[54]

Zhou N, Xu LF, Park S-M. et al. Genetic diversity, chemical components, and property of biomass Paris polyphylla var. yun-nanensis. Front Bioeng Biotechnol. 2021;9:713860

[55]

Qin XJ, Chen CX, Ni W. et al. C22-steroidal lactone glycosides from stems and leaves of Paris polyphylla var. yunnanensis. Fitoter-apia. 2013;84: 248-51

[56]

Kim KH, Lee KH, Choi SU. et al. Pyrrolizidine alkaloids from the roots of Paris verticillata. ChemInform. 2010;41:203

[57]

Su F, Ye L, Zhou ZL. et al. Study of chemical compositions and anticancer effects of Paris polyphylla var. chinensis leaves. Molecules. 2022;27:2724

[58]

Wei JC, Gao WY, Yan XD. et al. Chemical constituents of plants from the genus Paris. Chem Biodivers. 2014;11: 1277-97

[59]

Jenett-Siems K, Krause N, Siems K. et al. Chemical composition and biological activity of Paris quadrifolia L. Z Naturforsch C J Biosci. 2012;67: 565-70

[60]

Liu XX, Wang L, Long Y. et al. Chemical constituents from Paris mairei. Chin J Chin Mat Med. 2014;16:3107- 711 [in Chinese]

[61]

Thapa CB, Paudel MR, Bhattarai HD. et al. Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: areview. Heliyon. 2022;8:e08982

[62]

Qin XJ, Ni W, Chen CX. et al. Seeing the light: shifting from wild rhizomes to extraction of active ingredients from above-ground parts of Paris polyphylla var. yunnanensis. J Ethnopharma-col. 2018;224: 134-9

[63]

Lin LT, Shi YC, Choong CY. et al. The fruits of Paris polyphylla inhibit colorectal cancer cell migration induced by Fusobac-terium nucleatum-derived extracellular vesicles. Molecules. 2021; 26:4081

[64]

Yao N, Ren K, Wang YM. et al. Paris polyphylla suppresses pro-liferation and vasculogenic mimicry of human osteosarcoma cells and inhibits tumor growth in vivo. Am J Chin Med. 2017;45: 575-98

[65]

He L, Yan XR, Wen ST. et al. Paris polyphylla extract attenuates colitis in mice by regulating PPAR-γ mediated Treg/Th17 bal-ance. J Ethnopharmacol. 2023;314:116621

[66]

Chandra BT, Hari DB, Krishna KP. et al. Antioxidant, antibacte-rial, and cytotoxic effect of in vitro callus and in vivo rhizome of Paris polyphylla Sm. Process Biochem. 2023;124: 33-43

[67]

Wang K, Zhu S, Zhang Y. et al. Targeting the GTPase RAN by liposome delivery for tackling cancer stemness-emanated therapeutic resistance. J Control Release. 2024;375: 589-600

[68]

Hsieh MJ, Chien SY, Lin JT. et al. Polyphyllin G induces apop-tosis and autophagy cell death in human oral cancer cells. Phytomedicine. 2016;23: 1545-54

[69]

Fu YL, Yu ZY, Tang XM. et al. Pennogenin glycosides with a spirostanol structure are strong platelet agonists: structural requirement for activity and mode of platelet agonist syner-gism. J Thromb Haemost. 2008;6: 524-33

[70]

Wang FF. Studies on extraction and purification process and antioxidant activity of total flavonoids from stem and leaves of Paris polyphylla. J Anhui Agric Sci. 2019;47:154- 67 [in Chinese]

[71]

Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138: 2099-107

[72]

Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009;285: 109-15

[73]

Shen S, Xu Z, Feng S. et al. Structural elucidation and antiaging activity of polysaccharide from Paris polyphylla leaves. Int J Biol Macromol. 2018;107: 1613-9

[74]

Man SL, Pei YQ, Jing L. Global metabolic profiling for the study of Rhizoma Paridis saponins-induced hepatotoxicity in rats. Environ Toxicol. 2015;32: 99-108

[75]

Gao XM, Wang X, Ma WS. et al. Comparative metabolome profiling of Paris polyphylla var. yunnanensis cultivars and Paris luquanensis and their biological activity in zebrafish model. J Ethnopharmacol. 2024;319:117272

[76]

Yang RR, Wang YH, Shi M. Antitumor activity in vitro and toxicity of the total saponins from Paris forrestii. Chin J Clin Pharmacol. 2018;34:439- 42 [in Chinese]

[77]

Wang W, Liu Y, Sun M. et al. Hepatocellular toxicity of Paris saponins I, II, VI and VII on two kinds of hepatocytes-HL-7702 and HepaRG cells, and the underlying mechanisms. Cells. 2019;8:690

[78]

Gao M, Cheung KL, Lau IP. et al. Polyphyllin D induces apop-tosis in human erythrocytes through Ca2+ rise and membrane permeabilization. Arch Toxicol. 2012;86: 741-52

[79]

Zheng JY, Wang H, Chen XX. et al. Microsatellite markers for assessing genetic diversity of the medicinal plant Paris polyphylla var. chinensis (Trilliaceae). Genet Mol Res. 2012;11: 1975-80

[80]

Zhao X, Zou G, Zhao J. et al. Genetic relationships and diversity among populations of Paris polyphylla assessed using SCoT and SRAP markers. Physiol Mol Biol Plants. 2020;26: 1281-93

[81]

Gao XY, Su QX, Yao BL. et al. Development of EST-SSR markers related to polyphyllin biosynthesis reveals genetic diversity and population structure in Paris polyphylla. Diversity. 2022; 14:589

[82]

Oliya BK, Maharjan L, Pant B. Genetic diversity and popula-tion structure analysis of Paris polyphylla Sm. revealed by SSR marker. Heliyon. 2023;9:e18230

[83]

Huang Y, Zhou N, Yang M. et al. A comparative study of the population genetics of wild and cultivated popula-tions of Paris polyphylla var. yunnanensis based on amplified fragment length polymorphism markers. Ecol Evol. 2019;9: 10707-22

[84]

He J, Wang H, Li DZ. et al. Genetic diversity of Paris polyphylla var. yunnanensis, a traditional Chinese medicinal herb, detected by ISSR markers. Planta Med. 2007;73: 1316-21

[85]

Zhang KY, Rao WX, Yin XM. et al. Multiplex PCR system for the identification of Paridis Rhizoma’s legal origins and its closely related species from genus Paris. Nat Prod Res Dev. 2018; 30: 2193-202 [in Chinese]

[86]

Yin HX, Zhang KY, Ren ZX. et al. Paris polyphylla var. yunnanensis genotype classification and fluorescence visual identification. Agron J. 2022;114: 1971-80

[87]

Liu T, Zhao YL, Yang Y. et al. Molecular identification of Paris polyphylla var. yunnanensis using psbA-trnH DNA barcoding. Nat Prod Res Dev. 2015;27:758- 62 [in Chinese]

[88]

Duan BZ, Wang YP, Fang HL. et al. Authenticity analyses of Rhizoma Paridis using barcoding coupled with high resolution melting (bar-HRM) analysis to control its quality for medicinal plant product. Chin Med. 2018;13:8

[89]

Guo LN, Liu J, Zhu L. et al. Original identification of Paridis Rhizoma based on DNA barcoding technology. Chin J Pharm Anal. 2018;38:857- 66 [in Chinese]

[90]

Ji YH, Fritsch PW, Li H. et al. Phylogeny and classification of Paris (Melanthiaceae) inferred from DNA sequence data. Ann Bot. 2006;98: 245-56

[91]

Ji Y, Liu C, Yang J. et al. Ultra-barcoding discovers a cryp-tic species in Paris yunnanensis (Melanthiaceae), a medicinally important plant. Front Plant Sci. 2020;11:411

[92]

Miao K, Wang TL, Tang LL. et al. Establishing the first reference library for utilizing high-throughput sequencing technologies in identifying medicinal and endangered Paris species (Melan-thiaceae). Ind Crop. Prod. 2024;218:118871

[93]

Zhou N, Tang LL, Xie PX. et al. Genome skimming as an efficient tool for authenticating commercial products of the pharma-ceutically important Paris yunnanensis (Melanthiaceae). BMC Plant Biol. 2023;23:344

[94]

Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? BotJLinnSoc. 2010;164: 10-5

[95]

Fernández P, Amice R, Bruy D. et al. A 160 Gbp fork fern genome shatters size record for eukaryotes. iScience. 2024;27:109889

[96]

Leitch IJ, Chase MW, Bennett MD. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot. 1998;82: 85-94

[97]

Li J, Lv MQ, Du L. et al. An enormous Paris polyphylla genome sheds light on genome size evolution and polyphyllin biogene-sis. bioRxiv preprint. 2020.06.01.126920

[98]

Do HD, Kim JS, Kim JH. A trnI_CAU triplication event in the com-plete chloroplast genome of Paris verticillata M. Bieb. (Melanthi-aceae, Liliales). Genome Biol Evol. 2014;6: 1699-706

[99]

Huang YL, Li XJ, Yang ZY. et al. Analysis of complete chloroplast genome sequences improves phylogenetic resolution in Paris (Melanthiaceae). Front Plant Sci. 2016;7:1797

[100]

Ji Y, Yang LF, Chase MW. et al. Plastome phylogenomics, bio-geography, and clade diversification of Paris (Melanthiaceae). BMC Plant Biol. 2019;19:543

[101]

Jiang Y, Miao YJ, Qian J. et al. Comparative analysis of complete chloroplast genome sequences of five endangered species and new insights into phylogenetic relationships of Paris. Gene. 2022;833:146572

[102]

Zheng GW, Li WC, Zhang SZ. et al. Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla. BMC Plant Biol. 2023;23:247

[103]

Yang B, Sun S, Li SY. et al. RNA-seq study reveals the signaling and carbohydrate metabolism regulators involved in dormancy release by warm stratification in Paris polyphylla var. yunnanen-sis. Plant Biotechnol. 2022;39: 355-65

[104]

Tang ZB, Zhao J, Yang B. et al. Dynamic RNA-Seq study reveals the potential regulators of seed germination in Paris polyphylla var. yunnanensis. Plants (Basel). 2022;11:2400

[105]

Qi JJ, Zheng N, Zhang B. et al. Mining genes involved in the stratification of Paris polyphylla seeds using high-throughput embryo transcriptome sequencing. BMC Genomics. 2013;14:358

[106]

Ling LZ, Zhang SD, Zhao F. et al. Transcriptome-wide identifi-cation and prediction of miRNAs and their targets in Paris poly-phylla var. yunnanensis by high-throughput sequencing analysis. Int J Mol Sci. 2017;18:219

[107]

Ling LZ, Zhang SD. Comparative proteomic analysis between mature and germinating seeds in Paris polyphylla var. yunnanen-sis. PeerJ. 2022;10:e13304

[108]

Liao DQ, Chen YL, Qi JJ. et al. Temporal transcriptomics reveal the molecular mechanism of dormancy and germination reg-ulated by temperature in Paris polyphylla seed. Hortic Plant J. 2023;9: 848-66

[109]

Liu F, Meng YY, He K. et al. Comparative analysis of proteomic and metabolomic profiles of different species of Paris. JPro-teome. 2019;200: 11-27

[110]

Li Y, Xu JL, Zhang FR. et al. The combination of red and blue light increases the biomass and steroidal saponin contents of Paris polyphylla var. yunnanensis. Ind Crops. Prod. 2023;194: 116311

[111]

Yu JB, Bai M, Wang CY. et al. Regulation of secondary metabo-lites accumulation in medicinal plants by rhizospheric and endophytic microorganisms. Med. Plant Biol. 2024;3:e011

[112]

Yang Y, Yang SC, Zhao J. et al. Microbial diversity in Paris polyphylla var. yunnanensis rhizomes of varying ages. Genet Mol Res. 2015;14: 17612-21

[113]

Fu SD, Deng Y, Zou K. et al. Dynamic variation of Paris polyphylla root-associated microbiome assembly with planting years. Planta. 2023;257:61

[114]

Liu T, Greenslade A, Yang S. Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age. Plant Divers. 2017;39: 60-4

[115]

LiuS, ChenY, LiX. et al. Linking soil nutrients, microbial com-munity composition, and enzyme activities to saponin content of Paris polyphylla after addition of biochar and organic fertiliser. Chemosphere. 2024;363:142856

[116]

Su QX, Zhang X, Li J. et al. PPDP: a data portal of Paris polyphylla for polyphyllin biosynthesis and germplasm resource explo-ration. Diversity. 2022;14:1057

[117]

Paddon CJ, Westfall PJ, Pitera DJ. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496: 528-32

[118]

Yan X, Fan Y, Wei W. et al. Production of bioactive ginseno-side compound K in metabolically engineered yeast. Cell Res. 2014;24: 770-3

[119]

Lin JJ, Yin X, Zeng YR. et al. Progress and prospect: biosynthesis of plant natural products based on plant chassis. Biotechnol Adv. 2023;69:108266

[120]

Guo L, Yao H, Chen WK. et al. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. Hortic Res. 2022;9:uhac223

[121]

Liu XY, Zhang PJ, Zhao Q. et al. Making small molecules in plants: a chassis for synthetic biology-based produc-tion of plant natural products. J Integr Plant Biol. 2023;65: 417-43

[122]

Yin X, Liu J, Kou CX. et al. Deciphering the network of cholesterol biosynthesis in Paris polyphylla laid a base for efficient diosgenin production in plant chassis. Metab Eng. 2023;76: 232-46

[123]

Christ B, Xu CC, Xu ML. et al. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat Commun. 2019;10:3206

[124]

Zhou C, Yang YH, Tian JY. et al. 22R- but not 22S-hydroxycholesterol is recruited for diosgenin biosynthesis. Plant J. 2022;109: 940-51

[125]

Hua X, Song W, Wang KZ. et al. Effective prediction of biosyn-thetic pathway genes involved in bioactive polyphyllins in Paris polyphylla. Commun Biol. 2022;5:50

[126]

Guo SY, Yin Y, Lei T. et al. A cycloartenol synthase from the steroidal saponin biosynthesis pathway of Paris polyphylla. J Asian Nat Prod Res. 2021;23: 353-62

[127]

Guan HY, Su P, Zhao YJ. et al. Cloning and functional analysis of two sterol-C24-methyltransferase 1 (SMT1) genes from Paris polyphylla. J Asian Nat Prod Res. 2018;20: 595-604

[128]

Yin Y, Gao LH, Zhang XN. et al. A cytochrome P450 monooxyge-nase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway. Phytochem-istry. 2018;156: 116-23

[129]

Li Y, Li ZH, Zhang FR. et al. Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants. Plant J. 2023;116: 823-39

[130]

Li Y, Yang H, Li ZH. et al. Advances in the biosynthesis and molecular evolution of steroidal saponins in plants. Int J Mol Sci. 2023;24:2620

[131]

Hou LX, Zhang FR, Yuan XC. et al. Comparative transcriptome analysis reveals key genes for polyphyllin difference in five Paris species. Physiol Plant. 2022;174:e13810

[132]

Cheng J, Chen J, Liu X. et al. The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Commun. 2021;2:100079

[133]

Chen YG, Yan Q, Ji YH. et al. Unraveling the serial glycosylation in the biosynthesis of steroidal saponins in the medicinal plant Paris polyphylla and their antifungal action. Acta Pharm Sin B. 2023;13: 4638-54

[134]

Song W, Zhang CC, Wu JL. et al. Characterization of three Paris polyphylla glycosyltransferases from different UGT fam-ilies for steroid functionalization. ACS Synth Biol. 2022;11: 1669-80

[135]

Xu WK, Zhao CX, Yang XW. et al. Characterization of a glycosyltransferase from Paris polyphylla for application in biosynthesis of rare ophiopogonins and ginsenosides. Phyto-chemistry. 2024;225:114173

[136]

Zheng H, Fu XQ, Shao J. et al. Transcriptional regulatory net-work of high-value active ingredients in medicinal plants. Trends Plant Sci. 2023;28: 429-46

[137]

Gao XY, Su QX, Li J. et al. RNA-Seq analysis reveals the important co-expressed genes associated with polyphyllin biosynthesis during the developmental stages of Paris poly-phylla. BMC Genomics. 2022;23:559

[138]

Sun SJ, Shen XF, Li Y. et al. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellu-lar compartmentation of specialized metabolism. Nat Plants. 2023;9: 179-90

[139]

Sun W, Xu Z, Song C. et al. Herbgenomics: decipher molec-ular genetics of medicinal plants. Innovation (Camb). 2022;3: 100322

[140]

Yang CK, Shen SQ, Zhou S. et al. Rice metabolic regulatory network spanning the entire life cycle. Mol Plant. 2022;15: 258-75

[141]

Li Y, Chen Y, Zhou L. et al. MicroTom metabolic network: rewiring tomato metabolic regulatory network throughout the growth cycle. Mol Plant. 2020;13: 1203-18

[142]

Xia J, Lou GG, Zhang L. et al. Unveiling the spatial distribution and molecular mechanisms of terpenoid biosynthesis in Salvia miltiorrhiza and S. grandifolia using multi-omics and DESI-MSI. Hortic Res. 2023;10:uhad109

[143]

Cao XS, Xie HT, Song ML. et al. Simple method for transfor-mation and gene editing in medicinal plants. J Integr Plant Biol. 2023;66: 17-9

[144]

Dong B, Li S, Wang X. et al. Integrated analysis of transcriptome, small RNA, and phytohormonal content changes between Artemisia annua Linn. and Nicotiana benthamiana Domin in het-erogeneous grafting. Med. Plant Biol. 2023;2:2

AI Summary AI Mindmap
PDF (2706KB)

703

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/