Phytop: a tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL

Hong-Yun Shang , Kai-Hua Jia , Nai-Wei Li , Min-Jie Zhou , Hao Yang , Xiao-Ling Tian , Yong-Peng Ma , Ren-Gang Zhang

Horticulture Research ›› 2025, Vol. 12 ›› Issue (3) : 330

PDF (2681KB)
Horticulture Research ›› 2025, Vol. 12 ›› Issue (3) : 330 DOI: 10.1093/hr/uhae330
Method

Phytop: a tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL

Author information +
History +
PDF (2681KB)

Abstract

Incomplete lineage sorting (ILS) and introgression/hybridization (IH) are prevalent in nature and thus frequently result in discrepancies within phylogenetic tree topologies, leading to misinterpretation of phylogenomic data. Despite the availability of numerous tools for detecting ILS and IH among species, many of these tools lack effective visualization, or are time-consuming, or require prior predetermination. Here, we addressed these shortcomings by developing a fast-running, user-friendly tool called Phytop. By defining ILS and IH indices to quantify ILS and IH, this tool can detect the extent of ILS and IH among lineages with high reliability, and can visualize them based on the gene tree topology patterns constructed using ASTRAL. We tested Phytop extensively using both simulated and real data, and found that it enables users to quickly and conveniently estimate the extent of ILS and IH, thus clarifying the phylogenetic uncertainty. Phytop is available at https://github.com/zhangrengang/phytop and is expected to contribute to the intuitive and convenient inference of genetic relationships among lineages in future research.

Cite this article

Download citation ▾
Hong-Yun Shang, Kai-Hua Jia, Nai-Wei Li, Min-Jie Zhou, Hao Yang, Xiao-Ling Tian, Yong-Peng Ma, Ren-Gang Zhang. Phytop: a tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL. Horticulture Research, 2025, 12(3): 330 DOI:10.1093/hr/uhae330

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

We thank the two anonymous reviewers for their insightful comments and constructive suggestions, which have significantly improved the quality of manuscript and enhance the utility of Phytop. This study was financial support by the strategic priority research program of Kunming Institute of Botany, Chinese Academy of Sciences (KIBXD202401), Natural Science Foundation of China (32471734 and 32360336), CAS ‘Light of West China’ Program, Yunnan Provincial Science and Technology Mission (202404BI090014).

Author Contributions

R. Z. and Y. M. conceived and designed the study. R. Z. performed software development. H. S. and R. Z. wrote the manuscript. R. Z. and H. S completed the data analysis and prepared the figures. R. Z., Y. M., N. L., and K. J. revised the manuscript. M. Z., X. T., and H. Y. tested the software and helped with data analysis.

Data availability

The code for Phytop is freely available on GitHub (https://github.com/zhangrengang/phytop).

Conflict of interest statement

The authors declare no conflicts of interest.

References

[1]

Wang Z, Kang M, Li J. et al. Genomic evidence for homoploid hybrid speciation between ancestors of two different genera. Nat Commun. 2022;13:1987

[2]

Ma J, Sun P, Wang D. et al. The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms. Nat Commun. 2021;12:6929

[3]

Guo C, Luo Y, Gao LM. et al. Phylogenomics and the flowering plant tree of life. J Integr Plant Biol. 2023;65: 299-323

[4]

Feng S, Bai M, Rivas-González I. et al. Incomplete lineage sorting and phenotypic evolution in marsupials. Cell. 2022;185: 1646-1660.e18

[5]

Rose JP, Toledo CAP, Lemmon EM. et al. Out of sight, out of mind: widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst Biol. 2021;70: 162-80

[6]

CaiL XiZ, LemmonEM. et al. The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst Biol. 2021;70: 491-507

[7]

Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009;60: 561-88

[8]

Payseur BA, Rieseberg LH. A genomic perspective on hybridiza-tion and speciation. Mol Ecol. 2016;25: 2337-60

[9]

Degnan JH, Rosenberg NA. Gene tree discordance, phyloge-netic inference and the multispecies coalescent. Trends Ecol Evol. 2009;24: 332-40

[10]

Wang Z, Zhou J, Pan J. et al. Insights into the superrosids phy-logeny and flavonoid synthesis from the telomere-to-telomere gap-free genome assembly of Penthorum chinense Pursh. Hortic Res. 2024;11:uhad274

[11]

Liu L, Chen M, Folk RA. et al. Phylogenomic and syntenic data demonstrate complex evolutionary processes in early radiation of the rosids. Mol Ecol Resour. 2023;23: 1673-88

[12]

Zhang B, Xu LL, Li N. et al. Phylogenomics reveals an ancient hybrid origin of the persian walnut. Mol Biol Evol. 2019;36: 2451-61

[13]

Stull GW, Soltis PS, Soltis DE. et al. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. Am J Bot. 2020;107: 790-805

[14]

Zhang RG, Lu C, Li GY. et al. Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes. Nat Commun. 2023;14:2204

[15]

Zhang RG, Shang HY, Jia KH. et al. Subgenome phasing for complex allopolyploidy: case-based benchmarking and recom-mendations. Brief Bioinform. 2024;25:bbad513

[16]

Marcussen T, Sandve SR, Heier L. et al. Ancient hybridiza-tions among the ancestral genomes of bread wheat. Science. 2014;345:1250092

[17]

Blischak PD, Chifman J, Wolfe AD. et al. HyDe: a python pack-age for genome-scale hybridization detection. Syst Biol. 2018;67: 821-9

[18]

Allman ES, Mitchell JD, Rhodes JA. Gene tree discord, sim-plex plots, and statistical tests under the coalescent. Syst Biol. 2022;71: 929-42

[19]

Malinsky M, Matschiner M, Svardal H. Dsuite - fast D-statistics and related admixture evidence from VCF files. Mol Ecol Resour. 2021;21: 584-95

[20]

Zhang C, Ogilvie HA, Drummond AJ. et al. Bayesian inference of species networks from multilocus sequence data. MolBiolEvol. 2018;35: 504-17

[21]

Wen D, Yu Y, Zhu J. et al. Inferring phylogenetic networks using PhyloNet. Syst Biol. 2018;67: 735-40

[22]

Solís-Lemus C, Bastide P, Ané C. PhyloNetworks: a package for phylogenetic networks. Mol Biol Evol. 2017;34: 3292-8

[23]

Flouri T, Jiao X, Rannala B. et al. A bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. MolBiolEvol. 2020;37: 1211-23

[24]

Green RE, Krause J, Briggs AW. et al. A draft sequence of the neandertal genome. Science. 2010;328: 710-22

[25]

Kong S, Kubatko LS. Comparative performance of popular meth-ods for hybrid detection using genomic data. Syst Biol. 2021;70: 891-907

[26]

Allman ES, Baños H, Rhodes JA. NANUQ: a method for inferring species networks from gene trees under the coalescent model. Algorithms Mol Biol. 2019;14:24

[27]

Yu Y, Nakhleh L. A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics. 2015;16:S10

[28]

Yu Y, Dong J, Liu KJ. et al. Maximum likelihood inference of reticulate evolutionary histories. Proc Natl Acad Sci. 2014;111: 16448-53

[29]

Solís-Lemus C, Ané C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 2016;12:e1005896

[30]

Pang X, Zhang D. Detection of ghost introgression requires exploiting topological and branch length information. Syst Biol. 2024;73: 207-22

[31]

Stull GW, Pham KK, Soltis PS. et al. Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 2023;114: 743-66

[32]

Hibbins MS, Hahn MW. Phylogenomic approaches to detecting and characterizing introgression. Genetics. 2022;220:iyab173

[33]

Wen D, Nakhleh L. Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Syst Biol. 2018;67: 439-57

[34]

Smith SA, Moore MJ, Brown JW. et al. Analysis of phyloge-nomic datasets reveals conflict, concordance, and gene dupli-cations with examples from animals and plants. BMC Evol Biol. 2015;15:150

[35]

Sayyari E, Whitfield JB, Mirarab S. DiscoVista: interpretable visu-alizations of gene tree discordance. Mol Phylogenet Evol. 2018;122: 110-5

[36]

Zhang C, Mirarab S. ASTRAL-pro 2: ultrafast species tree recon-struction from multi-copy gene family trees. Bioinformatics. 2022;38: 4949-50

[37]

Glémin S, Scornavacca C, Dainat J. et al. Pervasive hybridizations in the history of wheat relatives. Sci Adv. 2019;5:eaav9188

[38]

He W, Scornavacca C, Chan Y. The accuracy of species tree inference under gene tree dependence. bioRxiv. 2024; 2024.06.06.597697

[39]

Feng C, Wang J, Liston A. et al. Recombination variation shapes phylogeny and introgression in wild diploid strawberries. Mol Biol Evol. 2023;40:msad049

[40]

Zuntini AR, Carruthers T, Maurin O. et al. Phylogenomics and the rise of the angiosperms. Nature. 2024;629: 843-50

[41]

Li H, Luo Y, Gan L. et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 2021;19: 232

[42]

Govaerts R, Nic Lughadha E, Black N. et al. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Sci Data. 2021;8:215

[43]

Hu H, Sun P, Yang Y. et al. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. J Integr Plant Biol. 2023;65: 1479-89

[44]

Baker WJ, Bailey P, Barber V. et al. A comprehensive phyloge-nomic platform for exploring the angiosperm tree of life. Syst Biol. 2022;71: 301-19

[45]

Guo X, Fang D, Sahu SK. et al. Chloranthus genome provides insights into the early diversification of angiosperms. Nat Com-mun. 2021;12:6930

[46]

Qin L, Hu Y, Wang J. et al. Insights into angiosperm evolution, flo-ral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nat Plants. 2021;7: 1239-53

[47]

Ran J. et al. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolu-tion between Gnetales and angiosperms. Proc R Soc B Biol Sci. 1881;2018:20181012

[48]

Gitzendanner MA, Soltis PS, Wong GKS. et al. Plastid phyloge-nomic analysis of green plants: a billion years of evolutionary history. Am J Bot. 2018;105: 291-301

[49]

Song C, Fu F, Yang L. et al. Taxus yunnanensis genome offers insights into gymnosperm phylogeny and taxol production. Commun Biol. 2021;4:1203

[50]

Liu Y, Wang S, Li L. et al. The Cycas genome and the early evolution of seed plants. Nat Plants. 2022;8: 389-401

[51]

Shen X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol. 2017;1:0126

[52]

Thomson RC, Brown JM. On the need for new measures of phylogenomic support. Syst Biol. 2022;71: 917-20

[53]

Zhang D, Rheindt FE, She H. et al. Most genomic loci misrepresent the phylogeny of an avian radiation because of ancient gene flow. Syst Biol. 2021;70: 961-75

[54]

Laurent E, Matthieu F. Fastsimcoal: a continuous-time coales-cent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics. 2011;27: 1332-4

[55]

Ma H, Liu Y, Liu D. et al. Chromosome-level genome assem-bly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation. Plant J. 2021;107: 1533-45

[56]

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology infer-ence for comparative genomics. Genome Biol. 2019;20:238

[57]

Wang Y, Tang H, DeBarry JD. et al. MCScanX: a toolkit for detec-tion and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40: e49-9

[58]

Standley DM, Katoh K. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. MolBiolEvol. 2013;30: 772-80

[59]

Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34: W609-12

[60]

Capella-Gutierrez S, Silla-Martinez J, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972-3

[61]

Nguyen LT, Schmidt HA, von Haeseler A. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. MolBiolEvo.l 2015;32: 268-74

[62]

Kalyaanamoorthy S, Minh BQ, Wong TKF. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14: 587-9

[63]

Hoang DT, Chernomor O, von Haeseler A. et al. UFBoot2: improv-ing the ultrafast bootstrap approximation. MolBiolEvol. 2017;35: 518-22

[64]

Junier T, Zdobnov EM. The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics. 2010;26: 1669-70

[65]

Zhang RG, Shang HY, Zhou MJ. et al. Robust identification of orthologous synteny with the Orthology index and its applications in reconstructing the evolutionary history of plant genomes. bioRxiv. 2024; 2024.08.22.609065

[66]

Zhang C, Mirarab S. Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Mol Biol Evol. 2022;39:msac215

[67]

Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. MolBiolEvol. 2016;33: 1635-8

AI Summary AI Mindmap
PDF (2681KB)

357

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/