A telomere-to-telomere reference genome of ficus (Ficus hispida) provides new insights into sex determination

Zhenyang Liao , Tianwen Zhang , Wenlong Lei , Yibin Wang , Jiaxin Yu , Yinghao Wang , Kun Chai , Gang Wang , Huahao Zhang , Xingtan Zhang

Horticulture Research ›› 2024, Vol. 11 ›› Issue (1) : 257

PDF
Horticulture Research ›› 2024, Vol. 11 ›› Issue (1) : 257 DOI: 10.1093/hr/uhad257
ARTICLES

A telomere-to-telomere reference genome of ficus (Ficus hispida) provides new insights into sex determination

Author information +
History +
PDF

Abstract

A high-quality reference genome is indispensable for resolving biologically essential traits. Ficus hispida is a dioecious plant. A complete Ficus reference genome will be crucial for understanding their sex evolution and important biological characteristics, such as aerial roots, mutualistic symbiosis with ficus-wasps, and fruiting from old stems. Here, we generated a telomere-to-telomere (T2T) genome for F. hispida using PacBio HiFi and Oxford Nanopore Ultra-long sequencing technologies. The genome contiguity and completeness has shown improvement compared with the previously released genome, with the annotation of six centromeres and 28 telomeres. We have refined our previously reported 2-Mb male-specific region into a 7.2-Mb genomic region containing 51 newly predicted genes and candidate sex-determination genes AG2 and AG3. Many of these genes showed extremely low expression, likely attributed to hypermethylation in the gene body and promoter regions. Gene regulatory networks (GRNs) revealed that AG2 and AG3 are related to the regulation of stamen development in male flowers, while the AG1 gene is responsible for regulating female flowers’ defense responses and secondary metabolite processes. Comparative analysis of GRNs showed that the NAC, WRKY, and MYB transcription factor families dominate the female GRN, whereas the MADS and MYB transcription factor families are prevalent in the male GRN.

Cite this article

Download citation ▾
Zhenyang Liao, Tianwen Zhang, Wenlong Lei, Yibin Wang, Jiaxin Yu, Yinghao Wang, Kun Chai, Gang Wang, Huahao Zhang, Xingtan Zhang. A telomere-to-telomere reference genome of ficus (Ficus hispida) provides new insights into sex determination. Horticulture Research, 2024, 11(1): 257 DOI:10.1093/hr/uhad257

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the National Natural Science Foun-dation of China (grant 32200188) and the Key Programs of Jiangxi Youth Science Foundation (grant 20202ACBL215008).

Author contributions

X.T.Z. and G.W. designed and guided the project; Z.Y.L., Y.B.W., J.Y., and K.C. performed genome assembly and gene annotation; Z.Y.L. and W.L.L. performed methylation analysis; Z.Y.L. and T.W.Z. built gene regulation networks; T.W.Z and G.W. collected the samples; Z.Y.L. conducted other analyses; Y.H.W. helped to revise the article figures and tables; Z.Y.L. wrote the manuscript; Z.Y.L. and X.T.Z. revised the paper; H.H.Z. assisted in polishing the language of the article. All authors read and approved the manuscript.

Data availability

The genome sequences described in this article have been submit-ted to The National Genomics Data Center (NGDC, https://ngdc.cncb.ac.cn) under accession number PRJCA016767 (whole genome and assembly data).

Conflict of interests statement

The authors declare that they have no conflict of interest.

Supplementary data

Supplementary data is available at Horticulture Research online.

References

[1]

Massonnet M, Cochetel N, Minio A. et al. The genetic basis of sex determination in grapes. Nat Commun. 2020;11:1-12

[2]

Zhang X, Wang G, Zhang S. et al. Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell. 2020;183:875-889.e17

[3]

Berg CC. Classification and distribution of Ficus. Experientia. 1989;45:605-11

[4]

Harrison RD. Figs and the diversity of tropical rainforests. Bio-science. 2005;55:1053-64

[5]

Korine C, Kalko EK, Herre EA. Fruit characteristics and factors affecting fruit removal in a Panamanian community of strangler figs. Oecologia. 2000;123:560-8

[6]

Peng YQ, Yang DR, Zhou F. et al. Pollination biology of Ficus auriculata Lour. in tropical rainforest of Xishuangbanna. Chin. J Plant Ecol. 2003;27:111-7

[7]

Cruaud A, Rønsted N, Chantarasuwan B. et al. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst Biol. 2012;61:1029-47

[8]

Cook JM, West SA. Figs and fig wasps. Curr Biol. 2005;15:R978-80

[9]

Weiblen GD. Phylogenetic relationships of functionally dioe-cious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot. 2000;87:1342-57

[10]

Chen YR. A revision of the pathway from monoecious species to dioecious species in Ficus (Moraceae) - based on pollinators’ rel-ative ovipositor lengths and seed/pollinator production. Formos Entomol. 2005;25:119-25

[11]

Anstett MC. Unbeatable strategy, constraint and coevolution, or how to resolve evolutionary conflicts: the case of the fig/wasp mutualism. Oikos. 2001;95:476-84

[12]

Nefdt RJ, Compton SG. Regulation of seed and pollinator produc-tion in the fig-fig wasp mutualism. J Anim Ecol. 1996;65:170-82

[13]

Galil J, Eisikowitch D. Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytol. 1968;67:745-58

[14]

Michaloud G, Michaloud-Pelletier S, Wiebes JT. et al. The co-occurrence of two pollinating species of fig wasps and one species of fig. Proc K Ned Akad Wet C. 1985;88:93-119

[15]

Dev SA, Kjellberg F, Hossaert-McKey M. et al. Fine-scale popula-tion genetic structure of two dioecious Indian keystone species, Ficus hispida and Ficus exasperata (Moraceae). Biotropica. 2011;43: 309-16

[16]

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573-80

[17]

Simão FA, Waterhouse RM, Ioannidis P. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210-2

[18]

Rhie A, Walenz BP, Koren S. et al. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21:1-27

[19]

Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2004;5:1-4

[20]

Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 2012;35:1742-55

[21]

Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8: 272-85

[22]

Igasaki T, Watanabe Y, Nishiguchi M. et al. The flowering locus t/terminal flower 1 family in Lombardy poplar. Plant Cell Physiol. 2008;49:291-300

[23]

Kotoda N, Hayashi H, Suzuki M. et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol. 2010;51:561-75

[24]

Mayee P, Singh A. Natural genetic variation in Brassica homologs of FLOWERING LOCUS T and characterization of its expression domains. J Plant Biochem Biotechnol. 2016;25:270-7

[25]

González-Suárez P, Walker CH, Bennett T. FLOWERING LOCUS T mediates photo-thermal timing of inflorescence meristem arrest in Arabidopsis thaliana. Plant Physiol. 2023;192:2276-89

[26]

Liao Z, Dong F, Liu J. et al. Gene regulation network analyses of pistil development in papaya. BMC Genomics. 2022;23:1-14

[27]

Wang G, Zhang X, Herre EA. et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat Commun. 2021;12:718

[28]

Abu Almakarem AS, Heilman KL, Conger HL. et al. Extraction of DNA from plant and fungus tissues in situ. BMC Res Notes. 2012;5: 1-11

[29]

Cheng H, Concepcion GT, Feng X. et al. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170-5

[30]

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754-60

[31]

Zhang X, Zhang S, Zhao Q. et al. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants. 2019;5:833-45

[32]

Durand NC, Shamim MS, Machol I. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95-8

[33]

Wolff J, Rabbani L, Gilsbach R. et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 2020;48:W177-84

[34]

Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292-4

[35]

Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 2018; 46:126

[36]

Flynn JM, Hubley R, Goubert C. et al. RepeatModeler2 for auto-mated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 2020;117:9451-7

[37]

Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:1-14

[38]

Xu Z, Wang H. LTR_FINDER: an efficient tool for the pre-diction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265-8

[39]

Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive pro-gram for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176:1410-22

[40]

Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinfor-matics. 2009;25:1-4

[41]

Stanke M, Keller O, Gunduz I. et al. AUGUSTUS: ab initio pre-diction of alternative transcripts. Nucleic Acids Res. 2006;34: W435-9

[42]

Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59

[43]

Kim D, Paggi JM, Park C. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907-15

[44]

Pertea M, Kim D, Pertea GM. et al. Transcript-level expression analysis of RNA-seq experiments with HISAT. StringTie and Ball-gown. Nat Protoc. 2016;11:1650-67

[45]

Pertea M, Pertea GM, Antonescu CM. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290-5

[46]

Haas BJ, Delcher AL, Mount SM. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assem-blies. Nucleic Acids Res. 2003;31:5654-66

[47]

Haas BJ, Salzberg SL, Zhu W. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:R7-22

[48]

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detec-tion of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955-64

[49]

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47: D155-62

[50]

Lagesen K, Hallin P, Rødland EA. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100-8

[51]

Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homol-ogy searches. Bioinformatics. 2013;29:2933-5

[52]

Griffiths-Jones S, Bateman A, Marshall M. et al. Rfam: an RNA family database. Nucleic Acids Res. 2003;31:439-41

[53]

Ni P, Huang N, Nie F. et al. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat Commun. 2021;12:1-11

[54]

Huang X, Zhang S, Li K. et al. ViewBS: a powerful toolkit for visu-alization of high-throughput bisulfite sequencing data. Bioinfor-matics. 2018;34:708-9

[55]

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-20

[56]

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-9

[57]

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinfor-matics. 2011;12:323

[58]

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550

[59]

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconduc-tor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40

[60]

Obayashi T, Kinoshita K. Rank of correlation coefficient as a comparable measure for biological significance of gene coex-pression. DNA Res. 2009;16:249-60

[61]

Chow CN, Zheng HQ, Wu NY. et al. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing tran-scriptional regulatory networks in plants. Nucleic Acids Res. 2016;44:D1154-60

[62]

Smoot ME, Ono K, Ruscheinski J. et al. Cytoscape 2.8: new fea-tures for data integration and network visualization. Bioinformat-ics. 2011;27:431-2

AI Summary AI Mindmap
PDF

811

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/