Digital twins in healthcare IoT: A systematic review

Md Rafiul Kabir , Fairuz Shadmani Shishir , Sumaiya Shomaji , Sandip Ray

High-Confidence Computing ›› 2025, Vol. 5 ›› Issue (3) : 100340

PDF (2197KB)
High-Confidence Computing ›› 2025, Vol. 5 ›› Issue (3) : 100340 DOI: 10.1016/j.hcc.2025.100340
Review Articles
research-article

Digital twins in healthcare IoT: A systematic review

Author information +
History +
PDF (2197KB)

Abstract

Digital twin technology initially marked its presence in production and engineering, subsequently revolutionizing the healthcare sector with its groundbreaking applications. These include the creation of virtual replicas of patients and medical devices, enabling the formulation of personalized treatment plans. The rise of microcomputing, miniaturized hardware, and advanced machine-to-machine communications has laid the foundation for the Internet-of-Medical Things (IoMT), significantly transforming patient care through remote monitoring and timely diagnostics. Amid these technological strides, this paper offers a systematic review of digital twin technology’s integration within healthcare IoT, underlining its crucial role in promoting personalized medicine and tackling the pressing security challenges inherent in healthcare IoT systems. Focusing solely on the growing field of smart healthcare systems powered by IoT infrastructure, we explore the use of digital twins in digital patient modeling, the lifecycle of smart hospitals, surgical planning, medical devices, the pharmaceutical industry, and the IoMT cyber infrastructure, demonstrating their transformative potential in modern healthcare. Building on these findings, we outline key technical implications and emerging trends, highlight current challenges, and propose future research directions to advance healthcare IoT and its digital twin applications.

Keywords

Digital twin / Internet of things / Healthcare / Simulation

Cite this article

Download citation ▾
Md Rafiul Kabir, Fairuz Shadmani Shishir, Sumaiya Shomaji, Sandip Ray. Digital twins in healthcare IoT: A systematic review. High-Confidence Computing, 2025, 5(3): 100340 DOI:10.1016/j.hcc.2025.100340

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Md Rafiul Kabir: Writing - original draft, Supervision, Methodology, Funding acquisition, Conceptualization, Writing - review & editing, Visualization, Project administration, Investigation, Data curation. Fairuz Shadmani Shishir: Writing - original draft, Investigation, Conceptualization, Visualization, Data curation. Sumaiya Shomaji: Writing - review & editing, Supervision, Validation, Funding acquisition. Sandip Ray: Writing - review & editing, Project administration, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

H. Elayan, M. Aloqaily, M. Guizani, Digital twin for intelligent contextaware IoT healthcare systems, IEEE Internet Things J. 8 (23) (2021) 16749-16757, http://dx.doi.org/10.1109/JIOT.2021.3051158.

[2]

A.A. Hussain, O. Bouachir, F. Al-Turjman, M. Aloqaily, Notice of retraction: AI techniques for COVID-19, IEEE Access 8 (2020) 128776-128795.

[3]

P. Kumar, P. Singh, M. Diwakar, D. Garg, Healthcare industry assessment: analyzing risks, security, and reliability, 2024.

[4]

A. Fuller, Z. Fan, C. Day, C. Barlow, Digital twin: Enabling technologies, challenges and open research, IEEE Access 8 (2020) 108952-108971.

[5]

M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems,in: Transdisciplinary Perspectives on Complex Systems, Springer, 2017, pp. 85-113.

[6]

E. Glaessgen, D. Stargel, The digital twin paradigm for future NASA and US air force vehicles, in:53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1818.

[7]

W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital twin in manufacturing: A categorical literature review and classification, Ifac-Pap. 51 (11) (2018) 1016-1022.

[8]

H.Y. Jeon, C. Justin, D.N. Mavris, Improving prediction capability of quadcopter through digital twin, in: AIAA Scitech 2019 Forum, 2019, p. 1365.

[9]

M.R. Kabir, S. Ray, Virtual prototyping for modern internet-of-things applications: A survey, IEEE Access 11 (2023) 31384-31398.

[10]

C. Groth, S. Porziani, M. Biancolini, E. Costa, S. Celi, K. Capellini, M. Rochette, V. Morgenthaler,The medical digital twin assisted by reduced order models and mesh morphing, in:International CAE Conference, vol. 10, 2018.

[11]

Y. Chu, S. Li, J. Tang, H. Wu, The potential of the medical digital twin in diabetes management: a review, Front. Med. 10 (2023) 1178912.

[12]

G. Coorey, G.A. Figtree, D.F. Fletcher, J. Redfern, The health digital twin: advancing precision cardiovascular medicine, Nat. Rev. Cardiol. 18 (12) (2021) 803-804.

[13]

G. Coorey, G.A. Figtree, D.F. Fletcher, V.J. Snelson, S.T. Vernon, D. Winlaw, S.M. Grieve, A. McEwan, J.Y.H. Yang, P. Qian, et al., The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field, NPJ Digit. Med. 5 (1) (2022) 126.

[14]

T. Vats, S.K. Singh, S. Kumar, B.B. Gupta, S.S. Gill, V. Arya, W. Alhalabi, Explainable context-aware IoT framework using human digital twin for healthcare, Multimedia Tools Appl. (2023) 1-25.

[15]

S.D. Okegbile, J. Cai, D. Niyato, C. Yi, Human digital twin for personalized healthcare: Vision, architecture and future directions, IEEE Netw. 37 (2) (2022) 262-269.

[16]

B.R. Barricelli, E. Casiraghi, J. Gliozzo, A. Petrini, S. Valtolina, Human digital twin for fitness management, Ieee Access 8 (2020) 26637-26664.

[17]

I. Graessler, A. Pöhler,Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system, in: 2017 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM, IEEE, 2017, pp. 289-293.

[18]

A. Löcklin, T. Jung, N. Jazdi, T. Ruppert, M. Weyrich, Architecture of a human-digital twin as common interface for operator 4.0 applications, Procedia CIRP 104 (2021) 458-463.

[19]

B. Wang, H. Zhou, G. Yang, X. Li, H. Yang, Human digital twin (HDT) driven human-cyber-physical systems: Key technologies and applications, Chin. J. Mech. Eng. 35 (1) (2022) 11.

[20]

B. Wang, H. Zhou, X. Li, G. Yang, P. Zheng, C. Song, Y. Yuan, T. Wuest, H. Yang, L. Wang, Human digital twin in the context of industry 5.0, Robot. Comput.-Integr. Manuf. 85 (2024) 102626.

[21]

Healthcare digital twins market size | industry report , 2030, 2024, (Accessed 1 January 2025). URL https://www.grandviewresearch.com/industry-analysis/healthcare-digital-twins-market-report.

[22]

S. Vishnu, S.J. Ramson, R. Jegan,Internet of medical things (IoMT)-an overview, in: 2020 5th International Conference on Devices, Circuits and Systems, ICDCS, IEEE, 2020, pp. 101-104.

[23]

L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M.L. Stefanizzi, L. Tarricone, An IoT-aware architecture for smart healthcare systems, IEEE Internet Things J. 2 (6) (2015) 515-526, http://dx.doi.org/10.1109/JIOT.2015.2417684.

[24]

R.K. Kodali, G. Swamy, B. Lakshmi,An implementation of IoT for healthcare, in: 2015 IEEE Recent Advances in Intelligent Computational Systems, RAICS, 2015, pp. 411-416, http://dx.doi.org/10.1109/RAICS.2015.7488451.

[25]

B. Farahani, F. Firouzi, K. Chakrabarty, Healthcare iot, Intell. Internet Things: From Device To Fog Cloud (2020) 515-545.

[26]

M. Elhoseny, G. Ramírez-González, O.M. Abu-Elnasr, S.A. Shawkat, N. Arunkumar, A. Farouk, Secure medical data transmission model for IoT-based healthcare systems, Ieee Access 6 (2018) 20596-20608.

[27]

A. Ukil, S. Bandyoapdhyay, C. Puri, A. Pal,IoT healthcare analytics: The importance of anomaly detection, in: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications, AINA, IEEE, 2016, pp. 994-997.

[28]

A. Zahid, J.K. Poulsen, R. Sharma, S.C. Wingreen,A systematic review of emerging information technologies for sustainable data-centric health-care, Int. J. Med. Informatics 149 (2021) 104420.

[29]

A. Khang, AI and IoT Technology and Applications for Smart Healthcare Systems, CRC Press, 2024.

[30]

A.K. Tyagi, Richa, Digital twin technology: Opportunities and challenges for smart era’s applications,in:Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing, 2023, pp. 328-336.

[31]

O. Khan, M. Parvez, P. Kumari, S. Parvez, S. Ahmad, The future of pharmacy: how AI is revolutionizing the industry, Intell. Pharm. 1 (1) (2023) 32-40.

[32]

A. Haleem, M. Javaid, R.P. Singh, R. Suman, Exploring the revolution in healthcare systems through the applications of digital twin technology, Biomed. Technol. 4 (2023) 28-38.

[33]

E. Katsoulakis, Q. Wang, H. Wu, L. Shahriyari, R. Fletcher, J. Liu, L. Achenie, H. Liu, P. Jackson, Y. Xiao, et al., Digital twins for health: a scoping review, Npj Digit. Med. 7 (1) (2024) 77.

[34]

T. Sun, X. He, Z. Li, Digital twin in healthcare: Recent updates and challenges, Digit. Heal. 9 (2023) 20552076221149651.

[35]

S. Elkefi, O. Asan, Digital twins for managing health care systems: rapid literature review, J. Med. Internet Res. 24 (8) (2022) e37641.

[36]

T. Erol, A.F. Mendi, D. Doğan,The digital twin revolution in healthcare, in: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT, IEEE, 2020, pp. 1-7.

[37]

J. Chen, C. Yi, S.D. Okegbile, J. Cai, X. Shen, Networking architecture and key supporting technologies for human digital twin in personalized healthcare: A comprehensive survey, IEEE Commun. Surv. & Tutorials 26 (1) (2023) 706-746.

[38]

Ø. Bjelland, B. Rasheed, H.G. Schaathun, M.D. Pedersen, M. Steinert, A.I. Hellevik, R.T. Bye, Toward a digital twin for arthroscopic knee surgery: a systematic review, IEEE Access 10 (2022) 45029-45052.

[39]

M. Narigina, A. Romanovs, R. Bruzgiene,Digital twin technology in healthcare: A literature review, in: 2024 IEEE 11th Workshop on Advances in Information, Electronic and Electrical Engineering, AIEEE, IEEE, 2024, pp. 1-8.

[40]

M.D. Xames, T.G. Topcu, A systematic literature review of digital twin research for healthcare systems: Research trends, gaps, and realization challenges, IEEE Access 12 (2024) 4099-4126.

[41]

D. Mourtzis, J. Angelopoulos, N. Panopoulos, D. Kardamakis, A smart IoT platform for oncology patient diagnosis based on ai: Towards the human digital twin, Procedia CIRP 104 (2021) 1686-1691.

[42]

I.N. Weerarathna, P. Kumar, P. Verma, D. Raymond, A. Luharia, G. Mishra,Leveraging digital twin technology to combat cardiovascular disease: A comprehensive review, in: 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry, IDICAIEI, IEEE, 2024, pp. 1-6.

[43]

R. Martinez-Velazquez, R. Gamez, A. El Saddik,Cardio twin: A digital twin of the human heart running on the edge, in: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2019, pp. 1-6.

[44]

M.E. Susilo, C.-C. Li, K. Gadkar, G. Hernandez, L.-Y. Huw, J.Y. Jin, S. Yin, M.C. Wei, S. Ramanujan, I. Hosseini, Systems-based digital twins to help characterize clinical dose-response and propose predictive biomarkers in a phase I study of bispecific antibody, mosunetuzumab, in NHL, Clin. Transl. Sci. 16 (7) (2023) 1134-1148.

[45]

X. Li, E.J. Lee, S. Lilja, J. Loscalzo, S. Schäfer, M. Smelik, M.R. Strobl, O. Sysoev, H. Wang, H. Zhang, et al., A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets, Genome Med. 14 (1) (2022) 48.

[46]

Q. Lu, X. Xie, A.K. Parlikad, J.M. Schooling, Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance, Autom. Constr. 118 (2020) 103277.

[47]

J.K.W. Wong, J. Ge, S.X. He, Digitisation in facilities management: A literature review and future research directions, Autom. Constr. 92 (2018) 312-326.

[48]

A. Karakra, F. Fontanili, E. Lamine, J. Lamothe,HospiT’Win: a predictive simulation-based digital twin for patients pathways in hospital, in: 2019 IEEE EMBS International Conference on Biomedical & Health Informatics, BHI, IEEE, 2019, pp. 1-4.

[49]

A. Karakra, F. Fontanili, E. Lamine, J. Lamothe, A. Taweel,Pervasive computing integrated discrete event simulation for a hospital digital twin, in: 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications, AICCSA, IEEE, 2018, pp. 1-6.

[50]

Y. Han, Y. Li, Y. Li, B. Yang, L. Cao, Digital twinning for smart hospital operations: Framework and proof of concept, Technol. Soc. 74 (2023) 102317.

[51]

R. Aluvalu, S. Mudrakola, A. Kaladevi, M. Sandhya, C.R. Bhat, et al., The novel emergency hospital services for patients using digital twins, Microprocess. Microsyst. 98 (2023) 104794.

[52]

A. Gorelova, S. Meliá, D. Gadzhimusieva, A discrete event simulation of patient flow in an assisted reproduction clinic with the integration of a smart health monitoring system, IEEE Access (2024).

[53]

A.K. Jameil, H. Al-Raweshidy, Ai-enabled healthcare and enhanced computational resource management with digital twins into task offloading strategies, IEEE Access (2024).

[54]

C. Kleinbeck, H. Zhang, B.D. Killeen, D. Roth, M. Unberath, Neural digital twins: reconstructing complex medical environments for spatial planning in virtual reality, Int. J. Comput. Assist. Radiol. Surg. (2024) 1-12.

[55]

Y. Tai, L. Zhang, Q. Li, C. Zhu, V. Chang, J.J. Rodrigues, M. Guizani, Digital-twin-enabled IoMT system for surgical simulation using rAC-GAN, IEEE Internet Things J. 9 (21) (2022) 20918-20931.

[56]

H. Laaki, Y. Miche, K. Tammi, Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery, Ieee Access 7 (2019) 20325-20336.

[57]

D.R. Obaid, D. Smith, M. Gilbert, S. Ashraf, A. Chase, Computer simulated "Virtual TAVR" to guide TAVR in the presence of a previous starr-edwards mitral prosthesis, J. Cardiovasc. Comput. Tomogr. 13 (1) (2019) 38-40.

[58]

H. Shu, R. Liang, Z. Li, A. Goodridge, X. Zhang, H. Ding, N. Nagururu, M. Sahu, F.X. Creighton, R.H. Taylor, et al., Twin-S: a digital twin for skull base surgery, Int. J. Comput. Assist. Radiol. Surg. 18 (6) (2023) 1077-1084.

[59]

H. Sartaj, S. Ali, J. Marie Gjøby, Uncertainty-aware environment simulation of medical devices digital twins, Softw. Syst. Model. (2024) 1-27.

[60]

I. Ahmed, M. Ahmad, G. Jeon, Integrating digital twins and deep learning for medical image analysis in the era of COVID-19, Virtual Real. Intell. Hardw. 4 (4) (2022) 292-305.

[61]

M.M. Bersani, C. Braghin, A. Gargantini, R. Mirandola, E. Riccobene, P. Scandurra, Engineering of trust analysis-driven digital twins for a medical device, in: European Conference on Software Architecture, Springer, 2022, pp. 467-482.

[62]

P.G. Kalozoumis, M. Marino, E.L. Carniel, D.K. Iakovidis, Towards the development of a digital twin for endoscopic medical device testing, in: Digital Twins for Digital Transformation: Innovation in Industry, Springer, 2022, pp. 113-145.

[63]

L. Bethencourt, W. Dabachine, V. Dejouy, Z. Lalmiche, K. Neuberger, I. Ibnouhsein, S. Chereau, C. Mathelin, N. Savy, P. Saint Pierre, et al., Guiding measurement protocols of connected medical devices using digital twins: A statistical methodology applied to detecting and monitoring lymphedema, IEEE Access 9 (2021) 39444-39465.

[64]

S.M. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, W. Asghar, Advances in healthcare wearable devices, NPJ Flex. Electron. 5 (1) (2021) 9.

[65]

W. Khan, E. Muntimadugu, M. Jaffe, A.J. Domb, Implantable medical devices, Focal Control. Drug Deliv. (2014) 33-59.

[66]

J. Chen, W. Wang, B. Fang, Y. Liu, K. Yu, V.C. Leung, X. Hu, Digital twin empowered wireless healthcare monitoring for smart home, IEEE J. Sel. Areas Commun. (2023).

[67]

Z. Zhu, R.Y. Zhong, A digital twin enabled wearable device for customized healthcare, Digit. Twin 2 (2025) 17.

[68]

F. Yu, C. Yu, Z. Tian, X. Liu, J. Cao, L. Liu, C. Du, M. Jiang, Intelligent wearable system with motion and emotion recognition based on digital twin technology, IEEE Internet Things J. (2024).

[69]

H. Yang, Z. Jiang, Decision support for personalized therapy in implantable medical devices: A digital twin approach, Expert Syst. Appl. 243 (2024) 122883.

[70]

F. Ghaempanah, B. Moasses Ghafari, D. Hesami, R. Hossein Zadeh, R. Noroozpoor, A. Moodi Ghalibaf, P. Hasanabadi, Metaverse and its impact on medical education and health care system: A narrative review, Heal. Sci. Rep. 7 (9) (2024) e70100.

[71]

H. Sartaj, S. Ali, J.M. Gjøby, MeDeT: Medical device digital twins creation with few-shot meta-learning, ACM Trans. Softw. Eng. Methodol. (2024).

[72]

A. Vallée, Envisioning the future of personalized medicine: Role and realities of digital twins, J. Med. Internet Res. 26 (2024) e50204.

[73]

Q. Zhang, Y. Xu, S. Kang, J. Chen, Z. Yao, H. Wang, Q. Wu, Q. Zhao, Q. Zhang, R.-h. Xu, et al., A novel computational framework for integrating multidimensional data to enhance accuracy in predicting the prognosis of colorectal cancer, MedComm-Futur. Med. 1 (2) (2022) e27.

[74]

C. Wu, A.M. Jarrett, Z. Zhou, N. Elshafeey, B.E. Adrada, R.P. Candelaria, R.M. Mohamed, M. Boge, L. Huo, J.B. White, et al., MRI-based digital models forecast patient-specific treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer, Cancer Res. 82 (18) (2022) 3394-3404.

[75]

T.C. Silva, M. Eppink, M. Ottens, Digital twin in high throughput chromatographic process development for monoclonal antibodies, J. Chromatogr. A 1717 (2024) 464672.

[76]

S. Namasudra, IoT and ML for Information Management: A Smart Healthcare Perspective, Springer, 2024.

[77]

J.H. Creemers, J. Textor, Leveraging mathematical models to improve the statistical robustness of cancer immunotherapy trials, Curr. Opin. Syst. Biology 40 (2025) 100540.

[78]

K. Sel, A. Hawkins-Daarud, A. Chaudhuri, D. Osman, A. Bahai, D. Paydarfar, K. Willcox, C. Chung, R. Jafari, Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine, Npj Digit. Med. 8 (1) (2025) 40.

[79]

Y. Wang, T. Fu, Y. Xu, Z. Ma, H. Xu, B. Du, Y. Lu, H. Gao, J. Wu, J. Chen, TWIN-GPT: digital twins for clinical trials via large language model, ACM Trans. Multimed. Comput. Commun. Appl. (2024).

[80]

C. Herwig, R. Pörtner, J. Möller, Digital Twins: Tools and Concepts for Smart Biomanufacturing, Springer, 2021.

[81]

N. Goel, R.K. Yadav, Internet of Things Enabled Machine Learning for Biomedical Applications, CRC Press, 2024.

[82]

A. M.V.V. Sai, C. Wang, Z. Cai, Y. Li, Navigating the digital twin network landscape: A survey on architecture, applications, privacy and security, High-Confid. Comput. 4 (4) (2024) 100269.

[83]

A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali, R. Jain, Recent advances in the internet-of-medical-things (IoMT) systems security, IEEE Internet Things J. 8 (11) (2020) 8707-8718.

[84]

G. Zachos, G. Mantas, I. Essop, K. Porfyrakis, J.M.C. Bastos, J. Rodriguez,An IoT/IoMT security testbed for anomaly-based intrusion detection systems, in: 2023 IFIP Networking Conference (IFIP Networking), IEEE, 2023, pp. 1-6.

[85]

M.R. Kabir, S. Ray,DT-IoMT: A digital twin reference model for secure internet of medical things, in: 2024 IEEE Computer Society Annual Symposium on VLSI, ISVLSI, IEEE, 2024, pp. 433-438.

[86]

J. Zhang, L. Li, G. Lin, D. Fang, Y. Tai, J. Huang, Cyber resilience in healthcare digital twin on lung cancer, IEEE Access 8 (2020) 201900-201913.

[87]

J.I. Jimenez, H. Jahankhani, S. Kendzierskyj, Health care in the cyberspace: Medical cyber-physical system and digital twin challenges, Digit. Twin Technol. Smart Cities (2020) 79-92.

[88]

V. Sharma, A. Kumar, K. Sharma, Digital twin: securing IoT networks using integrated ECC with blockchain for healthcare ecosystem, Knowl. Inf. Syst. (2024) 1-32.

[89]

R. Lutze,Digital twins in ehealth-: Prospects and challenges focussing on information management, in: 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), IEEE, 2019, pp. 1-9.

[90]

S.S. Akash, M.S. Ferdous, A blockchain based system for healthcare digital twin, IEEE Access 10 (2022) 50523-50547.

[91]

Y. Zheng, R. Lu, Y. Guan, S. Zhang, J. Shao,Towards private similarity query based healthcare monitoring over digital twin cloud platform, in: 2021 IEEE/ACM 29th International Symposium on Quality of Service, IWQOS, IEEE, 2021, pp. 1-10.

[92]

V. Stephanie, I. Khalil, M. Atiquzzaman, Digital twin enabled asynchronous SplitFed learning in E-healthcare systems, IEEE J. Sel. Areas Commun. 41 (11) (2023) 3650-3661.

[93]

Y. Tang, K. Wang, D. Niyato, J. Li, O.A. Dobre, T.Q. Duong, Secure data sharing and prediction with digital twin and blockchain in healthcare, IEEE Commun. Mag. (2025).

[94]

A. De Benedictis, N. Mazzocca, A. Somma, C. Strigaro, Digital twins in healthcare: an architectural proposal and its application in a social distancing case study, IEEE J. Biomed. Heal. Informatics 27 (10) (2022) 5143-5154.

[95]

M. Iqbal, S. Suhail, R. Matulevičius, R. Hussain, Towards healthcare digital twin architecture, in: International Conference on Business Informatics Research, Springer, 2023, pp. 45-60.

[96]

G. Pellegrino, M. Gervasi, M. Angelelli, A conceptual framework for digital twin in healthcare: Evidence from a systematic meta-review, Inf. Syst. (2024).

[97]

A. Alqahtani, S. Alsubai, M. Bhatia, Digital-twin-assisted healthcare framework for adult, IEEE Internet Things J. 11 (8) (2023) 14963-14970.

[98]

F. Laamarti, H.F. Badawi, Y. Ding, F. Arafsha, B. Hafidh, A. El Saddik,An ISO/IEEE 11073 standardized digital twin framework for health and well-being in smart cities, Ieee Access 8 (2020) 105950-105961.

[99]

C. Suraci, V. De Angelis, G. Lofaro, M.L. Giudice, G. Marrara, F. Rinaldi, A. Russo, M.T. Bevacqua, G. Lax, N. Mammone, et al., The next generation of ehealth: A multidisciplinary survey, IEEE Access 10 (2022) 134623-134646.

[100]

Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, M.J. Deen, A novel cloud-based framework for the elderly healthcare services using digital twin, IEEE Access 7 (2019) 49088-49101.

[101]

H. Garg, B. Sharma, S. Shekhar, R. Agarwal, Spoofing detection system for e-health digital twin using EfficientNet convolution neural network, Multimedia Tools Appl. 81 (19) (2022) 26873-26888.

[102]

R. Lutze,Digital twin based software design in ehealth-a new development approach for health/medical software products, in: 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), IEEE, 2020, pp. 1-9.

[103]

S.A. Mila, B.B.Y. Ravi, M.R. Kabir, S. Ray, MASC: Wearable design for infectious disease detection through machine learning, IEEE Access (2025).

[104]

J. Akram, M. Aamir, R. Raut, A. Anaissi, R.H. Jhaveri, A. Akram, Aigenerated content-as-a-service in iomt-based smart homes: Personalizing patient care with human digital twins, IEEE Trans. Consum. Electron. (2024).

[105]

M.U. Shoukat, L. Yan, J. Zhang, Y. Cheng, M.U. Raza, A. Niaz, Smart home for enhanced healthcare: exploring human machine interface oriented digital twin model, Multimedia Tools Appl. 83 (11) (2024) 31297-31315.

[106]

L.F. Rivera, M. Jiménez, P. Angara, N.M. Villegas, G. Tamura, H.A. Müller, Towards continuous monitoring in personalized healthcare through digital twins, in:Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, 2019, pp. 329-335.

[107]

R. Brahmi, N. Boujnah, R. Ejbali,Elaboration of innovative digital twin models for healthcare monitoring with 6g functionalities, IEEE Access 12 (2024).

[108]

F. Tao, F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, Z. Guo, S.C.-Y. Lu, A.Y. Nee, Digital twin-driven product design framework, Int. J. Prod. Res. 57 (12) (2019) 3935-3953.

[109]

M.A. Ahmad, V. Chickarmane, F.S.A. Pour, N. Shariari, T.D. Roy,Validation of a hospital digital twin with machine learning, in: 2023 IEEE 11th International Conference on Healthcare Informatics, ICHI, IEEE, 2023, pp. 465-469.

[110]

S. Alsubai, M. Sha, A. Alqahtani, M. Bhatia, Hybrid IoT-edge-cloud computing-based athlete healthcare framework: Digital twin initiative, Mob. Networks Appl. (2023) 1-20.

[111]

Z. Lv, J. Guo, H. Lv, Deep learning-empowered clinical big data analytics in healthcare digital twins, IEEE/ ACM Trans. Comput. Biology Bioinform. (2023).

[112]

I. Hussain, M.A. Hossain, S.-J. Park,A healthcare digital twin for diagnosis of stroke, in: 2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health, BECITHCON, IEEE, 2021, pp. 18-21.

[113]

J. Chen, C. Yi, H. Du, D. Niyato, J. Kang, J. Cai, X. Shen, A revolution of personalized healthcare: Enabling human digital twin with mobile AIGC, IEEE Netw. (2024).

[114]

S. Gebreab, A. Musamih, K. Salah, R. Jayaraman, D. Boscovic,Accelerating digital twin development with generative AI: A framework for 3D modeling and data integration, IEEE Access (2024).

[115]

S. Khan, A. Alzaabi, Z. Iqbal, T. Ratnarajah, T. Arslan, A novel digital twin (DT) model based on WiFi CSI, signal processing and machine learning for patient respiration monitoring and decision-support, IEEE Access 11 (2023) 103554-103568.

[116]

H. Sartaj, S. Ali, T. Yue, K. Moberg, Model-based digital twins of medicine dispensers for healthcare IoT applications, Softw.: Pr. Exp. 54 (6) (2024) 1172-1192.

[117]

P. Amudhavalli, S. Urmela, G. Vishnupriya, N. Gopinath, R. Anandh, L.R. Buckingham, Investigating the revolution of healthcare application with intense comparisons and case study, Impact Algorithmic Technol. Heal. (2025) 421-445.

[118]

C. Wang, Z. Cai, Y. Li, Sustainable blockchain-based digital twin management architecture for IoT devices, IEEE Internet Things J. 10 (8) (2022) 6535-6548.

[119]

S. Suhail, R. Hussain, R. Jurdak, C.S. Hong, Trustworthy digital twins in the industrial internet of things with blockchain, IEEE Internet Comput. 26 (3) (2021) 58-67.

[120]

S. Zhu, W. Li, H. Li, L. Tian, G. Luo, Z. Cai, Coin hopping attack in blockchain-based IoT, IEEE Internet Things J. 6 (3) (2018) 4614-4626.

[121]

G.B. Raja, M.P. Devi, T. Sathya, A.S. Balakrishnan, Collaboration of blockchain-based digital twins in the healthcare industry: From idea to implementation, Blockchain-Based Digit. Twins: Res. Trends Challenges (2025) 223.

[122]

A. Manocha, Y. Afaq, M. Bhatia, Digital twin-assisted blockchain-inspired irregular event analysis for eldercare, Knowl.-Based Syst. (2023).

[123]

D. Kumari, P. Kumar, S. Prajapat, A blockchain assisted public auditing scheme for cloud-based digital twin healthcare services, Clust. Comput. (2024).

[124]

B. Sheng, Z. Wang, Y. Qiao, S.Q. Xie, J. Tao, C. Duan, Detecting latent topics and trends of digital twins in healthcare: A structural topic model-based systematic review, Digit. Heal. 9 (2023) 20552076231203672.

[125]

J. Chen, Y. Shi, C. Yi, H. Du, J. Kang, D. Niyato, Generative AI-driven human digital twin in IoT-healthcare: A comprehensive survey, IEEE Internet Things J. (2024).

[126]

K.P. Venkatesh, M.M. Raza, J.C. Kvedar, Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation, NPJ Digit. Med. 5 (1) (2022) 150.

[127]

R.H. Dolin, L. Alschuler, C. Beebe, P.V. Biron, S.L. Boyer, D. Essin, E. Kimber, T. Lincoln, J.E. Mattison,The HL7 clinical document architecture, J. Am. Med. Informatics Assoc. 8 (6) (2001) 552-569.

[128]

R. Makadia, P.B. Ryan, Transforming the premier perspective® hospital database into the observational medical outcomes partnership (omop) common data model, Egems 2 (1) (2014).

[129]

D. Drummond, A. Gonsard, Definitions and characteristics of patient digital twins being developed for clinical use: Scoping review, J. Med. Internet Res. 26 (2024) e58504.

[130]

M. De Domenico, L. Allegri, G. Caldarelli, V. d’Andrea, B. Di Camillo, L.M. Rocha, J. Rozum, R. Sbarbati, F. Zambelli, Challenges and opportunities for digital twins in precision medicine from a complex systems perspective, Npj Digit. Med. 8 (1) (2025) 37.

AI Summary AI Mindmap
PDF (2197KB)

1279

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/