Task migration with deadlines using machine learning-based dwell time prediction in vehicular micro clouds

Ziqi Zhou , Agon Memedi , Chunghan Lee , Seyhan Ucar , Onur Altintas , Falko Dressler

High-Confidence Computing ›› 2025, Vol. 5 ›› Issue (2) : 100314

PDF (7398KB)
High-Confidence Computing ›› 2025, Vol. 5 ›› Issue (2) : 100314 DOI: 10.1016/j.hcc.2025.100314
Research article

Task migration with deadlines using machine learning-based dwell time prediction in vehicular micro clouds

Author information +
History +
PDF (7398KB)

Abstract

Edge computing is becoming ever more relevant to offload compute-heavy tasks in vehicular networks. In this context, the concept of vehicular micro clouds (VMCs) has been proposed to use compute and storage resources on nearby vehicles to complete computational tasks. As many tasks in this application domain are time critical, offloading to the cloud is prohibitive. Additionally, task deadlines have to be dealt with. This paper addresses two main challenges. First, we present a task migration algorithm supporting deadlines in vehicular edge computing. The algorithm is following the earliest deadline first model but in presence of dynamic processing resources, i.e, vehicles joining and leaving a VMC. This task offloading is very sensitive to the mobility of vehicles in a VMC, i.e, the so-called dwell time a vehicles spends in the VMC. Thus, secondly, we propose a machine learning-based solution for dwell time prediction. Our dwell time prediction model uses a random forest approach to estimate how long a vehicle will stay in a VMC. Our approach is evaluated using mobility traces of an artificial simple intersection scenario as well as of real urban traffic in cities of Luxembourg and Nagoya. Our proposed approach is able to realize low-delay and low-failure task migration in dynamic vehicular conditions, advancing the state of the art in vehicular edge computing.

Keywords

Edge computing / Vehicular micro cloud / Task migration / Task offloading / Dwell time prediction

Cite this article

Download citation ▾
Ziqi Zhou, Agon Memedi, Chunghan Lee, Seyhan Ucar, Onur Altintas, Falko Dressler. Task migration with deadlines using machine learning-based dwell time prediction in vehicular micro clouds. High-Confidence Computing, 2025, 5(2): 100314 DOI:10.1016/j.hcc.2025.100314

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Ziqi Zhou: Writing - review & editing, Writing - original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Agon Memedi: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Methodology, Conceptualization. Chunghan Lee: Writing - review & editing, Resources, Project administration, Funding acquisition, Conceptualization. Seyhan Ucar: Writing - review & editing, Resources, Project administration, Conceptualization. Onur Altintas: Writing - review & editing, Supervision, Resources, Project administration, Investigation, Funding acquisition, Conceptualization. Falko Dressler: Writing - review & editing, Writing - original draft, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

Christoph Sommer, Falko Dressler, Vehicular networking, Cambridge Uni-versity Press, 978-1-107-04671-9, 2014, http://dx.doi.org/10.1017/CBO9781107110649.

[2]

Shaimaa Abdelnabi Abdel Hakeem, Anar Abdel Hady, Hyungwon Kim, 5G-V2X: standardization, architecture, use cases, network-slicing, and edge-computing, ACM/ Springer Wirel. Netw. (ISSN: 1022-0038) (2020) 6015-6041, http://dx.doi.org/10.1007/s11276-020-02419-8.

[3]

Rafael Molina-Masegosa, Javier Gozalvez, Miguel Sepulcre, Configuration of the C-V2X mode 4 sidelink PC5 interface for vehicular communication, in: 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN 2018), Shenyang, China, 2018, http://dx.doi.org/10.1109/msn.2018.00014.

[4]

Pavel Mach, Zdenek Becvar, Mobile edge computing: A survey on archi-tecture and computation offloading, IEEE Commun. Surv. Tutorials (ISSN: 1553-877X) 19 (3) (2017) 1628-1656, http://dx.doi.org/10.1109/COMST.2017.2682318.

[5]

Mustafa Emara, Miltiades C. Filippou, Dario Sabella, MEC-assisted end-to-end latency evaluations for C-V2X communications, in: European Conference on Networks and Communications (EuCNC 2018), IEEE, Ljubljana, Slovenia, 2018, http://dx.doi.org/10.1109/eucnc.2018.8442825.

[6]

Takamasa Higuchi, Joshua Joy, Falko Dressler, Mario Gerla, Onur Altintas, On the feasibility of vehicular micro clouds, in: 9th IEEE Vehicular Networking Conference (VNC 2017), IEEE, Turin, Italy, (ISSN: 2157-9865) ISBN: 978-1-5386-0986-6, 2017, pp. 179-182, http://dx.doi.org/10.1109/VNC.2017.8275621.

[7]

Falko Dressler, Gurjashan Singh Pannu, Florian Hagenauer, Mario Gerla, Takamasa Higuchi, Onur Altintas, Virtual edge computing using vehicular micro clouds, in: IEEE International Conference on Computing, Networking and Communications (ICNC 2019), IEEE, Honolulu, HI, (ISSN: 2325-2626) ISBN: 978-1-5386-9223-3, 2019, http://dx.doi.org/10.1109/ICCNC.2019.8685481.

[8]

Falko Dressler, Carla Fabiana Chiasserini, Frank H.P. Fitzek, Holger Karl, Renato Lo Cigno, Antonio Capone, Claudio Ettore Casetti, Francesco Ma-landrino, Vincenzo Mancuso, Florian Klingler, Gianluca A. Rizzo, V-Edge: Virtual edge computing as an enabler for novel microservices and coop-erative computing, IEEE Netw. (ISSN: 1558-156X) 36 (3) (2022) 24-31, http://dx.doi.org/10.1109/MNET.001.2100491.

[9]

Ziqi Zhou, Youming Tao, Agon Memedi, Chunghan Lee, Seyhan Ucar, Onur Altintas, Falko Dressler, Optimizing task migration decisions in vehicular edge computing environments, in: 1st IEEE International Conference on Meta Computing (ICMC 2024), IEEE, Qingdao, China, 2024.

[10]

Lara Codeca, Raphaël Frank, Thomas Engel, Luxembourg SUMO traffic (LuST) scenario: 24 hours of mobility for vehicular networking research, in: 7th IEEE Vehicular Networking Conference (VNC 2015), IEEE, Kyoto, Japan, (ISSN: 2157-9865) ISBN: 978-1-4673-9411-6, 2015, http://dx.doi.org/10.1109/VNC.2015.7385539.

[11]

Takamasa Higuchi, Lei Zhong, Ryokichi Onishi, NUMo: Nagoya urban mobility scenario for city-scale V2X simulations, in: 15th IEEE Vehicular Networking Conference (VNC 2024), IEEE, Kobe, Japan, (ISSN: 2157-9865) 2024, pp. 17-24, http://dx.doi.org/10.1109/VNC61989.2024.10575975.

[12]

Tuyen X. Tran, Dario Pompili, Joint task offloading and resource allocation for multi-server mobile-edge computing networks, IEEE Trans. Veh. Tech-nol. (ISSN: 1939-9359) 68 (1) (2019) 856-868, http://dx.doi.org/10.1109/TVT.2018.2881191.

[13]

Md Delowar Hossain, Luan N.T. Huynh, Tangina Sultana, Tri D.T. Nguyen, Jae Ho Park, Choong Seon Hong, Eui-Nam Huh, Collaborative task offload-ing for overloaded mobile edge computing in small-cell networks, in: 34th International Conference on Information Networking (ICOIN 2020), IEEE, Barcelona, Spain, (ISSN: 1976-7684) 2020, pp. 717-722, http://dx.doi.org/10.1109/ICOIN48656.2020.9016452.

[14]

Siyao Cheng, Tian Ren, Hao Zhang, Jiayan Huang, Jie Liu, A stackelberg-game-based framework for edge pricing and resource allocation in mobile edge computing, IEEE Internet Things J. (ISSN: 2327-4662) 11 (11) (2024) 20514-20530, http://dx.doi.org/10.1109/JIOT.2024.3372016.

[15]

Yuyi Mao, Jun Zhang, Khaled B. Letaief, Dynamic computation offloading for mobile-edge computing with energy harvesting devices, IEEE J. Sel. Areas Commun. (ISSN: 0733-8716) 34 (12) (2016) 3590-3605, http://dx.doi.org/10.1109/JSAC.2016.2611964.

[16]

Haitao Zhao, Qixing Zhu, Yue Chen, Yinyang Zhu, A research of task-offloading algorithm for distributed vehicles, in: IEEE International Conference on Communications (ICC 2020), Workshops, Virtual Confer-ence, 2020, pp. 1-5, http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145331.

[17]

Chenhao Wu, Zhongwei Huang, Yuntao Zou, Delay constrained hybrid task offloading of internet of vehicle: A deep reinforcement learning method, IEEE Access (ISSN: 2169-3536) 10 (2022) 102778-102788, http://dx.doi.org/10.1109/ACCESS.2022.3206359.

[18]

Hao Qin, Guoping Tan, Siyuan Zhou, Yong Ren, Adaptive learning-based multi-vehicle task offloading, in: IEEE/CIC International Conference on Communications in China (ICCC 2020), IEEE, Chongqing, China, (ISSN: 2377-8644) ISBN: 978-1-7281-7328-3, 2020, pp. 1033-1038, http://dx.doi.org/10.1109/ICCC49849.2020.9238793.

[19]

Junhui Zhao, Qiuping Li, Yi Gong, Ke Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks, IEEE Trans. Veh. Technol. (ISSN: 1939-9359) 68 (8) (2019) 7944-7956, http://dx.doi.org/10.1109/TVT.2019.2917890.

[20]

Narisu Cha, Celimuge Wu, Tsutomu Yoshinaga, Yusheng Ji, Kok-Lim Alvin Yau, Virtual edge: Exploring computation offloading in collaborative vehicular edge computing, IEEE Access (ISSN: 2169-3536) 9 (2021) 37739-37751, http://dx.doi.org/10.1109/access.2021.3063246.

[21]

Yufei Zou, Li Lin, Lei Zhang, A task offloading strategy for compute-intensive scenarios in UAV-assisted IoV, in: 5th IEEE International Conference on Electronic Information and Communication Technology (ICEICT 2022), IEEE, Hefei, China, ISBN: 978-1-66547-212-8, 2022, pp. 427-431, http://dx.doi.org/10.1109/ICEICT55736.2022.9909200.

[22]

Gurjashan Singh Pannu, Seyhan Ucar, Takamasa Higuchi, Onur Altintas, Falko Dressler, Dwell time estimation at intersections for improved vehic-ular micro cloud operations, Elsevier Ad Hoc Netw. (ISSN: 1570-8705) 122 (2021) 102606, http://dx.doi.org/10.1016/j.adhoc.2021.102606.

[23]

Max Schettler, Gurjashan Singh Pannu, Seyhan Ucar, Takamasa Higuchi, Onur Altintas, Falko Dressler, Learning-based dwell time prediction for vehicular micro clouds, in: 18th IEEE International Conference on Mobility, Sensing and Networking (MSN 2022), IEEE, Guangzhou, China, 2022, pp. 542-549, http://dx.doi.org/10.1109/MSN57253.2022.00091.

[24]

Hui Guo, Lan-lan Rui, Zhi-peng Gao, V2V task offloading algorithm with LSTM-based spatiotemporal trajectory prediction model in SVCNs, IEEE Trans. Veh. Technol. (ISSN: 1939-9359) 71 (10) (2022) 11017-11032, http://dx.doi.org/10.1109/TVT.2022.3185085.

[25]

Zhiwei Zhang, Zehan Chen, Yulong Shen, Xuewen Dong, Ning Xi, A dynamic task offloading scheme based on location forecasting for mobile intelligent vehicles, IEEE Trans. Veh. Technol. (ISSN: 1939-9359) 73 (6)(2024) 7532-7546, http://dx.doi.org/10.1109/TVT.2024.3351224.

[26]

Xiaolong Xu, Chenyi Yang, Muhammad Bilal, Weimin Li, Huihui Wang, Computation offloading for energy and delay trade-offs with traffic flow prediction in edge computing-enabled IoV, IEEE Trans. Intell. Transp. Syst.(ISSN: 1558-0016) 24 (12) (2023) 15613-15623, http://dx.doi.org/10.1109/TITS.2022.3221975.

[27]

Baiquan Lv, Chao Yang, Xin Chen, Zhihua Yao, Junjie Yang, Task of-floading and serving handover of vehicular edge computing networks based on trajectory prediction, IEEE Access (ISSN: 2169-3536) 9 (2021) 130793-130804, http://dx.doi.org/10.1109/ACCESS.2021.3112077.

[28]

Xu Chen, Lei Jiao, Wenzhong Li, Xiaoming Fu, Efficient multi-user com-putation offloading for mobile-edge cloud computing, IEEE/ACM Trans. Netw. (ISSN: 1063-6692) 24 (5) (2016) 2795-2808, http://dx.doi.org/10.1109/TNET.2015.2487344.

[29]

Youngsu Jang, Jinyeop Na, Seongah Jeong, Joonhyuk Kang, Energy-efficient task offloading for vehicular edge computing: Joint optimization of of-floading and bit allocation, in: 91st IEEE Vehicular Technology Conference (VTC 2020-Spring), IEEE, Virtual Conference, (ISSN: 2577-2465) ISBN: 978-1-7281-4053-7, 2020, pp. 1-5, http://dx.doi.org/10.1109/VTC2020-Spring48590.2020.9128785.

[30]

Yujiong Liu, Shangguang Wang, Qinglin Zhao, Shiyu Du, Ao Zhou, Xiao Ma, Fangchun Yang, Dependency-aware task scheduling in vehicular edge com-puting, IEEE Internet Things J. (ISSN: 2327-4662) 7 (6) (2020) 4961-4971, http://dx.doi.org/10.1109/JIOT.2020.2972041.

[31]

Muhammad Saleh Bute, Pingzhi Fan, Gang Liu, Fakhar Abbas, Zhiguo Ding, A collaborative task offloading scheme in vehicular edge computing, in: 93rd IEEE Vehicular Technology Conference (VTC 2021-Spring), IEEE, Virtual Conference, (ISSN: 2577-2465) 2021, pp. 1-5, http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448975.

[32]

Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, Jian Yuan, Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning, IEEE Trans. Veh. Technol. (ISSN: 1939-9359) 69 (12) (2020) 16067-16081, http://dx.doi.org/10.1109/TVT.2020.3041929.

[33]

Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, Laura Bieker-Walz, Recent development and applications of SUMO - simulation of urban mobility, Int. J. Adv. Syst. Meas. 5 (3&4) (2012) 128-138.

AI Summary AI Mindmap
PDF (7398KB)

493

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/