Block-chain abnormal transaction detection method based on generative adversarial network and autoencoder
Ao Xiong , Chenbin Qiao , Wenjing Li , Dong Wang , Da Li , Bo Gao , Weixian Wang
High-Confidence Computing ›› 2025, Vol. 5 ›› Issue (4) : 100313
Block-chain abnormal transaction detection method based on generative adversarial network and autoencoder
Anomaly detection in blockchain transactions faces several challenges, the most prominent being the imbalance between positive and negative samples. Most transaction data are normal, with only a small fraction of anomalous data. Additionally, blockchain transaction datasets tend to be small and often incomplete, which complicates the process of anomaly detection. When using simple AI models, selecting the appropriate model and tuning parameters becomes difficult, resulting in poor performance. To address these issues, this paper proposes GANAnomaly, an anomaly detection model based on Generative Adversarial Networks (GANs) and Autoencoders. The model consists of three components: a data generation model, an encoding model, and a detection model. Firstly, the Wasserstein GAN (WGAN) is employed as the data generation model. The generated data is then used to train an encoding model that performs feature extraction and dimensionality reduction. Finally, the trained encoder serves as the feature extractor for the detection model. This approach leverages GANs to mitigate the challenges of low data volume and data imbalance, while the encoder extracts relevant features and reduces dimensionality. Experimental results demonstrate that the proposed anomaly detection model outperforms traditional methods by more accurately identifying anomalous blockchain transactions, reducing the false positive rate, and improving both accuracy and efficiency.
Blockchain / Anomaly detection / Auto-encoder / Generative adversarial network
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
/
| 〈 |
|
〉 |