Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security

Akshita Maradapu Vera Venkata Sai , Chenyu Wang , Zhipeng Cai , Yingshu Li

High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (4) : 100269

PDF (992KB)
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (4) :100269 DOI: 10.1016/j.hcc.2024.100269
Review Articles
research-article

Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security

Author information +
History +
PDF (992KB)

Abstract

In recent years, immense developments have occurred in the field of Artificial Intelligence (AI) and the spread of broadband and ubiquitous connectivity technologies. This has led to the development and commercialization of Digital Twin (DT) technology. The widespread adoption of DT has resulted in a new network paradigm called Digital Twin Networks (DTNs), which orchestrate through the networks of ubiquitous DTs and their corresponding physical assets. DTNs create virtual twins of physical objects via DT technology and realize the co-evolution between physical and virtual spaces through data processing, computing, and DT modeling. The high volume of user data and the ubiquitous communication systems in DTNs come with their own set of challenges. The most serious issue here is with respect to user data privacy and security because users of most applications are unaware of the data that they are sharing with these platforms and are naive in understanding the implications of the data breaches. Also, currently, there is not enough literature that focuses on privacy and security issues in DTN applications. In this survey, we first provide a clear idea of the components of DTNs and the common metrics used in literature to assess their performance. Next, we offer a standard network model that applies to most DTN applications to provide a better understanding of DTN’s complex and interleaved communications and the respective components. We then shed light on the common applications where DTNs have been adapted heavily and the privacy and security issues arising from the DTNs. We also provide different privacy and security countermeasures to address the previously mentioned issues in DTNs and list some state-of-the-art tools to mitigate the issues. Finally, we provide some open research issues and problems in the field of DTN privacy and security.

Keywords

Digital Twin Networks / Network architecture / Privacy and security / Federated learning / Blockchain / Internet of Vehicles / 6G / Supply chain

Cite this article

Download citation ▾
Akshita Maradapu Vera Venkata Sai, Chenyu Wang, Zhipeng Cai, Yingshu Li. Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security. High-Confidence Computing, 2024, 4(4): 100269 DOI:10.1016/j.hcc.2024.100269

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Akshita Maradapu Vera Venkata Sai: Writing - review & editing, Writing - original draft, Investigation, Formal analysis, Data curation, Conceptualization. Chenyu Wang: Writing - original draft, Formal analysis, Data curation, Conceptualization. Zhipeng Cai: Writing - review & editing, Writing - original draft, Investigation, Conceptualization. Yingshu Li: Writing - review & editing, Writing - original draft, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Science Foundation (NSF) of the USA (2146497, 2416872, 2315596 and 2244219).

References

[1]

C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication in software engineering, in:Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, 2014, pp. 1-10.

[2]

M. Wang, Y. Lin, Q. Tian, G. Si, Transfer learning promotes 6G wireless communications: Recent advances and future challenges,IEEE Trans. Reliab. 70 (2) (2021) 790-807.

[3]

A.M. Covens, The original twin, 2022, https://techinformed.com/the-original-twin/. (Accessed 22 February 2024).

[4]

E. Glaessgen, D. Stargel, The digital twin paradigm for future NASA and US air force vehicles, in:53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1818.

[5]

J.K. Hodgins, Animating human motion, Sci. Am. 278 (3) (1998) 64-69.

[6]

M. Grieves, Digital Twin: Manufacturing Excellence Through Virtual Factory Replication. 2014, White Paper, 2017.

[7]

Z. Sheng, C. Mahapatra, C. Zhu, V.C. Leung, Recent advances in industrial wireless sensor networks toward efficient management in IoT, IEEE Access 3 (2015) 622-637.

[8]

B.M. Lee, Improved energy efficiency of massive MIMO-OFDM in battery-limited IoT networks, IEEE Access 6 (2018) 38147-38160.

[9]

J. Xie, X. Wang, Z. Yang, S. Hao, Virtual monitoring method for hydraulic supports based on digital twin theory, Min. Technol. 128 (2) (2019) 77-87.

[10]

M. Bevilacqua, E. Bottani, F.E. Ciarapica, F. Costantino, L. Di Donato, A. Ferraro, G. Mazzuto, A. Monteriù, G. Nardini, M. Ortenzi, et al., Digital twin reference model development to prevent operators’ risk in process plants, Sustainability 12 (3) (2020) 1088.

[11]

R. Minerva, G.M. Lee, N. Crespi, Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models, Proc. IEEE 108 (10) (2020) 1785-1824.

[12]

Q. Qi, F. Tao, Digital twin and big data towards smart manufacturing and industry 4.0: 360degree comparison, IEEE Access 6 (2018) 3585-3593.

[13]

M. Liu, S. Fang, H. Dong, C. Xu, Review of digital twin about concepts, technologies, and industrial applications, J. Manuf. Syst. 58 (2021) 346-361.

[14]

M. LLC, Digital twin exchange overview, 2020, https://www.ibm.com/products/digital-twin-exchange. (Accessed 15 October 2023).

[15]

M. Isaac, Facebook renames itself meta, 2021, https://www.nytimes.com/2021/10/28/technology/facebook-meta-name-change.html?smid=howpublished-share. (Accessed 28 October 2023).

[16]

Y. Chang, J. Zuo, H. Zhang, X. Duan, State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems, Nanotechnol. Precis. Eng. 3 (1) (2020) 43-52.

[17]

B. Wang, Z. Wang, T. Chen, X. Zhao, Development of novel bioreactor control systems based on smart sensors and actuators, Front. Bioeng. Biotechnol. 8 (2020) 7.

[18]

C. Horgan, How tech companies create your digital twin, 2018, https://medium.com/s/story/how-tech-companies-create-your-digital-twin-c8675da58ffa. (Accessed 23 August 2024).

[19]

M. Telfer, How digital twin technology is transforming smart building innovation, 2021, https://www.sine.co/blog/how-digital-twin-technology-is-transforming-smart-building-innovation/. (Accessed 31 July 2024).

[20]

Y. Wu, K. Zhang, Y. Zhang, Digital twin networks: A survey, IEEE Internet Things J. 8 (18) (2021) 13789-13804.

[21]

P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino, D. López, A.A.P. Perales, P. Harvey, L. Ciavaglia, L. Wong, et al., Digital twin network: Opportunities and challenges, 2022, arXiv preprint arXiv: 2201.01144.

[22]

S. Suhail, S. Zeadally, R. Jurdak, R. Hussain, R. Matulevičius, D. Svetinovic, Security attacks and solutions for digital twins, 2022, arXiv preprint arXiv:2202.12501.

[23]

C. Hu, W. Fan, E. Zeng, Z. Hang, F. Wang, L. Qi, M.Z.A. Bhuiyan, Digital twin-assisted real-time traffic data prediction method for 5G-enabled internet of vehicles,IEEE Trans. Ind. Inform. 18 (4) (2022) 2811-2819, http://dx.doi.org/10.1109/TII.2021.3083596.

[24]

P. Cvetkov, E. Zhilenkova, A. Zhilenkov, Development of virtual benches for testing the digital twin of a vehicle, E3S Web Conf. 284 (2021) 06006, http://dx.doi.org/10.1051/e3sconf/202128406006.

[25]

J. Fee, Apple’s digital twin is all about augmented reality, 2020, https://spatiallyadjusted.com/apples-digital-twin-is-all-about-augmented-reality/. (Accessed 29 March 2023).

[26]

D. Piromalis, A. Kantaros, Digital twins in the automotive industry: The road toward physical-digital convergence, Appl. Syst. Innov. 5 (4) (2022) 65.

[27]

A. AnyLogic, ATOM: Digital twin of siemens gas turbine fleet operations, 2017, https://www.anylogic.com/resources/case-studies/atom-digital-twin-of-siemens-gas-turbine-fleet-operations/. (Accessed 3 Decemeber 2023).

[28]

I. Verner, D. Cuperman, A. Fang, M. Reitman, T. Romm, G. Balikin, Robot online learning through digital twin experiments: A weightlifting project, in: M.E. Auer, D.G. Zutin (Eds.), Online Engineering & Internet of Things, Springer International Publishing, 2018, pp. 307-314.

[29]

S. Boschert, R. Rosen, Digital twin—the simulation aspect, in: Mechatronic Futures, Springer, 2016, pp. 59-74.

[30]

Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, M.J. Deen, A novel cloud-based framework for the elderly healthcare services using digital twin, IEEE Access 7 (2019) 49088-49101.

[31]

L. Zhao, G. Han, Z. Li, L. Shu, Intelligent digital twin-based software-defined vehicular networks, IEEE Netw. 34 (5) (2020) 178-184.

[32]

Y. Dai, Y. Zhang, Adaptive digital twin for vehicular edge computing and networks, J. Commun. Inf. Netw. 7 (1) (2022) 48-59, http://dx.doi.org/10.23919/JCIN.2022.9745481.

[33]

B. Li, W. Xie, Y. Ye, L. Liu, Z. Fei, FlexEdge: Digital twin-enabled task offloading for UAV-aided vehicular edge computing, IEEE Trans. Veh. Technol. (2023).

[34]

Y. Hui, X. Ma, Z. Su, N. Cheng, Z. Yin, T.H. Luan, Y. Chen, Collaboration as a service: Digital-twin-enabled collaborative and distributed autonomous driving, IEEE Internet Things J. 9 (19) (2022) 18607-18619, http://dx.doi. org/10.1109/JIOT.2022.3161677.

[35]

T. Samak, C. Samak, S. Kandhasamy, V. Krovi, M. Xie, AutoDRIVE: A comprehensive, flexible and integrated digital twin ecosystem for autonomous driving research; education, Robotics (ISSN: 2218-6581) 12 (3) (2023).

[36]

W. Sun, H. Zhang, R. Wang, Y. Zhang, Reducing offloading latency for digital twin edge networks in 6G,IEEE Trans. Veh. Technol. 69 (10) (2020) 12240-12251, http://dx.doi.org/10.1109/TVT.2020.3018817.

[37]

D. Lee, S. Lee, Digital twin for supply chain coordination in modular construction, Appl. Sci. 11 (13) (2021) 5909.

[38]

K. Zhang, J. Cao, S. Maharjan, Y. Zhang, Digital twin empowered content caching in social-aware vehicular edge networks, IEEE Trans. Comput. Soc. Syst. 9 (1) (2022) 239-251, http://dx.doi.org/10.1109/TCSS.2021.3068369.

[39]

L. Zhao, Z. Bi, A. Hawbani, K. Yu, Y. Zhang, M. Guizani, ELITE: An intelligent digital twin-based hierarchical routing scheme for softwarized vehicular networks, IEEE Trans. Mob. Comput. 22 (9) (2023) 5231-5247, http://dx.doi.org/10.1109/TMC.2022.3179254.

[40]

S.R. Jeremiah, L.T. Yang, J.H. Park, Digital twin-assisted resource allocation framework based on edge collaboration for vehicular edge computing, Future Gener. Comput. Syst. (2023).

[41]

Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Communication-efficient federated learning and permissioned blockchain for digital twin edge networks, IEEE Internet Things J. 8 (4) (2021) 2276-2288, http://dx.doi.org/10.1109/JIOT.2020.3015772.

[42]

Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Communication-efficient federated learning for digital twin edge networks in industrial IoT, IEEE Trans. Ind. Inform. 17 (8) (2020) 5709-5718.

[43]

Y. Lu, S. Maharjan, Y. Zhang, Adaptive edge association for wireless digital twin networks in 6G,IEEE Internet Things J. 8 (22) (2021) 16219-16230, http://dx.doi.org/10.1109/JIOT.2021.3098508.

[44]

T. Liu, L. Tang, W. Wang, Q. Chen, X. Zeng, Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network, IEEE Internet Things J. 9 (2) (2021) 1427-1444.

[45]

D. Wang, B. Li, B. Song, Y. Liu, K. Muhammad, X. Zhou, Dual-driven resource management for sustainable computing in the blockchain-supported digital twin IoT, IEEE Internet Things J. (2022) http://dx.doi. org/10.1109/JIOT.2022.3162714, 1-1.

[46]

S. Rahmanzadeh, M.S. Pishvaee, K. Govindan, Emergence of open supply chain management: The role of open innovation in the future smart industry using digital twin network, Ann. Oper. Res. (2022) 1-29.

[47]

K.T. Park, Y.H. Son, S.D. Noh, The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control, Int. J. Prod. Res. 59 (19) (2021) 5721-5742.

[48]

L. Wang, T. Deng, Z.-J.M. Shen, H. Hu, Y. Qi, Digital twin-driven smart supply chain, Front. Eng. Manage. (2022) 1-15.

[49]

J.A. Marmolejo-Saucedo, Design and development of digital twins: A case study in supply chains, Mob. Netw. Appl. 25 (6) (2020) 2141-2160.

[50]

D. Burgos, D. Ivanov, Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions,Transp. Res. E 152 (2021) 102412.

[51]

A. Redelinghuys, A.H. Basson, K. Kruger, A six-layer architecture for the digital twin: a manufacturing case study implementation, J. Intell. Manuf. 31 (6) (2020) 1383-1402.

[52]

V. Souza, R. Cruz, W. Silva, S. Lins, V. Lucena, A digital twin architecture based on the industrial internet of things technologies, in: 2019 IEEE International Conference on Consumer Electronics,ICCE, IEEE, 2019, pp. 1-2.

[53]

M. Zhou, J. Yan, D. Feng, Digital twin framework and its application to power grid online analysis, CSEE J. Power Energy Syst. 5 (3) (2019) 391-398.

[54]

H. Yu, D. Yu, C. Wang, Y. Hu, Y. Li, Edge intelligence-driven digital twin of CNC system: Architecture and deployment, Robot. Comput.-Integr. Manuf. 79 (2023) 102418.

[55]

C. Zhou, H. Yang, X. Duan, D. Lopez, A. Pastor, Q. Wu, M. Boucadair, C. Jacquenet, Digital Twin Network: Concepts and Reference Architecture, Tech. Rep., Internet Engineering Task Force, Fremont, CA, USA, 2021.

[56]

T.H. Luan, R. Liu, L. Gao, R. Li, H. Zhou, The paradigm of digital twin communications, 2021, arXiv preprint arXiv:2105.07182.

[57]

P. Jia, X. Wang, X. Shen, Digital-twin-enabled intelligent distributed clock synchronization in industrial IoT systems, IEEE Internet Things J. 8 (6) (2020) 4548-4559.

[58]

G. White, A. Zink, L. Codecá, S. Clarke, A digital twin smart city for citizen feedback, Cities 110 (2021) 103064.

[59]

P. Asghari, A.M. Rahmani, H.H.S. Javadi, Internet of things applications: A systematic review, Comput. Netw. 148 (2019) 241-261.

[60]

T. Nguyen, Q.H. Duong, T. Van Nguyen, Y. Zhu, L. Zhou, Knowledge mapping of digital twin and physical internet in supply chain management: A systematic literature review, Int. J. Prod. Econ. 244 (2022) 108381.

[61]

P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino, D. López, A.A.P. Perales, P. Harvey, L. Ciavaglia, L. Wong, et al., Network digital twin: Context, enabling technologies and opportunities, IEEE Commun. Mag. 60 (11) (2022) 22-27.

[62]

L. Hui, M. Wang, L. Zhang, L. Lu, Y. Cui, Digital twin for networking: A data-driven performance modeling perspective, IEEE Netw. 37 (3) (2022) 202-209.

[63]

M. Ebadpour, M. Jamshidi, J. Talla, H. Hashemi-Dezaki, Z. Peroutka, A digital twinning approach for the internet of unmanned electric vehicles (IoUEVs) in the metaverse, Electronics 12 (9) (2023) 2016.

[64]

Z. Wang, Digital twins: An on-ramp to autonomous driving, 2023, https://medium.com/purdue-engineering/digital-twins-an-on-ramp-to-autonomous-driving-4cefba6f4636. (Accessed 6 September 2023).

[65]

S. Jamil, M. Rahman, Fawad, A comprehensive survey of digital twins and federated learning for industrial internet of things (iIoT), internet of vehicles (IoV) and internet of drones (IoD), Appl. Syst. Innov. 5 (3) (2022) 56.

[66]

X. Liao, Z. Wang, K. Han, X. Zhao, M. Barth, G. Wu, 15 Driver behavior-aware cooperative ramp merging for intelligent vehicles,Towards Hum.-Veh. Harmon. 3 (2023) 193.

[67]

R. Bassoli, F.H. Fitzek, E.C. Strinati, Why do we need 6g? ITU J. Future Evol. Technol. 2 (6) (2021) 1-31.

[68]

Y. Wang, X. Wang, A. Liu, Digital twin-driven supply chain planning, Procedia CIRP 93 (2020) 198-203.

[69]

T.D. Moshood, G. Nawanir, S. Sorooshian, O. Okfalisa, Digital twins driven supply chain visibility within logistics: a new paradigm for future logistics, Appl. Syst. Innov. 4 (2) (2021) 29.

[70]

H.D. Perez, J.M. Wassick, I.E. Grossmann, A digital twin framework for online optimization of supply chain business processes, Comput. Chem. Eng. (2022) 107972.

[71]

N. Kang, H. Shen, Y. Xu, Jd. com improves delivery networks by a multiperiod facility location model, INFORMS J. Appl. Anal. 52 (2) (2022) 133-148.

[72]

anyLogistix supply chain software, Supply chain digital twins - white paper, 2022, https://www.anylogistix.com/resources/white-papers/supply-chain-digital-twins/. (Accessed 27 April 2024).

[73]

C. He, T.H. Luan, R. Lu, Z. Su, M. Dong, Security and privacy in vehicular digital twin networks: Challenges and solutions, IEEE Wirel. Commun. (2022).

[74]

Z. Lv, L. Qiao, Y. Li, Y. Yuan, F.-Y. Wang, Blocknet: Beyond reliable spatial digital twins to parallel metaverse, Patterns 3 (5) (2022).

[75]

R. Baskar, K. Raja, C. Joseph, M. Reji, Sinkhole attack in wireless sensor networks-performance analysis and detection methods, Indian J. Sci. Technol. 10 (12) (2017) 1-8.

[76]

O.O. Olakanmi, A. Dada, Wireless sensor networks (WSNs): Security and privacy issues and solutions, Wireless Mesh Netw. Secur. Archit. Protocols 13 (2020) 1-16.

[77]

C. Alcaraz, J. Lopez, Protecting digital twin networks for 6G-enabled industry 5.0 ecosystems,IEEE Netw. 37 (2) (2023) 302-308.

[78]

S. Vakaruk, A. Mozo, A. Pastor, D.R. López, A digital twin network for security training in 5G industrial environments, in: 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence,DTPI, IEEE, 2021, pp. 395-398.

[79]

P. Empl, D. Schlette, D. Zupfer, G. Pernul, SOAR4IoT: Securing IoT assets with digital twins,in:Proceedings of the 17th International Conference on Availability, Reliability and Security, 2022, pp. 1-10.

[80]

L. Josue, Evil twin attack: What it is, how to detect prevent it, 2022, https://www.varonis.com/blog/evil-twin-attack. (Accessed 16 June 2023).

[81]

P. Aggarwal, B. Narwal, S. Purohit, A.K. Mohapatra, BPADTA: Blockchain-based privacy-preserving authentication scheme for digital twin empowered aerospace industry, Comput. Electr. Eng. 111 (2023) 108889.

[82]

C. Gehrmann, M. Gunnarsson, A digital twin based industrial automation and control system security architecture, IEEE Trans. Ind. Inform. 16 (1) (2019) 669-680.

[83]

D. Su, Z. Qu, Detection ddos of attacks based on federated learning with digital twin network, in: International Conference on Knowledge Science, Engineering and Management, Springer, 2022, pp. 153-164.

[84]

G. Sirigu, B. Carminati, E. Ferrari, Privacy and security issues for human digital twins, in: 2022 IEEE 4th International Conference on Trust,Privacy and Security in Intelligent Systems, and Applications, TPS-ISA, IEEE, 2022, pp. 1-9.

[85]

J. Jagannath, K. Ramezanpour, A. Jagannath, Digital twin virtualization with machine learning for IoT and beyond 5G networks: Research directions for security and optimal control,in:Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, 2022, pp. 81-86.

[86]

M.A. Ferrag, B. Kantarci, L.C. Cordeiro, M. Debbah, K.-K.R. Choo, Poisoning attacks in federated edge learning for digital twin 6G-enabled IoTs: An anticipatory study, 2023, arXiv preprint arXiv:2303.11745.

[87]

H. Garg, B. Sharma, S. Shekhar, R. Agarwal, Spoofing detection system for e-health digital twin using EfficientNet convolution neural network, Multimedia Tools Appl. 81 (19) (2022) 26873-26888.

[88]

L.P. Qian, M. Li, P. Ye, Q. Wang, B. Lin, Y. Wu, X. Yang, Secrecy-driven energy minimization in federated learning-assisted marine digital twin networks, IEEE Internet Things J. (2023).

[89]

C. Ye, G. Li, H. Cai, Y. Gu, A. Fukuda, Analysis of security in blockchain: Case study in 51%-attack detecting, in: 2018 5th International Conference on Dependable Systems and their Applications,DSA, IEEE, 2018, pp. 15-24.

[90]

J. Liu, L. Zhang, C. Li, J. Bai, H. Lv, Z. Lv, Blockchain-based secure communication of intelligent transportation digital twins system, IEEE Trans. Intell. Transp. Syst. 23 (11) (2022) 22630-22640.

[91]

NVIDIA, 5 steps to get started with digital twins image courtesy of amazon robotics, 2023, https://resources.nvidia.com/en-us-omniverse-industrial-digital-twins/omniverse-enterprise-5-steps?lx=deNrXD. (Accessed 27 April 2024).

[92]

T. Choi, G. Bai, R.K. Ko, N. Dong, W. Zhang, S. Wang, An analytics framework for heuristic inference attacks against industrial control systems, in: 2020 IEEE 19th International Conference on Trust,Security and Privacy in Computing and Communications, TrustCom, IEEE, 2020, pp. 827-835.

[93]

E. Karaarslan, M. Babiker, Digital twin security threats and countermea-sures: An introduction, in: 2021 International Conference on Information Security and Cryptology,ISCTURKEY, IEEE, 2021, pp. 7-11.

[94]

S. Son, D. Kwon, J. Lee, S. Yu, N.-S. Jho, Y. Park, On the design of a privacy-preserving communication scheme for cloud-based digital twin environments using blockchain, IEEE Access 10 (2022) 75365-75375.

[95]

Y. Yigit, B. Bal, A. Karameseoglu, T.Q. Duong, B. Canberk, Digital twin-enabled intelligent ddos detection mechanism for autonomous core networks, IEEE Commun. Stand. Mag. 6 (3) (2022) 38-44.

[96]

F. Tao, F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, Z. Guo, S.C.-Y. Lu, A.Y. Nee, Digital twin-driven product design framework, Int. J. Prod. Res. 57 (12) (2019) 3935-3953.

[97]

S.M. Schwartz, K. Wildenhaus, A. Bucher, B. Byrd, Digital twins and the emerging science of self: Implications for digital health experience design and "small" data, Front. Comput. Sci. 2 (2020) 31.

[98]

O. Moztarzadeh, M. Jamshidi, S. Sargolzaei, A. Jamshidi, N. Baghalipour, M. Malekzadeh Moghani, L. Hauer, Metaverse and healthcare: Machine learning-enabled digital twins of cancer, Bioengineering 10 (4) (2023) 455.

[99]

R. Chacón, J.R. Casas, C. Ramonell, H. Posada, I. Stipanovic, S. Škarić, Requirements and challenges for infusion of SHM systems within digital twin platforms, Struct. Infrastruct. Eng. (2023) 1-17.

[100]

M. Jbair, B. Ahmad, M. Ahmad, R. Harrison, Industrial cyber physical systems: A survey for control-engineering tools, 2018, pp. 270-276, http: //dx.doi.org/10.1109/ICPHYS.2018.8387671.

[101]

Z. Zeng, X. Zhang, Z. Xia, Intelligent blockchain-based secure routing for multidomain SDN-enabled IoT networks, Wirel. Commun. Mob. Comput. 2022 (2022) 1-10.

[102]

E. Refaee, S. Parveen, K.M.J. Begum, F. Parveen, M.C. Raja, S.K. Gupta, S. Krishnan, Secure and scalable healthcare data transmission in IoT based on optimized routing protocols for mobile computing applications, Wirel. Commun. Mob. Comput. 2022 (2022) 1-12.

[103]

R. Nandakumar, K. Nirmala, The finest secured routing techniques with transmission of data in mobile ad hoc networks, in: International Conference on Computing, Communication, Electrical and Biomedical Systems, Springer, 2022, pp. 103-110.

[104]

R. Prasad, et al., Enhanced energy efficient secure routing protocol for mobile ad-hoc network, Glob. Transit. Proc. 3 (2) (2022) 412-423.

[105]

F. Wang, C. Xuan, et al., A high-feasibility secure routing against malicious peer in structured P2P, Math. Probl. Eng. 2022 (2022).

[106]

Z. Lv, R. Lou, Edge-fog-cloud secure storage with deep-learning-assisted digital twins, IEEE Internet Things Mag. 5 (2) (2022) 36-40.

[107]

D. Du, W. Zhao, L. Wei, S. Lu, X. Wu, A lightweight homomorphic encryption federated learning based on blockchain in IoV, in: 2022 IEEE Smart-world,Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles, SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta, IEEE, 2022, pp. 1001-1007.

[108]

G. Cathey, J. Benson, M. Gupta, R. Sandhu, Edge centric secure data sharing with digital twins in smart ecosystems, in: 2021 Third IEEE International Conference on Trust,Privacy and Security in Intelligent Systems and Applications, TPS-ISA, IEEE, 2021, pp. 70-79.

[109]

M. Dietz, B. Putz, G. Pernul,A distributed ledger approach to digital twin secure data sharing, in:Data and Applications Security and Privacy XXXIII: 33rd Annual IFIP WG 11.3 Conference, DBSec 2019, Charleston, SC, USA, July 15-17, 2019, Proceedings 33, Springer, 2019, pp. 281-300.

[110]

J. Wu, J. Guo, Z. Lv, Deep learning driven security in digital twins of drone network, in: ICC 2022-IEEE International Conference on Communications,IEEE, 2022, pp. 1-6.

[111]

Z. Lv, D. Chen, H. Feng, A.K. Singh, W. Wei, H. Lv, Computational intelligence in security of digital twins big graphic data in cyber-physical systems of smart cities, ACM Trans. Manage. Inf. Syst. ( TMIS) 13 (4) (2022) 1-17.

[112]

Y. Qu, L. Gao, Y. Xiang, S. Shen, S. Yu, Fedtwin: Blockchain-enabled adaptive asynchronous federated learning for digital twin networks, IEEE Netw. 36 (6) (2022) 183-190.

[113]

F. Hörandner, B. Prünster, Armored twins: Flexible privacy protection for digital twins through conditional proxy re-encryption and multi-party computation, in: SECRYPT, 2021, pp. 149-160.

[114]

R.B. Roy, D. Mishra, S.K. Pal, T. Chakravarty, S. Panda, M.G. Chandra, A. Pal, P. Misra, D. Chakravarty, S. Misra, Digital twin: current scenario and a case study on a manufacturing process, Int. J. Adv. Manuf. Technol. 107 (2020) 3691-3714.

[115]

K. Sivalingam, M. Sepulveda, M. Spring, P. Davies, A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective, in: 2018 2nd International Conference on Green Energy and Applications,ICGEA, IEEE, 2018, pp. 197-204.

[116]

J. Heaton, A.K. Parlikad, Asset information model to support the adoption of a digital twin: West cambridge case study, IFAC-PapersOnLine 53 (3) (2020) 366-371.

[117]

X. Zhong, F. Babaie Sarijaloo, A. Prakash, J. Park, C. Huang, A. Barwise, V. Herasevich, O. Gajic, B. Pickering, Y. Dong, A multidisciplinary approach to the development of digital twin models of critical care delivery in intensive care units, Int. J. Prod. Res. 60 (13) (2022) 4197-4213.

[118]

F. Arraño-Vargas, G. Konstantinou, Modular design and real-time simulators toward power system digital twins implementation, IEEE Trans. Ind. Inform. 19 (1) (2022) 52-61.

[119]

M. Picone, M. Mamei, F. Zambonelli, A flexible and modular architecture for edge digital twin: Implementation and evaluation, ACM Trans. Internet Things 4 (1) (2023) 1-32.

[120]

F. Akbarian, E. Fitzgerald, M. Kihl, Intrusion detection in digital twins for industrial control systems, in: 2020 International Conference on Software,Telecommunications and Computer Networks, SoftCOM, IEEE, 2020, pp. 1-6.

[121]

V. Damjanovic-Behrendt, A digital twin-based privacy enhancement mechanism for the automotive industry, in: 2018 International Conference on Intelligent Systems,IS, IEEE, 2018, pp. 272-279.

[122]

A. Martínez, J. Díez, P. Verde, R. Ferrero, R. álvarez, H. Perez, A. Vizán, Digital twin for the integration of the automatic transport and manufacturing processes, in: IOP Conference Series: Materials Science and Engineering, Vol. 1193, IOP Publishing, 2021, 012107.

[123]

P. Bellavista, C. Giannelli, M. Mamei, M. Mendula, M. Picone, Digital twin oriented architecture for secure and QoS aware intelligent communications in industrial environments, Pervasive Mob. Comput. 85 (2022) 101646.

[124]

Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, B. He, A survey on federated learning systems: Vision, hype and reality for data privacy and protection, IEEE Trans. Knowl. Data Eng. (2021).

[125]

K. Gai, Y. Zhang, M. Qiu, B. Thuraisingham, Blockchain-enabled service optimizations in supply chain digital twin, IEEE Trans. Serv. Comput. (2022).

[126]

C. Zhang, L. Zhu, C. Xu, BSDP: Blockchain-based smart parking for digital-twin empowered vehicular sensing networks with privacy protection, IEEE Trans. Ind. Inform. (2022).

[127]

B. Putz, M. Dietz, P. Empl, G. Pernul, Ethertwin: Blockchain-based secure digital twin information management, Inf. Process. Manage. 58 (1) (2021) 102425.

[128]

S.S. Akash, M.S. Ferdous, A blockchain based system for healthcare digital twin, IEEE Access 10 (2022) 50523-50547.

[129]

S.A. Varghese, A.D. Ghadim, A. Balador, Z. Alimadadi, P. Papadimitratos, Digital twin-based intrusion detection for industrial control systems, in: 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events, PerCom Workshops, IEEE, 2022, pp. 611-617.

[130]

E.C. Balta, M. Pease, J. Moyne, K. Barton, D.M. Tilbury, Digital twin-based cyber-attack detection framework for cyber-physical manufacturing systems, IEEE Trans. Autom. Sci. Eng. (2023).

[131]

J. Sen, Security and privacy issues in cloud computing, in: Cloud Technology: Concepts, Methodologies, Tools, and Applications, IGI Global, 2015, pp. 1585-1630.

PDF (992KB)

1296

Accesses

0

Citation

Detail

Sections
Recommended

/