Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey

Bisma Gulzar , Shabir Ahmad Sofi , Sahil Sholla

High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (3) : 100242

PDF (1723KB)
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (3) : 100242 DOI: 10.1016/j.hcc.2024.100242
Review Articles
research-article

Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey

Author information +
History +
PDF (1723KB)

Abstract

Pervasive Computing has become more personal with the widespread adoption of the Internet of Things (IoT) in our day-to-day lives. The emerging domain that encompasses devices, sensors, storage, and computing of personal use and surroundings leads to Personal IoT (PIoT). PIoT offers users high levels of personalization, automation, and convenience. This proliferation of PIoT technology has extended into society, social engagement, and the interconnectivity of PIoT objects, resulting in the emergence of the Social Internet of Things (SIoT). The combination of PIoT and SIoT has spurred the need for autonomous learning, comprehension, and understanding of both the physical and social worlds. Current research on PIoT is dedicated to enabling seamless communication among devices, striking a balance between observation, sensing, and perceiving the extended physical and social environment, and facilitating information exchange. Furthermore, the virtualization of independent learning from the social environment has given rise to Artificial Social Intelligence (ASI) in PIoT systems. However, autonomous data communication between different nodes within a social setup presents various resource management challenges that require careful consideration. This paper provides a comprehensive review of the evolving domains of PIoT, SIoT, and ASI. Moreover, the paper offers insightful modeling and a case study exploring the role of PIoT in post-COVID scenarios. This study contributes to a deeper understanding of the intricacies of PIoT and its various dimensions, paving the way for further advancements in this transformative field.

Keywords

Personal Internet of Things (PIoT) / Artificial Social Intelligence (ASI) / Hyperpersonalization

Cite this article

Download citation ▾
Bisma Gulzar, Shabir Ahmad Sofi, Sahil Sholla. Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey. High-Confidence Computing, 2024, 4(3): 100242 DOI:10.1016/j.hcc.2024.100242

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]

A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: A survey on enabling technologies, protocols, and applications, IEEE Commun. Surv. Tutor. 17 (4) (2015) 2347-2376, http://dx.doi.org/10.1109/COMST.2015.2444095.

[2]

V. Beltran, A.M. Ortiz, D. Hussein, N. Crespi, A semantic service creation platform for social IoT, in: 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea (South), 2014, pp. 283-286, http://dx.doi.org/10.1109/WF-IoT.2014.6803173.

[3]

H.K. Bharadwaj, et al., A review on the role of machine learning in enabling IoT based healthcare applications, IEEE Access 9 (2021) 38859-38890, http://dx.doi.org/10.1109/ACCESS.2021.3059858.

[4]

C. De Lima, et al., Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges, IEEE Access 9 (2021) 26902-26925, http://dx.doi.org/10.1109/ACCESS.2021.3053486.

[5]

Mehdi Mohammadi, et al., Deep learning for IoT big data and streaming analytics: A survey, IEEE Commun. Surv. Tutor. 20 (4) (2018) 2923-2960.

[6]

Pallavi Sethi, Smruti R. Sarangi, Internet of things: architectures, protocols, and applications, J. Electr. Comput. Eng. 2017 (2017).

[7]

Omer Berat Sezer, Erdogan Dogdu, Ahmet Murat Ozbayoglu, Contextaware computing, learning, and big data in internet of things: a survey, IEEE Internet Things J. 5 (1) (2017) 1-27.

[8]

Mohammad Abdur Razzaque, et al., Middleware for internet of things: a survey, IEEE Internet Things J. 3 (1) (2015) 70-95.

[9]

Qinglin Zhao, et al., A tutorial on internet of behaviors: Concept, architecture, technology, applications, and challenges, IEEE Commun. Surv. Tutor. (2023).

[10]

Anders Eivind Braten, Frank Alexander. Kraemer, David Palma, Autonomous IoT device management systems: structured review and generalized cognitive model, IEEE Internet Things J. 8 (6) (2020) 4275-4290.

[11]

Biswa P.S. Sahoo, et al., Personal internet of things (PIoT): What is it exactly? IEEE Consum. Electron. Mag. 10 (6) (2021) 58-60.

[12]

Saniya Zahoor, Roohie Naaz Mir, Resource management in pervasive internet of things: A survey, J. King Saud Univ. Comput. Inf. Sci. 33 (8) (2021) 921-935.

[13]

S. Islam, D. Kwak, M. Kabir, M. Hossain, K. Kwak, The internet of things for health care: a comprehensive survey, IEEE Access (3) (2015) 678-708, http://dx.doi.org/10.1109/access.2015.2437951.

[14]

Ali Ismail Awad, et al., AI-powered biometrics for internet of things security: A review and future vision, J. Inf. Secur. Appl. 82 (2024) 103748.

[15]

Alsamhi et al. ( 2019), S.H. Alsamhi, W. Yan, A. Elchouemi, Survey on collaborative smart drones and internet of things for improving smartness of smart cities, IEEE Access 7 (2019) 100682-100699, http://dx.doi.org/10.1109/access.2019.2934998.

[16]

Alwarafy et al. ( 2021), A. Alwarafy, A. Al-Dulaimi, A. Al-Fuqaha, A survey on security and privacy issues in edge-computing-assisted internet of things, IEEE Internet Things J. 8 (2) (2021)1015-1032, http://dx.doi.org/10.1109/jiot.2020.3015432.

[17]

S. Alsamhi, O. Ma, M. Ansari, F. Almalki, Survey on collaborative smart drones and internet of things for improving smartness of smart cities, IEEE Access (7) (2019) 128125-128152, http://dx.doi.org/10.1109/access.2019.2934998.

[18]

A. Salam, Internet of things for sustainability: Perspectives in privacy, cybersecurity, and future trends, 2019, pp. 299-327, http://dx.doi.org/10.1007/978-3-030-35291.

[19]

H. Kang, K. Kim, S. Wang, Can the internet of things persuade me? An investigation into power dynamics in human-internet of things interaction, Front. Psychol. (13) (2022) http://dx.doi.org/10.3389/fpsyg.2022.883110.

[20]

C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware computing for the internet of things: A survey, IEEE Commun. Surv. Tutorials 1 (16) (2014) 414-454, http://dx.doi.org/10.1109/surv.2013.042313.00197.

[21]

M. Maheshwari, M. Suguna, Malware detection in iomt (mdi) using rnn-lstm, 2 (3) (2023) 99-106. http://dx.doi.org/10.46632/daai/3/2/19.

[22]

J. Park, S. Park, M. Singh, A. Salim, J. Azzaoui, Ransomware-based cyber attacks: a comprehensive survey, J. Internet Technol. 7 (23) (2022) 1557-1564, http://dx.doi.org/10.53106/160792642022122307010.

[23]

V. Quy, N. Hoai, L. Manh, A. Le, G. Jeon, Wireless communication technologies for iot in 5 g: Vision, applications, and challenges, Wirel. Commun. Mob. Comput. (2022) 1-12, http://dx.doi.org/10.1155/2022/3229294.

[24]

A. Al-Bayatti, A. Malik, S. Khan, N. Emmanuel, S. Zafar, H. Khattack, ..., A. Alfakheeh, From conventional to state-of-the-art iot access control models, Electronics 10 (9) (2020) 1693, http://dx.doi.org/10.3390/electronics9101693.

[25]

J. Santos, P. Leroux, T. Wauters, B. Volckaert, F. Turck, Anomaly detection for smart city applications over 5 g low Power Wide Area networks, 2018, http://dx.doi.org/10.1109/noms.2018.8406257.

[26]

A. Mukherjee, Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints, Proc. IEEE 10 (103) (2015) 1747-1761, http://dx.doi.org/10.1109/jproc.2015.2466548.

[27]

X. Liu, J. Yu, Y. Liu, Y. Gao, T. Mahmoodi, S. Lambotharan, ..., D.H. Tsang, Distributed intelligence in wireless networks, IEEE Open J. Commun. Soc. (4) (2023) 1001-1039, http://dx.doi.org/10.1109/ojcoms.2023.3265425.

[28]

M.N. Aldelaimi, M.S. Hossain, M.F. Alhamid, Building dynamic communities of interest for internet of things in smart cities, Sensors 10 (20) (2020) 2986, http://dx.doi.org/10.3390/s20102986.

[29]

T.A. Al-Janabi, H.S. Al-Raweshidy, A centralized routing protocol with a scheduled mobile sink-based ai for large scale I-iot, IEEE Sens. J. 24 (18) (2018) 10248-10261, http://dx.doi.org/10.1109/jsen.2018.2873681.

[30]

M.D. Sanctis, E. Cianca, G. Araniti, I. Bisio, R. Prasad, Satellite communications supporting internet of remote things, IEEE Internet Things J. 1 (3) (2016) 113-123, http://dx.doi.org/10.1109/jiot.2015.2487046.

[31]

C. Tan, J. Chen, X. Sun, Q. Qi, Statistical learning based wireless channel parameter estimation for power internet of things, J. Phys.: Conf. Ser. 1 (2425) (2023) 012035, http://dx.doi.org/10.1088/1742-6596/2425/1/012035.

[32]

P. Shantanu, A. Dorri, J. Raja, Blockchain for iot access control: Recent trends and future research directions, 2021, http://dx.doi.org/10.48550/arxiv.2106.04808.

[33]

Y. Liu, K.A. Hassan, M. Karlsson, Z. Pang, S. Gong, A data-centric internet of things framework based on azure cloud, IEEE Access (7) (2019) 53839-53858, http://dx.doi.org/10.1109/access.2019.2913224.

[34]

D. Wang, F. Yang, Y. Wang, Z. Chen, D. Yang, F. Wu, Filter-free photonic image-rejection down-conversion for distributed antenna applications, IEEE Photon. J. 2 (13) (2021) 1-10, http://dx.doi.org/10.1109/jphot.2021.3064553.

[35]

S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, W. Wang, A survey on mobile edge networks: Convergence of computing, caching and communications, IEEE Access (5) (2017) 6757-6779, http://dx.doi.org/10.1109/access.2017.2685434.

[36]

N. Jusat, N. Zainuddin, Design and optimization of 4-bit static ram and 4-bit dynamic ram for compact and portable devices, Malays. J. Sci. Adv. Tech. (2021) 97-102, http://dx.doi.org/10.56532/mjsat.v1i3.19.

[37]

G. Han, Y. Peng, H. Liu, J. Zhou, Z. Luo, B. Chen, ..., Y. Hao, Ferroelectric devices for intelligent computing, Intell. Comput. (2022) (2022) http://dx.doi.org/10.34133/2022/9859508.

[38]

A. Nauman, Y.A. Qadri, M. Amjad, Y.B. Zikria, M. Afzal, S.W. Kim, Multimedia internet of things: a comprehensive survey, IEEE Access (8) (2020) 8202-8250, http://dx.doi.org/10.1109/access.2020.2964280.

[39]

J. Singh, Y. Bello, A. Hussein, A. Erbad, A. Mohamed, Hierarchical security paradigm for iot multiaccess edge computing, IEEE Internet Things J. 7 (8) (2021) 5794-5805, http://dx.doi.org/10.1109/jiot.2020.3033265.

[40]

F. Carpio, A. Jukan, R. Sosa, O. Rojas, Engineering a qos provider mechanism for edge computing with deep reinforcement learning, 2019, http://dx.doi.org/10.1109/globecom38437.2019.9013946.

[41]

D. Silva, R. Sofia, A discussion on context-awareness to better support the iot cloud/edge continuum, IEEE Access (8) (2020) 193686-193694, http://dx.doi.org/10.1109/access.2020.3032388.

[42]

Y. Lee, G. Lee, Security management suitable for lifecycle of personal information in multi-user iot environment, Sensors 22 (21) (2021) 7592, http://dx.doi.org/10.3390/s21227592.

[43]

Y. Gu, H. Chen, C. Zhai, Y. Li, B. Vucetic, Minimizing age of information in cognitive radio-based iot systems: Underlay or overlay? IEEE Internet Things J. 6 (6) (2019) 10273-10288, http://dx.doi.org/10.1109/jiot.2019.2937334.

[44]

Y. Liu, X. Yang, W. Wen, M. Xia, Smarter grid in the 5 g era: A framework integrating power internet of things with a cyber physical system, Front. Comm. Net. (2) (2021) http://dx.doi.org/10.3389/frcmn.2021.689590.

[45]

J.E. Lee, H.E. Naguib, Hybrid piezoelectric-magnetic, self-sensing actuator for vibration damping, Nano-Bio-Inf-Tech Sens. Wearable Syst. (2023) http://dx.doi.org/10.1117/12.2663411.

[46]

E.K. Kim, M. Lee, H. Min, S. Kim, J. Yang, H. Kweon, ..., J.G. Cho, Universal three-dimensional crosslinker for all-photopatterned electronics, Nature Commun. 1 (11) (2020) http://dx.doi.org/10.1038/s41467-020-15181-4.

[47]

Michel Kettner, et al., Solution-processed organic transistors with excellent electrical stability under ambient conditions, Adv. Electron. Mater. 5 (10) (2019) 1900295.

[48]

H.F. Atlam, R.J. Walters, G. Wills, Fog computing and the internet of things: A review, Big Data Cognit. Comput. 2 (2) (2018) 10, http://dx.doi.org/10.3390/bdcc2020010.

[49]

D. Gupta, S.P. Gochhayat, L.K. Hansen, Distributed active learning strategies on edge computing, in: 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference, 2019, http://dx.doi.org/10.1109/cscloud/edgecom.2019.00029.

[50]

Y. Gu, H. Chen, C. Zhai, Y. Li, B. Vucetic, Minimizing age of information in cognitive radio-based iot systems: Underlay or overlay? IEEE Internet Things J. 6 (6) (2019) 10273-10288, http://dx.doi.org/10.1109/jiot.2019.2937334.

[51]

A.N. Bikos, S. Kumar, Securing digital ledger technologies-enabled iot devices: Taxonomy, challenges, and solutions, IEEE Access (10) (2022) 46238-46254, http://dx.doi.org/10.1109/access.2022.3169141.

[52]

D. e.D.I. Abou-Tair, S. Büchsenstein, A.F. Khalifeh, A fog computing-based framework for privacy preserving iot environments, Int. Arab J. Inf. Technol. 3 (17) (2020) 306-315, http://dx.doi.org/10.34028/iajit/17/3/4.

[53]

I.A. Azodo, R. Williams, A. Sheikh, K. Cresswell, Opportunities and challenges surrounding the use of data from wearable sensor devices in health care: Qualitative interview study, J. Med. Internet Res. 10 (22) (2020) e19542, http://dx.doi.org/10.2196/19542.

[54]

M. Smallman, Multi scale ethics—why we need to consider the ethics of ai in healthcare at different scales, Sci. Eng. Ethics 6 (28) (2022) http://dx.doi.org/10.1007/s11948-022-00396-z.

[55]

Y.H. Kao, K. Nawata, C.Y.F. Huang, An exploration and confirmation of the factors influencing adoption of iot-based wearable fitness trackers, Int. J. Environ. Res. Public Health 18 (16) (2019) 3227, http://dx.doi.org/10.3390/ijerph16183227.

[56]

Q. Wu, K. He, X. Chen, Personalized federated learning for intelligent iot applications: a cloud-edge based framework, IEEE Open J. Comput. Soc. (1) (2020) 35-44, http://dx.doi.org/10.1109/ojcs.2020.2993259.

[57]

S. Hameed, F.A. Khan, B. Hameed, Understanding security requirements and challenges in internet of things (iot): A review, J. Comput. Netw. Commun. (2019) (2019) 1-14, http://dx.doi.org/10.1155/2019/9629381.

[58]

S. Sharma, K. Chen, A. Sheth, Toward practical privacy-preserving analytics for iot and cloud-based healthcare systems, IEEE Internet Comput. 2 (22) (2018) 42-51, http://dx.doi.org/10.1109/mic.2018.112102519.

[59]

Ibrahim Sadek, et al., Security and privacy in the internet of things healthcare systems: Toward a robust solution in real-life deployment, Comput. Methods Prog. Biomed. Update 2 (2022) 100071.

[60]

M. Noura, M. Atiquzzaman, M. Gaedke, Interoperability in internet of things: Taxonomies and open challenges, Mob. Netw, Appl, 3 (24) (2018) 796-809, http://dx.doi.org/10.1007/s11036-018-1089-9.

[61]

J.T. Kelly, K.L. Campbell, E. Gong, P.A. Scuffham, The internet of things: Impact and implications for health care delivery, J. Med. Internet Res. 11 (22) (2020) e20135, http://dx.doi.org/10.2196/20135.

[62]

G. Premsankar, M. Francesco, T. Taleb, Edge computing for the internet of things: A case study, IEEE Internet Things J. 2 (5) (2018) 1275-1284, http://dx.doi.org/10.1109/jiot.2018.2805263.

[63]

S. Jabbar, F. Ullah, S. Khalid, M.A. Khan, K. Han, Semantic interoperability in heterogeneous iot infrastructure for healthcare, Wirel. Commun. Mob. Comput. (2017) (2017) 1-10, http://dx.doi.org/10.1155/2017/9731806.

[64]

E. Patti, A. Acquaviva, Iot platform for smart cities: Requirements and implementation case studies, in: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow, RTSI, 2016, http://dx.doi.org/10.1109/rtsi.2016.7740618.

[65]

W. Lim, J. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, ..., C. Miao, Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning, IEEE Trans. Parallel Distrib. Syst. 3 (33) (2022) 536-550, http://dx.doi.org/10.1109/tpds.2021.3096076.

[66]

C. Cicconetti, M. Conti, A. Passarella, A decentralized framework for serverless edge computing in the internet of things, IEEE Trans. Netw. Serv. Manage. 2 (18) (2021) 2166-2180, http://dx.doi.org/10.1109/tnsm.2020.3023305.

[67]

A. Hamrouni, A. Khanfor, H. Ghazzai, Y. Massoud, Context-aware service discovery: Graph techniques for iot network learning and socially connected objects, IEEE Access (10) (2022) 107330-107345, http://dx.doi.org/10.1109/access.2022.3212370.

[68]

A. Mayer, V. Rodrigues, C. Costa, R. Righi, A. Roehrs, R. Antunes, Fogchain: a fog computing architecture integrating blockchain and internet of things for personal health records, IEEE Access (9) (2021) 122723-122737, http://dx.doi.org/10.1109/access.2021.3109822.

[69]

A. Bocci, S. Forti, G.L. Ferrari, A. Brogi, Secure faas orchestration in the fog: How far are we? Computing 5 (103) (2021) 1025-1056, http://dx.doi.org/10.1007/s00607-021-00924-y.

[70]

A. Sangaiah, A. Hosseinabadi, M. Shareh, S. Rad, A. Zolfagharian, N. Chilamkurti, Iot resource allocation and optimization based on heuristic algorithm, Sensors 2 (20) (2020) 539, http://dx.doi.org/10.3390/s20020539.

[71]

I. Chen, F. Bao, J. Guo, Trust-based service management for social internet of things systems, IEEE Trans. Depend. Secure Comput. 6 (13) (2016) 684-696, http://dx.doi.org/10.1109/tdsc.2015.2420552.

[72]

A.M. Kowshalya, M.L. Valarmathi, Trust management for reliable decision making among social objects in the social internet of things, IET Netw. 4 (6) (2017) 75-80, http://dx.doi.org/10.1049/iet-net.2017.0021.

[73]

M. Chakroun, J. Sayah, C. Kallab, S. El-Haddad, Internet of things: Towards a solid ecosystem of interconnected things, Adv. Internet 03 (12) (2022) 35-64, http://dx.doi.org/10.4236/ait.2022.123004.

[74]

H. Singh, A. Sharma, Challenges of internet of things: Development and application of conceptual framework, Int. J. Recent Technol. Eng. 3 (8) (2019) 2536-2540, http://dx.doi.org/10.35940/ijrte.c4719.098319.

[75]

J. Li, Internet of things recognition and sensing technology in interactive display communication, IEEE Access (7) (2019) 82466-82472, http://dx.doi.org/10.1109/access.2019.2923679.

[76]

L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado, ..., O. Rana, The internet of things, fog and cloud continuum: Integration and challenges, Internet Things (3-4) (2018) 134-155, http://dx.doi.org/10.1016/j.iot.2018.09.005.

[77]

C. Kaur, The cloud computing and internet of things (iot), Int. J. Sci. Res. Sci. Eng. Technol. 1 (2020) 9-22, http://dx.doi.org/10.32628/ijsrset196657.

[78]

N. Morozs, P. Mitchell, R. Diamant, Scalable adaptive networking for the internet of underwater things, IEEE Internet Things J. 10 (7) (2020) 10023-10037, http://dx.doi.org/10.1109/jiot.2020.2988621.

[79]

Y. Wu, H. Dai, H. Tang, Graph neural networks for anomaly detection in industrial internet of things, IEEE Internet Things J. 12 (9) (2022) 9214-9231, http://dx.doi.org/10.1109/jiot.2021.3094295.

[80]

A. Hamrouni, H. Ghazzai, Y. Massoud, Service discovery in social internet of things using graph neural networks, 2022, http://dx.doi.org/10.1109/mwscas54063.2022.9859333.

[81]

Analysis of data stream processing at edge layer for internet of things, J. IoT Soc. Mob. Anal. Cloud 1 (2) (2020) 26-37, http://dx.doi.org/10.36548/jismac.2020.1.003.

[82]

T. Sylla, M. Chalouf, F. Krief, K. Samaké, Context-aware security in the internet of things: A survey, Int. J. Auton. Adapt. Commun. Syst. 3 (14) (2021) 231, http://dx.doi.org/10.1504/ijaacs.2021.117808.

[83]

C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware computing for the internet of things: A survey, IEEE Commun. Surv. Tutorials 1 (16) (2014) 414-454, http://dx.doi.org/10.1109/surv.2013.042313.00197.

[84]

Y. Wang, F. Zhang, J. Wang, L. Liu, B. Wang, A bibliometric analysis of edge computing for internet of things, Secur. Commun. Netw. (2021) (2021) 1-10, http://dx.doi.org/10.1155/2021/5563868.

[85]

A. Rahman, M. Hossain, An internet-of-medical-things-enabled edge computing framework for tackling Covid-19, IEEE Internet Things J. 21 (8) (2021) 15847-15854, http://dx.doi.org/10.1109/jiot.2021.3051080.

[86]

M. Usman, M. Jan, D. Puthal, Paal: a framework based on authentication, aggregation, and local differential privacy for internet of multimedia things, IEEE Internet Things J. 4 (7) (2020) 2501-2508, http://dx.doi.org/10.1109/jiot.2019.2936512.

[87]

Z. Maamar, T. Baker, M. Sellami, M. Asim, E. Ugljanin, N. Faci, Cloud vs edge: Who serves the internet-of-things better? Internet Technol. Lett. 5 (1) (2018) e66, http://dx.doi.org/10.1002/itl2.66.

[88]

S. Sholla, R. Naaz, M.A. Chishti, Incorporating ethics in internet of things (IoT) enabled connected smart healthcare, in: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 2017, pp. 262-263, http://dx.doi.org/10.1109/CHASE.2017.93.

[89]

Sahil Sholla, Roohie Naaz Mir, Mohammad Ahsan Chishti, A fuzzy logic-based method for incorporating ethics in the internet of things, Int. J. Ambient Comput. Intell. (IJACI) 12 (3) (2021) 98-122.

[90]

M. Chakroun, J. Sayah, C. Kallab, S. El-Haddad, Internet of things: Towards a solid ecosystem of interconnected things, Adv. Internet 03 (12) (2022) 35-64, http://dx.doi.org/10.4236/ait.2022.123004.

[91]

L. Naderlou, N. Ismayilova, A. Feyziyev, A review siot (social internet of things): Techniques, applications, challenges and trends, Azerb. J. High Perform. Comput. 2 (5) (2022) 236-253, http://dx.doi.org/10.32010/26166127.2022.5.2.236.253.

[92]

S. Alam, S. Zardari, S. Noor, S. Ahmed, H. Mouratidis, Trust management in social internet of things (siot): a survey, IEEE Access (10) (2022) 108924-108954, http://dx.doi.org/10.1109/access.2022.3213699.

[93]

S. Dhelim, H. Ning, F. Farha, L. Chen, L. Atzori, M. Daneshmand, Iot-enabled social relationships meet artificial social intelligence, IEEE Internet Things J. 24 (8) (2021) 17817-17828, http://dx.doi.org/10.1109/jiot.2021.3081556.

[94]

H. Pajooh, A. Rashid, F. Alam, S. Demidenko, Iot big data provenance scheme using blockchain on hadoop ecosystem, J. Big Data 1 (8) (2021) http://dx.doi.org/10.1186/s40537-021-00505-y.

[95]

Q. Du, H. Song, X. Zhu, Social-feature enabled communications among devices toward the smart iot community, IEEE Commun. Mag. 1 (57) (2019) 130-137, http://dx.doi.org/10.1109/mcom.2018.1700563.

[96]

K. Chung, S. Liang, An empirical study of social network activities via social internet of things (siot), IEEE Access (8) (2020) 48652-48659, http://dx.doi.org/10.1109/access.2020.2978151.

[97]

S. Dhelim, H. Ning, F. Farha, L. Chen, L. Atzori, M. Daneshmand, Iot-enabled social relationships meet artificial social intelligence, IEEE Internet Things J. 24 (8) (2021) 17817-17828, http://dx.doi.org/10.1109/jiot.2021.3081556.

[98]

N. Cristianini, T. Scantamburlo, J. Ladyman, The social turn of artificial intelligence, AI & Soc. 1 (38) (2021) 89-96, http://dx.doi.org/10.1007/s00146-021-01289-8.

[99]

M. Azrour, J. Mabrouki, A. Guezzaz, A. Kanwal, Internet of things security: challenges and key issues, Secur. Commun. Netw. (2021) (2021) 1-11, http://dx.doi.org/10.1155/2021/5533843.

[100]

M. Nitti, L. Atzori, I. Cvijikj, Friendship selection in the social internet of things: challenges and possible strategies, IEEE Internet Things J. 3 (2) (2015) 240-247, http://dx.doi.org/10.1109/jiot.2014.2384734.

[101]

Z. Xiong, S. Feng, W. Wang, D. Niyato, P. Wang, Z. Han, Cloud/fog computing resource management and pricing for blockchain networks, IEEE Internet Things J. 3 (6) (2019) 4585-4600, http://dx.doi.org/10.1109/jiot.2018.2871706.

[102]

M. Alkandari, J. Alfadhli, L Waleed, A hybrid resource allocation approach for 5 g iot applications, 2021, http://dx.doi.org/10.36909/jer.13331, JER is an international, peer-reviewed journal that publishes f.

[103]

A. Markus, M. Biro, G. Kecskemeti, A. Kertesz, Actuator behaviour modelling in iot-fog-cloud simulation, Peerj Comput. Sci. (7) (2021) e651, http://dx.doi.org/10.7717/peerj-cs.651.

[104]

M. Sharma, S. Kumar, P. Kashyap, G. Aggarwal, R. Rathore, O. Kaiwartya, ..., J. Lloret, Green communication in internet of things: a hybrid bioinspired intelligent approach, Sensors 10 (22) (2022) 3910, http://dx.doi.org/10.3390/s22103910.

[105]

H. Xing, J. Xu, J. Hu, Y. Chen, J. Huang, Dynamic resource allocation and task offloading for noma-enabled iot services in mec, Secur. Commun. Netw. (2022) (2022) 1-11, http://dx.doi.org/10.1155/2022/8072493.

[106]

D. Lee, J. Lee, Task offloading in heterogeneous mobile cloud computing: Modeling, analysis, and cloudlet deployment, IEEE Access (6) (2018) 14908-14925, http://dx.doi.org/10.1109/access.2018.2812144.

[107]

Y. Miao, S. Pan, S. Pan, S. Chen, Efficient and energy-saving computation offloading mechanism with energy harvesting for iot, Secur. Commun. Netw. (2021) (2021) 1-10, http://dx.doi.org/10.1155/2021/8167796.

[108]

J. Peng, X. Cui, K. Jia, B. Liu, P. Zhao, S. Liu, Applied research on bim gis iot multi-source heterogenous data fusion, 2023, http://dx.doi.org/10.1117/12.2668077.

[109]

A. Jansang, C. Simasathien, A. Phonphoem, Energy-aware wireless mesh network deployment using optimization mechanism, Telkomnika 1 (21) (2023) 26, http://dx.doi.org/10.12928/telkomnika.v21i1.23422.

[110]

F. Samann, S. Zeebaree, S. Askar, Iot provisioning qos based on cloud and fog computing, J. Appl. Sci. Techno. Trends 01 (2) (2021) 29-40, http://dx.doi.org/10.38094/jastt20190.

[111]

D. Sivasakthi, R. Gunasekaran, Qoe-aware mobile computation offloading in mobile edge computing, Concurr. Comput. 11 (34) (2022) http://dx.doi.org/10.1002/cpe.6853.

[112]

G. Qu, H. Wu, Dmro:a deep meta reinforcement learning-based task offloading framework for edge-cloud computing, 2020, http://dx.doi.org/10.48550/arxiv.2008.09930.

[113]

S. Yu-Jie, W. Hui, Z. Cheng-Xiang, Balanced computing offloading for selfish iot devices in fog computing, IEEE Access (10) (2022) 30890-30898, http://dx.doi.org/10.1109/access.2022.3160198.

[114]

A. Rafiq, P. Wang, M. Wei, M. Muthanna, N. Josbert, Mitigation impact of energy and time delay for computation offloading in an industrial iot environment using levenshtein distance algorithm, Secur. Commun. Netw. (2022) (2022) 1-12, http://dx.doi.org/10.1155/2022/6469380.

[115]

M. Bali, K. Gupta, D. Koundal, A. Zaguia, S. Mahajan, A. Pandit, Smart architectural framework for symmetrical data offloading in iot, Symmetry 10 (13) (2021) 1889, http://dx.doi.org/10.3390/sym13101889.

[116]

J. Qiu, W. Song, Q. Wang, F. Zhou, R. Hu, Mobility-aware offloading and resource allocation in mec-enabled iot networks, 2021, http://dx.doi.org/10.48550/arxiv.2103.09180.

[117]

S. Singh, P. Chaurasia, N. Lal, A review on trust management in the social internet of things: issues and challenges, tijer. org 6 (9) (2022) 1-8, http://dx.doi.org/10.56975/tijer.v9i6.152.

[118]

K. Chung, S. Liang, An empirical study of social network activities via social internet of things (siot), IEEE Access (8) (2020) 48652-48659, http://dx.doi.org/10.1109/access.2020.2978151.

[119]

F. Hussain, S. Hassan, R. Hussain, E. Hossain, Machine learning for resource management in cellular and iot networks: Potentials, current solutions, and open challenges, IEEE Commun. Surv. Tutorials 2 (22) (2020) 1251-1275, http://dx.doi.org/10.1109/comst.2020.2964534.

[120]

C. Avasalcai, C. Tsigkanos, S. Dustdar, Resource management for latency-sensitive iot applications with satisfiability, IEEE Trans. Serv. Comput. 5 (15) (2022) 2982-2993, http://dx.doi.org/10.1109/tsc.2021.3074188.

[121]

A. Imteaj, M. Amini, Fedparl: Client activity and resource-oriented lightweight federated learning model for resource-constrained heteroge-neous iot environment, Front. Comms. Net. (2) (2021) http://dx.doi.org/10.3389/frcmn.2021.657653.

[122]

Mohammad-Mahdi Moazzami, et al., SPOT: A smartphone-based platform to tackle heterogeneity in smart-home IoT systems, in: 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT, IEEE, 2016.

[123]

L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, X. Wang, Multiuser resource control with deep reinforcement learning in iot edge computing, IEEE Internet Things J. 6 (6) (2019) 10119-10133, http://dx.doi.org/10.1109/jiot.2019.2935543.

[124]

A. Nassar, Y. Yilmaz, Reinforcement learning for adaptive resource allocation in fog ran for iot with heterogeneous latency requirements, IEEE Access (7) (2019) 128014-128025, http://dx.doi.org/10.1109/access.2019.2939735.

[125]

M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, W. Zhuang, Learning-based computation offloading for iot devices with energy harvesting, IEEE Trans. Veh. Technol. 2 (68) (2019) 1930-1941, http://dx.doi.org/10.1109/tvt.2018.2890685.

[126]

S. Yu-Jie, W. Hui, Z. Cheng-Xiang, Balanced computing offloading for selfish iot devices in fog computing, IEEE Access (10) (2022) 30890-30898, http://dx.doi.org/10.1109/access.2022.3160198.

[127]

I. Eroshkin, L. Vojtech, M. Neruda, Resource efficient real-time reliability model for multi-agent iot systems, IEEE Access (10) (2022) 2578-2590, http://dx.doi.org/10.1109/access.2021.3138931.

[128]

A. Zarca, J. Bernabe, A. Skarmeta, J. Calero, Virtual iot honeynets to mitigate cyberattacks in sdn/nfv-enabled iot networks, IEEE J. Sel. Areas Commun. 6 (38) (2020) 1262-1277, http://dx.doi.org/10.1109/jsac.2020.2986621.

[129]

T. Tsai, F. Lin, Enabling iot network slicing with network function virtualization, Adv. Internet 03 (10) (2020) 17-35, http://dx.doi.org/10.4236/ait.2020.103003.

[130]

F. Ruambo, J. Mwakatobe, Virtualizing the iot ecosystem: A brief review, addressing nfv strategies, Int. J. Eng. Appl. Sci. Technol. 3 (4) (2019) 322-331, http://dx.doi.org/10.33564/ijeast.2019.v04i03.053.

[131]

G. Devraj, M. Kumar, C. Reddy, G. Kumar, K. Varma, Iot enabled shipping containers with location tracking and environment monitoring, Int. J. Res. Appl. Sci. Eng. Technol. 4 (10) (2022) 3147-3152, http://dx.doi.org/10.22214/ijraset.2022.41997.

[132]

M. Kamel, Y. Yan, P. Ligeti, C. Reich, Attred: Attribute based resource discovery for iot, Sensors 14 (21) (2021) 4721, http://dx.doi.org/10.3390/s21144721.

[133]

S. Trimpe, D. Baumann, Resource-aware iot control: Saving communication through predictive triggering, IEEE Internet Things J. 3 (6) (2019) 5013-5028, http://dx.doi.org/10.1109/jiot.2019.2894628.

[134]

I. Eroshkin, L. Vojtech, M. Neruda, Resource efficient real-time reliability model for multi-agent iot systems, IEEE Access (10) (2022) 2578-2590, http://dx.doi.org/10.1109/access.2021.3138931.

[135]

A. Sangaiah, A. Hosseinabadi, M. Shareh, S. Rad, A. Zolfagharian, N. Chilamkurti, Iot resource allocation and optimization based on heuristic algorithm, Sensors 2 (20) (2020) 539, http://dx.doi.org/10.3390/s20020539.

[136]

X. Liu, Z. Qin, Y. Gao, J. McCann, Resource allocation in wireless powered iot networks, IEEE Internet Things J. 3 (6) (2019) 4935-4945, http://dx.doi.org/10.1109/jiot.2019.2895417.

[137]

B. Serra, L. Gomes, Z. Vale, Lightweight architecture for iot devices with context-aware autonomous control, 2019, http://dx.doi.org/10.1109/wcncw.2019.8902882.

[138]

A. Abdelhadi, T. Clancy, Optimal context-aware resource allocation in cellular networks, 2016, http://dx.doi.org/10.1109/iccnc.2016.7440640.

[139]

R. Gomes, G. Bouloukakis, F. Costa, N. Georgantas, R. Rocha, Qos-aware resource allocation for mobile iot pub/sub systems, 2018, pp. 70-87.

[140]

Q. Fan, J. Bai, H. Zhang, Y. Yi, L. Liu, Delay-aware resource allocation in fog-assisted iot networks through reinforcement learning, 2020, http://dx.doi.org/10.48550/arxiv.2005.04097.

[141]

G. Mantas, P. Cox, F. Bashashi, F. Gil-Castineira, J. Gonzalez, A blockchain-based architecture for secure iot-based health monitoring systems, 2021, http://dx.doi.org/10.1109/camad52502.2021.9617803.

[142]

D. Datiri, M. Li, Load balancing for resource optimization in internet of things (iot) systems, Comput. Inform. 6 (41) (2022) 1425-1445.

[143]

S. Chafi, Y. Balboul, M. Fattah, S. Mazer, M. Bekkali, B. Bernoussi, Resource placement strategy optimization for iot oriented monitoring application, Telkomnika 4 (20) (2022) 788, http://dx.doi.org/10.12928/telkomnika.v20i4.23762.

[144]

T. Pham, T. Nguyen, Optimization of resource management for nfvenabled iot systems in edge cloud computing, IEEE Access (8) (2020) 178217-178229, http://dx.doi.org/10.1109/access.2020.3026711.

[145]

H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. Yu, Z. Han, Computing resource allocation in three-tier iot fog networks: a joint optimization approach combining stackelberg game and matching, IEEE Internet Things J. 5 (4) (2017) 1204-1215, http://dx.doi.org/10.1109/jiot.2017.2688925.

AI Summary AI Mindmap
PDF (1723KB)

324

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/