EPri-MDAS: An efficient privacy-preserving multiple data aggregation scheme without trusted authority for fog-based smart grid

Jinjiao Zhang , Wenying Zhang , Xiaochao Wei , Huimin Liu

High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (4) : 100226

PDF (1339KB)
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (4) : 100226 DOI: 10.1016/j.hcc.2024.100226
Research Articles
research-article

EPri-MDAS: An efficient privacy-preserving multiple data aggregation scheme without trusted authority for fog-based smart grid

Author information +
History +
PDF (1339KB)

Abstract

With the increasingly pervasive deployment of fog servers, fog computing extends data processing and analysis to network edges. At the same time, as the next-generation power grid, the smart grid should meet the requirements of security, efficiency, and real-time monitoring of user energy consumption. By utilizing the low-latency and distributed properties of fog computing, it can improve communication efficiency and user service satisfaction in smart grids. For the sake of providing adequate functionality for the power grid, various schemes have been proposed. Whereas, many methods are vulnerable to privacy leakage since the existence of trusted authority may increase the exposure to threats. In this paper, we propose the EPri-MDAS: an Efficient Privacy-preserving Multiple Data Aggregation Scheme without trusted authority based on the ElGamal homomorphic cryptosystem, which achieves both data integrity verification and data source authentication with the most efficient block cipher-based authenticated encryption algorithm. It performs well in energy efficiency with strong security. Especially, the proposed multidimensional aggregation statistics scheme can perform the fine-grained data analyses; it also allows for fault tolerance while protecting personal privacy. The security analysis and simulation experiments show that EPri-MDAS can satisfy the security requirements and work efficiently in the smart grid.

Keywords

Privacy-preserving / Multiple data aggregation / Smart grid / Fog computing

Cite this article

Download citation ▾
Jinjiao Zhang, Wenying Zhang, Xiaochao Wei, Huimin Liu. EPri-MDAS: An efficient privacy-preserving multiple data aggregation scheme without trusted authority for fog-based smart grid. High-Confidence Computing, 2024, 4(4): 100226 DOI:10.1016/j.hcc.2024.100226

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (62272282).

References

[1]

H. Wang, Proxy provable data possession in public clouds, IEEE Trans. Serv. Comput. 6 (4) (2013) 551-559.

[2]

S. Chen, M. Wen, R. Lu, J. Li, S. Chen, Achieve revocable access control for fog-based smart grid system, in: 2019 IEEE 90th Vehicular Technology Conference, VTC2019-Fall, IEEE, 2019, pp. 1-7.

[3]

H.R. Abdulqadir, S.R. Zeebaree, H.M. Shukur, M.M. Sadeeq, B.W. Salim, A.A. Salih, S.F. Kak, A study of moving from cloud computing to fog computing, Qubahan Acad. J. 1 (2) (2021) 60-70.

[4]

I. Colak, S. Sagiroglu, G. Fulli, M. Yesilbudak, C.-F. Covrig, A survey on the critical issues in smart grid technologies, Renew. Sustain. Energy Rev. 54 (2016) 396-405.

[5]

M.A. Judge, A. Khan, A. Manzoor, H.A. Khattak, Overview of smart grid implementation: Frameworks, impact, performance and challenges, J. Energy Storage 49 (2022) 104056.

[6]

K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, P. Hong, Two-cloud secure database for numeric-related SQL range queries with privacy preserving, IEEE Trans. Inf. Forensics Secur. 12 (7) (2017) 1596-1608.

[7]

J. Wu, M. Dong, K. Ota, L. Liang, Z. Zhou, Securing distributed storage for Social Internet of Things using regenerating code and Blom key agreement, Peer-to-Peer Netw. Appl. 8 (6) (2015) 1133-1142.

[8]

N. Lindsey, Smart devices leaking data to tech giants raises new iot privacy issues, 2019, https://www.cpomagazine.com/data-privacy/smart-devices-leaking-data-to-tech-giants-raises-new-iot-privacyissues/.

[9]

D. He, N. Kumar, J.H. Lee, Privacy-preserving data aggregation scheme against internal attackers in smart grids, Wirel. Netw. 22 (2) (2016) 491-502.

[10]

P. Gope, B. Sikdar, An efficient data aggregation scheme for privacy-friendly dynamic pricing-based billing and demand-response management in smart grids, IEEE Internet Things J. 5 (4) (2018) 3126-3135.

[11]

S. Sultan, Privacy-preserving metering in smart grid for billing, operational metering, and incentive-based schemes: A survey, Comput. Secur. 84 (2019) 148-165.

[12]

C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in private data analysis, in: S. Halevi, T.Rabin (Eds.), Theory of Cryptography, Springer, Heidelberg, Germany, 2006, pp. 265-284.

[13]

J. Liu, C. Zhang, Y. Fang, EPIC: A differential privacy framework to defend smart homes against internet traffic analysis, IEEE Internet Things J. 5 (2) (2018) 1206-1217.

[14]

Q. Ye, H. Hu, X. Meng, H. Zheng, PrivKV: Key-value data collection with local differential privacy, in: IEEE Symposium on Security and Privacy, IEEE, 2019, pp. 317-331.

[15]

L. Ou, Z. Qin, S. Liao, Y. Hong, X. Jia, Releasing correlated trajectories: Towards high utility and optimal differential privacy, IEEE Trans. Dependable Secure Comput. 17 (5) (2020) 1109-1123.

[16]

F. Fioretto, T.W.K. Mak, P.V. An Hentenryck, Differential privacy for power grid obfuscation, IEEE Trans. Smart Grid. 11 (2) (2020) 1356-1366.

[17]

N. Ga, K. Xue, B. Zhu, J. Yang, J. Liu, D. He, An efficient data aggregation scheme with local differential privacy in smart grid, Digit. Commun. Netw. 8 (3) (2022) 333-342.

[18]

C. Fontaine, F. Galand, A survey of homomorphic encryption for nonspecialists, EURASIP J. Inf. Secur. 2007 (2007) 1-10.

[19]

R. Lu, X. Liang, X. Li, X. Lin, X. Shen, EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid communications, IEEE Trans. Parallel Distrib. Syst. 23 (9) (2012) 1621-1631.

[20]

H. Shen, M. Zhang, J. Shen, Efficient privacy-preserving cube-data aggrega-tion scheme for smart grids, IEEE Trans. Inf. Forensics Secur. 12 (6) (2017) 1369-1381.

[21]

Z. Guan, Y. Yang, L. Zhu, L. Wu, S. Yu, EFFECT: An efficient flexible privacy-preserving data aggregation scheme with authentication in smart grid, Sci. China Inf. Sci. 62 (3) (2019) 1-14.

[22]

D. He, N. Kumar, S. Zeadally, A.V. Vinel, L.T. Yang, Efficient and privacy-preserving data aggregation scheme for smart grid against internal adversaries, IEEE Trans. Smart Grid. 8 (5) (2017) 2411-2419.

[23]

Y. Li, S. Yang, R. Wang, K. S, J. Li, A lightweight privacy-preserving and sharing scheme with dual-blockchain for intelligent pricing system of smart grid, Comput. Secur. 103 (2021) 102189.

[24]

S. Zhao, F. Li, H. Li, R. Lu, S. Ren, H. Bao, J. Lin, S. Han, Smart and practical privacy-preserving data aggregation for fog-based smart grids, IEEE Trans. Inf. Forensics Secur. 16 (2021) 521-536.

[25]

X. Zuo, L. Li, H. Peng, S. Luo, Y. Yang, Privacy-preserving multidimensional data aggregation scheme without trusted authority in smart grid, IEEE Syst. J. 15 (1) (2021) 395-406.

[26]

S. Darzi, B. Akhbari, H. Khodaiemehr,LPM2DA: a lattice-based privacy-preserving multi-functional and multi-dimensional data aggregation scheme for smart grid, Clust. Comput. 25 (1) (2022) 263-278.

[27]

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory 31 (4) (1985) 469-472.

[28]

J.M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comput. 32 (143) (1978) 918-924.

[29]

A. Shamir, How to share a secret, Commun. ACM 22 (11) (1979) 612-613.

[30]

S. Banik, S.K. Pandey, T. Peyrin, Y. Sasaki, S. Sim, Y. Todo, GIFT: A small present - towards reaching the limit of lightweight encryption,in: Cryptographic Hardware and Embedded Systems-CHES, Springer, 2017, pp. 321-345.

[31]

S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin, Y. Sasaki, S. Sim, Y. Todo, GIFT-COFB, IACR, Cryptol. ePrint Arch. (2020) 738.

[32]

H. Cheng, H. Wang, X. Liu, Y. Fang, M. Wang, Z. Zhang, Person reidentification over encrypted outsourced surveillance videos, IEEE Trans. Dependable Secure Comput. 18 (3) (2021) 1456-1473.

[33]

A. De Caro A, V. Iovino, jPBC: Java pairing based cryptography, in: Proc. IEEE Symp. Comput.Commun, ISCC, IEEE, 2011, pp. 850-855.

AI Summary AI Mindmap
PDF (1339KB)

308

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/