PDF
(1501KB)
Abstract
Millimeter-wave is the core technology to enable multi-Gbps throughput and ultra-low latency connectivity. But the devices need to operate at very high frequency and ultra-wide bandwidth: They consume more energy, dissipate more power, and subsequently heat up faster. Device overheating is a common concern of many users, and millimeter-wave would exacerbate the problem. In this work, we first thermally characterize millimeter-wave devices. Our measurements reveal that after only 10 s of data transfer at 1.9 Gbps bit-rate, the millimeter-wave antenna temperature reaches 68°C; it reduces the link throughput by 21%, increases the standard deviation of throughput by 6, and takes 130 s to dissipate the heat completely. Besides degrading the user experience, exposure to high device temperature also creates discomfort. Based on the measurement insights, we propose Aquilo, a temperature-aware, multi-antenna network scheduler. It maintains relatively high throughput performance but cools down the devices substantially. Our testbed experiments under both static and mobile conditions demonstrate that Aquilo achieves a median peak temperature only 0.5°C to 2°C above the optimal while sacrificing less than 10% of throughput.
Keywords
5G
/
Millimeter-wave
/
Temperature-aware design
/
Multi-antenna scheduler
Cite this article
Download citation ▾
Moh Sabbir Saadat, Sanjib Sur, Srihari Nelakuditi.
Aquilo: Temperature-aware scheduler for millimeter-wave devices and networks.
High-Confidence Computing, 2024, 4(4): 100223 DOI:10.1016/j.hcc.2024.100223
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements
This work was supported in part by the U.S. National Science Foundation (CCF1919154 and ECCS-1923409).
| [1] |
IEEE P802.11 - Task Group ay, Status of project IEEE 802.11ay, 2020, http://www.ieee802.org/11/Reports/tgay_update.htm.
|
| [2] |
3GPP: A. Global Initiative, The mobile broadband standard, 2021, http://www.3gpp.org/release-17.
|
| [3] |
E. Dahlman, S. Parkvall, J. Skold,5G NR: The Next Generation Wireless Access Technology, Elsevier, 2018.
|
| [4] |
Qualcomm Incorporated, Mobilizing mmWave with 5G NR, 2020, https://www.qualcomm.com/invention/5g/5g-nr/mmwave.
|
| [5] |
Google LLC, Google soli, 2019, https://atap.google.com/soli/.
|
| [6] |
Qualcomm Incorporated, Qualcomm announces 5G NR mmWave prototype to accelerate mobile deployments for smartphones, 2017, https://bit.ly/3Ciu1lA.
|
| [7] |
AsusTek Computer Inc., ASUS ROG phone, 2018, https://www.asus.com/us/Phone/ROG-Phone/.
|
| [8] |
Apple Inc., US patent app: Electronic devices having millimeter wave ranging capabilities, 2019, https://bit.ly/2k0rsSr.
|
| [9] |
Patently Apple, Apple files patents for future iPhones with gas sensors & 5G millimeter wave antennas for apple watch, 2019, https://bit.ly/3megLJb.
|
| [10] |
TPCAST U.S., Inc., TPCAST: Unleash the VR world, 2019, https://www.tpcastvr.com/.
|
| [11] |
HTC, HTC VIVE PRO, 2019, https://www.vive.com/us/product/vive-pro/.
|
| [12] |
VentureBeat, SONY VR patent points to a pricier but wireless PSVR2, 2019, https://bit.ly/3ClEhd2.
|
| [13] |
Intel Corporation, Intel wireless gigabit for VR, 2019, https://intel.ly/3B8eOCg.
|
| [14] |
S.K. Saha, D.G. Malleshappa, A. Palamanda, V.V. Vira, A. Garg, D. Kout-sonikolas,60 GHz indoor WLANs: Insights into performance and power consumption, J. Wirel. Netw. 24 (7) (2018).
|
| [15] |
S.K. Saha, T. Siddiqui, D. Koutsonikolas, A. Loch, J. Widmer, R. Sridhar, A detailed look into power consumption of commodity 60 GHz devices, in: IEEE WoWMoM, 2017.
|
| [16] |
ExtremeTech, 5G modems and phones literally can’t handle the heat of summer weather, 2020, https://bit.ly/3Gj4tqV.
|
| [17] |
HackADay, 5G power usage is making phones overheat ..., 2019, https://bit.ly/30UqIDf.
|
| [18] |
M.S. Saadat, S. Sur, S. Nelakuditi,A case for temperature-aware scheduler for millimeter-wave devices and networks, in: IEEE 28th International Conference on Network Protocols, ICNP, 2020.
|
| [19] |
M.S. Saadat, S. Sur, S. Nelakuditi, Bringing temperature-awareness to millimeter-wave networks, in: ACM MobiCom, 2020.
|
| [20] |
A. Keykhosravi, M. Neamatshahi, R. Mahmoodi, E. Navipour, Radiation effects of mobile phones and tablets on the skin: A systematic review, Adv. Med. (2018).
|
| [21] |
O.P. Gandhi, A. Riazi, Absorption of millimeter waves by human beings and its biological implications, IEEE Trans. Microw. Theory Tech. 34 (2) (1986).
|
| [22] |
Qualcomm Incorporated, Breaking the wireless barriers to mobilize 5G NR mmWave, 2019, https://bit.ly/3pCWb7w.
|
| [23] |
Qualcomm Incorporated, 5G mmwave radio design for mobile, 2017, shorturl.at/bfiFG.
|
| [24] |
D. Brooks, M. Martonosi, Dynamic thermal management for highperformance microprocessors, in:International Symposium of HighPerformance Computer Architecture, HPCA, 2001.
|
| [25] |
K. Skadron, Hybrid architectural dynamic thermal management, in:IEEE Proceedings Design, Automation and Test in Europe Conference and Exhibition, 2004.
|
| [26] |
A. Kumar, L. Shang, L.-S. Peh, N.K. Jha, System-level dynamic thermal management for high-performance microprocessors, IEEE Trans. Comput. -Aid. Des. Integr. Circuits Syst. 27 (2008).
|
| [27] |
A. Merkel, F. Bellosa, A. Weissel, Event-driven thermal management in SMP systems, in:Workshop on Temperature-Aware Computer Systems, 2005.
|
| [28] |
H. Jung, M. Pedram, Stochastic dynamic thermal management: A Markovian decision-based approach,in:International Conference of Computer Design, 2007.
|
| [29] |
NETGEAR, Inc., Nighthawk X10 smart WiFi Router, 2017, https://www.netgear.com/landings/ad7200/.
|
| [30] |
S. Sur, Thermal characterization data and multi-antenna simulator code for 60 GHz millimeter-wave devices, 2021, https://syrex.cse.sc.edu/awards/nsf1910853.
|
| [31] |
IEEE Standards Association, IEEE standards 802.11ad- 2012, Amendment 3: Enhancements for very high throughput in the 60 GHz band, 2012, goo.gl/s7HzC2.
|
| [32] |
R. Zhao, T. Woodford, T. Wei, Q. Kun, X. Zhang, M-Cube: A millimeter-wave massive MIMO software radio, in: Proc. of ACM MobiCom, 2020.
|
| [33] |
S. Wang, J. Huang, X. Zhang, H. Kim, S. Dey, X-Array: Approximating omnidirectional millimeter-wave coverage using an array of phased arrays, in: Proc. of ACM MobiCom, 2020.
|
| [34] |
S. Sun, T.S. Rappaport, M. Shafi, Hybrid beamforming for 5G millimeter-wave multi-cell networks, in:IEEE Conference on ComputerCommunica-tions Workshop, 2018.
|
| [35] |
J. Zhang, X. Yu, K.B. Letaief,Hybrid beamforming for 5G and beyond millimeter-wave systems: A holistic view, IEEE Open J. Commun. Soc. 1 (2019).
|
| [36] |
R.W. Heath Jr., N. Gonzalez-Prelcic, S. Rangan, W. Roh, A. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems, IEEE JSTSP 10 (3) (2016).
|
| [37] |
M.K. Samimi, T.S. Rappaport, 3-D statistical channel model for millimeter-wave outdoor mobile broadband communications, in: IEEE International Conference on Communications, ICC, 2015.
|
| [38] |
T.S. Rappaport, E. Ben-Dor, J.N. Murdock, Y. Qiao,38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications, in: IEEE ICC, 2012.
|
| [39] |
T.S. Rappaport, F. Gutierrez, E. Ben-Dor, J.N. Murdock, Y. Qiao, J.I. Tamir, Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications, IEEE Trans. Antennas and Propagation 61 ( 4) (2013).
|
| [40] |
T. Zwick, T.J. Beukema, H. Nam,Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel, IEEE Trans. Veh. Technol. 54 (4) (2005).
|
| [41] |
H. Xu, V. Kukshya, T.S. Rappaport,Spatial and temporal characteristics of 60-GHz indoor channels, IEEE J. Sel. Areas Commun. 20 (3) (2002).
|
| [42] |
Y. Azar, G.N. Wong, K. Wang, R. Mayzus, J.K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, T.S. Rappaport,28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city, in: IEEE ICC, 2013.
|
| [43] |
T. Rappaport, F. Gutierrez, E. Ben-Dor, J. Murdock, Y. Qiao, J. Tamir, Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications, IEEE Trans. Antennas and Propagation 61 ( 4) (2013).
|
| [44] |
P.F.M. Smulders,Statistical characterization of 60-GHz indoor radio channels, IEEE Trans. Antennas and Propagation 57 ( 10) (2009).
|
| [45] |
Y. Zhu, Z. Zhang, Z. Marzi, C. Nelson, U. Madhow, B.Y. Zhao, H. Zheng, Demystifying 60 GHz outdoor picocells, in: Proc. of ACM MobiCom, 2014.
|
| [46] |
S. Sur, V. Venkateswaran, X. Zhang, P. Ramanathan,60 GHz indoor networking through flexible beams: A link-level profiling, in: Proc. of ACM SIGMETRICS, 2015.
|
| [47] |
S. Sur, X. Zhang, P. Ramanathan, R. Chandra, BeamSpy: Enabling robust 60 GHz links under blockage, in: USENIX NSDI, 2016.
|
| [48] |
H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, P. Indyk, Fast millimeter wave beam alignment, in: Proc. of ACM SIGCOMM, 2018.
|
| [49] |
B. Li, Z. Zhou, W. Zou, X. Sun, G. Du,On the efficient beam-forming training for 60 GHz Wireless Personal Area networks, IEEE Trans. Wireless Commun. 12 (2) (2013).
|
| [50] |
T. Nitsche, G. Bielsa, I. Tejado, A. Loch, J. Widmer,Boon and bane of 60 GHz networks: Practical insights into beamforming, interference, and frame level operation, in: ACM CoNEXT, 2015.
|
| [51] |
S. Sur, I. Pefkianakis, X. Zhang, K.-H. Kim, WiFi-assisted 60 GHz wireless networks, in: ACM MobiCom, 2017.
|
| [52] |
T. Wei, X. Zhang,Pose information assisted 60 GHz networks: Towards seamless coverage and mobility support, in: Proc. of ACM MobiCom, 2017.
|
| [53] |
S. Sur, I. Pefkianakis, X. Zhang, K.-H. Kim, Towards scalable and ubiquitous millimeter-wave wireless networks, in: Proc. of ACM MobiCom, 2018.
|
| [54] |
S. Jog, J. Wang, J. Guan, T.M.H. Hassanieh, R.R. Choudhury, Many-to-many beam alignment in millimeter wave networks, in:Proc. of USENIX NSDI, 2019.
|
| [55] |
M. Park, P. Gopalakrishnan, R. Roberts, Interference mitigation techniques in 60 GHz wireless networks, IEEE Commun. Mag. 47 (12) (2009).
|
| [56] |
C.-S. Sum, X. An, Z. Lan, T. Baykas, J. Wang, R. Funada, M.A. Rahman, H. Harada, S. Kato, A synchronization-frame-aided interference mitigation mechanism for millimeter-wave WPAN, in: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2009.
|
| [57] |
S.K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, J. Widmer,MuSher: An agile multipath-TCP scheduler for dual-band 802.11ad/ac wireless LANs, in: Proc. of ACM MobiCom, 2019.
|
| [58] |
Facebook Inc., Terragraph: Solving the urban bandwidth challenge, 2018, https://terragraph.com/.
|
| [59] |
T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wanga, G.N. Wong, et al., Millimeter wave mobile communications for 5G cellular: It will work!, in: IEEE Access, Vol. 1, 2013.
|
| [60] |
M. Elkashlan, T.Q. Duong, H.-H. Chen,Millimeter Wave Communications for 5G: fundmentals: Part 1, in: IEEE Communications Magazine, Vol. 52, 2014.
|
| [61] |
M. Elkashlan, T.Q. Duong, H.-H. Chen,Millimeter wave communications for 5G: fundmentals: Part 2, in: IEEE Communications Magazine, Vol. 53, 2015.
|
| [62] |
Y.L. Yong Niu, D. Jin, L. Su, A.V. Vasilakos,A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges, Wirel. Netw. 21 (2015).
|
| [63] |
X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, G. Chen, Millimeter wave communication: A comprehensive survey, in: IEEE Communications Surveys & Tutorials, Vol. 20, 2018.
|
| [64] |
T.S. Rappaport, Y. Xing, G.R. MacCartney, A.F. Molisch, E. Mellios, J. Zhang, Overview of millimeter wave communications for fifth-generation (5G) wireless networks - with a focus on propagation models, in: IEEE Transactions on Antennas and Propagation, Vol. 65, 2017.
|
| [65] |
X. Zhou, J. Yang, M. Chrobak, Y. Zhang, Performance-aware thermal management via task scheduling, ACM Trans. Archit. Code Optim. 7 (1) (2010).
|
| [66] |
M. Chrobak, C. Dürr, M. Hurand, J. Robert, Algorithms for Temperature-Aware Task Scheduling in Microprocessor Systems, Vol. 5034, Springer Publications, 2008.
|
| [67] |
J. Liu, L. Zhong,Micro power management of active 802.11 interfaces, in: ACM MobiSys, 2008.
|
| [68] |
G. Anastasi, M. Conti, E. Gregori, A. Passarella, 802.11 Power-saving mode for mobile computing in wi-fi hotspots:Limitations, enhancements and open issues, Springer Link Wirel. Netw. 14 (6) (2008).
|
| [69] |
E. Rozner, V. Navda, R. Ramjee, S. Rayanchu, NAPman: Network-assisted power management for WiFi Devices, in: Proc. of ACM MobiSys, 2010.
|
| [70] |
K. Flautner, S. Reinhardt, T. Mudge, Automatic performance setting for dynamic voltage scaling, in: Proc. of ACM MobiCom, 2001.
|
| [71] |
X. Zhang, K.G. Shin, E-MiLi: Energy-minimizing idle listening in wireless networks, in: Proc. of ACM MobiCom, 2011.
|
| [72] |
B. Gao, Z. Xiao, L. Su, D. Jin, L. Zeng,Energy-efficient idle listening scheme using 1 bit sampling in 60 GHz Wireless Local Area network, IET Commun. 9 (2015) 219-226.
|
| [73] |
Qualcomm Incorporated, QCA9500, 2018, https://www.qualcomm.com/products/qca9500.
|
| [74] |
FLIR Systems, Inc., FLIR ONE pro, 2021, https://www.flir.com/products/flir-one-pro/.
|
| [75] |
S. Aggarwal, M. Ghoshal, P. Banerjee, D. Koutsonikolas, J. Widmer,802.11Ad in smartphones: Energy efficiency, spatial reuse, and impact on applications, in: IEEE INFOCOM, 2021.
|
| [76] |
S. Collonge, G. Zaharia, G.E. Zein,Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel, IEEE Trans. Wireless Commun. 3 (6) (2004).
|
| [77] |
D. Halperin, W. Hu, A. Sheth, D. Wetherall,Predictable 802.11 packet delivery fromwireless channel measurements, in: ACM SIGCOMM 2010.
|
| [78] |
C. Kim, T. Kim, J.-Y. Seol, Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems, in: IEEE Globecom Workshops, Atlanta, GA, 2013.
|
| [79] |
L. Xu, Context aware traffic identification kit (TriCK) for network selection in future HetNets/5G networks,in:2017 International Symposium on Networks, Computers and Communications, ISNCC, 2017.
|
| [80] |
ASUSTeK Computer Inc., ASUS ROG: Command and control: how to set up your own gaming server, 2016, https://bit.ly/3vJQoxU.
|
| [81] |
Google, Google cardboard, 2020, https://arvr.google.com/cardboard/.
|