Data cube-based storage optimization for resource-constrained edge computing
Liyuan Gao , Wenjing Li , Hongyue Ma , Yumin Liu , Chunyang Li
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (4) : 100212
Data cube-based storage optimization for resource-constrained edge computing
In the evolving landscape of the digital era, edge computing emerges as an essential paradigm, especially critical for low-latency, real-time applications and Internet of Things (IoT) environments. Despite its advantages, edge computing faces severe limitations in storage capabilities and is fraught with reliability issues due to its resource-constrained nature and exposure to challenging conditions. To address these challenges, this work presents a tailored storage mechanism for edge computing, focusing on space efficiency and data reliability. Our method comprises three key steps: relation factorization, column clustering, and erasure encoding with compression. We successfully reduce the required storage space by deconstructing complex database tables and optimizing data organization within these sub-tables. We further add a layer of reliability through erasure encoding. Comprehensive experiments on TPC-H datasets substantiate our approach, demonstrating storage savings of up to 38.35% and time efficiency improvements by 3.96x in certain cases. Furthermore, our clustering technique shows a potential for additional storage reduction up to 40.41%.
Edge computing / Data storage / Reliability / Compression efficiency
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
/
| 〈 |
|
〉 |