Privacy-preserving human activity sensing: A survey

Yanni Yang , Pengfei Hu , Jiaxing Shen , Haiming Cheng , Zhenlin An , Xiulong Liu

High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (1) : 100204

PDF (629KB)
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (1) : 100204 DOI: 10.1016/j.hcc.2024.100204
Review Articles
research-article

Privacy-preserving human activity sensing: A survey

Author information +
History +
PDF (629KB)

Abstract

With the prevalence of various sensors and smart devices in people’s daily lives, numerous types of information are being sensed. While using such information provides critical and convenient services, we are gradually exposing every piece of our behavior and activities. Researchers are aware of the privacy risks and have been working on preserving privacy while sensing human activities. This survey reviews existing studies on privacy-preserving human activity sensing. We first introduce the sensors and captured private information related to human activities. We then propose a taxonomy to structure the methods for preserving private information from two aspects: individual and collaborative activity sensing. For each of the two aspects, the methods are classified into three levels: signal, algorithm, and system. Finally, we discuss the open challenges and provide future directions.

Keywords

Human activity sensing / Privacy-preserving sensing / Activity sensing algorithms / Human sensors / Privacy protection

Cite this article

Download citation ▾
Yanni Yang, Pengfei Hu, Jiaxing Shen, Haiming Cheng, Zhenlin An, Xiulong Liu. Privacy-preserving human activity sensing: A survey. High-Confidence Computing, 2024, 4(1): 100204 DOI:10.1016/j.hcc.2024.100204

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2021YFB3100400), National Natural Science Foundation of China (62302274, 62202276 and 62232010), Shandong Science Fund for Excellent Young Scholars, China (2022HWYQ-038), Natural Science Foundation of Shan-dong, China (ZR2023QF113), and financial support of Lingnan University (LU), China (DB23A4) and Lam Woo Research Fund at LU, China (871236).

References

[1]

A. Acquisti, L. Brandimarte, G. Loewenstein, Privacy and human behavior in the age of information, Science 347 (6221) (2015) 509-514.

[2]

A. Boulemtafes, A. Derhab, Y. Challal, A review of privacy-preserving techniques for deep learning, Neurocomputing 384 (2020) 21-45.

[3]

C. Briggs, Z. Fan, P. Andras, A review of privacy preserving federated learning for private IoT analytics, 2020, arXiv preprint arXiv:2004.11794.

[4]

I.Y. Jung, A review of privacy-preserving human and human activity recognition, 2020.

[5]

M. Xu, A. Sharghi, X. Chen, D.J. Crandall, Fully-coupled two-stream spatiotemporal networks for extremely low resolution action recognition, in: IEEE Winter Conference on Applications of Computer Vision, 2018, pp. 1607-1615.

[6]

J. Chen, J. Wu, J. Konrad, P. Ishwar, Semi-coupled two-stream fusion con-vnets for action recognition at extremely low resolutions, in: IEEE Winter Conference on Applications of Computer Vision, 2017, pp. 139-147.

[7]

M.S. Ryoo, B. Rothrock, C. Fleming, H.J. Yang, Privacy-preserving human activity recognition from extreme low resolution, 2016, arXiv preprint arXiv:1604.03196.

[8]

E. Cippitelli, S. Gasparrini, E. Gambi, S. Spinsante, A human activity recognition system using skeleton data from rgbd sensors, Comput. Intell. Neurosci. (2016).

[9]

E. Chou, M. Tan, C. Zou, M. Guo, A. Haque, A. Milstein, L. Fei-Fei, Privacy-preserving action recognition for smart hospitals using low-resolution depth images, 2018, arXiv preprint arXiv:1811.09950.

[10]

V. Srivastav, A. Gangi, N. Padoy, Human pose estimation on privacy-preserving low-resolution depth images, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2019, pp. 583-591.

[11]

T. Kawashima, Y. Kawanishi, I. Ide, H. Murase, D. Deguchi, T. Aizawa, M. Kawade, Action recognition from extremely low-resolution thermal image sequence, in: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2017, pp. 1-6.

[12]

H. Zhang, C. Song, A. Wang, C. Xu, D. Li, W. Xu, Pdvocal: Towards privacy-preserving parkinson’s disease detection using non-speech body sounds,in:The 25th Annual International Conference on Mobile Computing and Networking, 2019, pp. 1-16.

[13]

X. Sun, Z. Lu, W. Hu, G. Cao, SymDetector: detecting sound-related respiratory symptoms using smartphones,in:Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 97-108.

[14]

K. Yatani, K.N. Truong, Bodyscope: a wearable acoustic sensor for activity recognition,in:Proceedings of the ACM Conference on Ubiquitous Computing, 2012, pp. 341-350.

[15]

Y. Wang, J. Shen, Y. Zheng, Push the limit of acoustic gesture recognition, IEEE Trans. Mob. Comput. 21 (5) (2020) 1798-1811.

[16]

D. Li, J. Liu, S.I. Lee, J. Xiong, Lasense: Pushing the limits of fine-grained activity sensing using acoustic signals, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 6 (1) (2022) 1-27.

[17]

Y. Jin, Y. Gao, Y. Zhu, W. Wang, J. Li, S. Choi, Z. Li, J. Chauhan, A.K. Dey, Z. Jin, SonicASL: An acoustic-based sign language gesture recognizer using earphones, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 5 (2) (2021) 1-30.

[18]

J. Liu, D. Li, L. Wang, J. Xiong, BlinkListener: " listen" to your eye blink using your smartphone, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 5 (2) (2021) 1-27.

[19]

D. Li, J. Liu, S.I. Lee, J. Xiong, Lasense: Pushing the limits of fine-grained activity sensing using acoustic signals, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 6 (1) (2022) 1-27.

[20]

Z. Li, J. Cao, X. Liu, J. Zhang, H. Hu, D. Yao, A self-adaptive bluetooth indoor localization system using LSTM-based distance estimator, in: 29th IEEE International Conference on Computer Communications and Networks, 2020, pp. 1-9.

[21]

B. Mrazovac, M.Z. Bjelica, D. Kukolj, B.M. Todorovic, D. Samardzija, A human detection method for residential smart energy systems based on ZigBee RSSI changes, IEEE Trans. Consum. Electron. 58 (3) (2012) 819-824.

[22]

Y. Li, T. Zhu, Gait-based wi-fi signatures for privacy-preserving, in:Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 571-582.

[23]

Y. Yang, J. Cao, X. Liu, X. Liu, Wi-Count: Passing people counting with COTS WiFi devices, in: 27th IEEE International Conference on Computer Communication and Networks, 2018, pp. 1-9.

[24]

K. Zhang, X. Liu, X. Xie, J. Zhang, B. Niu, K. Li, A cross-domain federated learning framework for wireless human sensing, IEEE Netw. 36 (5) (2022) 122-128.

[25]

Y. Yang, J. Cao, Y. Wang, Robust RFID-based respiration monitoring in dynamic environments, IEEE Trans. Mob. Comput. (2021).

[26]

Y. Yang, J. Cao, X. Liu, ER-rhythm: Coupling exercise and respiration rhythm using lightweight COTS rfid, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 3 (4) (2019) 1-24.

[27]

Y. Yang, J. Cao, X. Liu, X. Liu, Multi-breath: Separate respiration monitoring for multiple persons with UWB radar, in: IEEE 43rd Annual Computer Software and Applications Conference, vol. 1, 2019, pp. 840-849.

[28]

L. Fan, L. Xie, X. Lu, Y. Li, C. Wang, S. Lu, Mmmic: Multi-modal speech recognition based on mmwave radar, in: The 42nd International IEEE Conference on Computer Communications, 2023.

[29]

M.J. Mathie, B.G. Celler, N.H. Lovell, A.C. Coster, Classification of basic daily movements using a triaxial accelerometer, Med. Biol. Eng. Comput. 42 (2004) 679-687.

[30]

M. Zhang, A.A. Sawchuk, A preliminary study of sensing appliance usage for human activity recognition using mobile magnetometer, in:Proceedings of the ACM Conference on Ubiquitous Computing, 2012, pp. 745-748.

[31]

J. Liu, L. Zhong, J. Wickramasuriya, V. Vasudevan, uWave: Accelerometer-based personalized gesture recognition and its applications, Pervasive Mob. Comput. 5 (6) (2009) 657-675.

[32]

C. Crema, A. Depari, A. Flammini, E. Sisinni, T. Haslwanter, S. Salzmann, IMU-based solution for automatic detection and classification of exercises in the fitness scenario, in: IEEE Sensors Applications Symposium, 2017, pp. 1-6.

[33]

I.V. Gabriel, P. Anghelescu, Vibration monitoring system for human activity detection, in: 7th IEEE International Conference on Electronics, Computers and Artificial Intelligence, 2015, pp. AE-41.

[34]

R. Madarshahian, J.M. Caicedo, D.A. Zambrana, Benchmark problem for human activity identification using floor vibrations, Expert Syst. Appl. 62 (2016) 263-272.

[35]

G. Xu, Q. Wan, W. Deng, T. Guo, J. Cheng, Smart-sleeve: A wearable textile pressure sensor array for human activity recognition, Sensors 22 (5) (2022) 1702.

[36]

K. Li, W. Yang, M. Yi, Z. Shen, Graphene-based pressure sensor and strain sensor for detecting human activities, Smart Mater. Struct. 30 (8) (2021) 085027.

[37]

J. Guo, B. Zhou, R. Zong, L. Pan, X. Li, X. Yu, C. Yang, L. Kong, Q. Dai, Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare, ACS Appl. Mater. Interfaces 11 (37) (2019) 33589-33598.

[38]

T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare, Adv. Mater. 28 (22) (2016) 4338-4372.

[39]

E.D. übeyli, D. Cvetkovic, I. Cosic, Analysis of human PPG, ECG and EEG signals by eigenvector methods, Digit. Signal Process. 20 (3) (2010) 956-963.

[40]

K. Vandecasteele, T. De Cooman, Y. Gu, E. Cleeren, K. Claes, W. Van Paess- chen, S. Van Huffel, B. Hunyadi, Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment, Sensors 17 (10) (2017) 2338.

[41]

T. Hwang, M. Kim, S. Hong, K.S. Park, Driver drowsiness detection using the in-ear EEG, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, IEEE, 2016, pp. 4646-4649.

[42]

W. Chen, M. Guan, Y. Huang, L. Wang, R. Ruby, W. Hu, K. Wu, Vitype: A cost efficient on-body typing system through vibration, in: 15th Annual IEEE International Conference on Sensing, Communication, and Networking, 2018, pp. 1-9.

[43]

X. Xu, J. Yu, Y. Chen, Q. Hua, Y. Zhu, Y.-C. Chen, M. Li, TouchPass: to-wards behavior-irrelevant on-touch user authentication on smartphones leveraging vibrations,in:Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1-13.

[44]

G.-M. Jeong, P.H. Truong, S.-I. Choi, Classification of three types of walking activities regarding stairs using plantar pressure sensors, IEEE Sens. J. 17 (9) (2017) 2638-2639.

[45]

G. Liang, J. Cao, X. Liu, Smart cushion: A practical system for fine-grained sitting posture recognition, in: IEEE International Conference on Pervasive Computing and Communications Workshops, 2017, pp. 419-424.

[46]

P. Hu, H. Zhuang, P.S. Santhalingam, R. Spolaor, P. Pathak, G. Zhang, X. Cheng, Accear: Accelerometer acoustic eavesdropping with unconstrained vocabulary, in: IEEE Symposium on Security and Privacy, 2022, pp. 1757-1773.

[47]

Personal data, 2020, URL https://en.wikipedia.org/wiki/Personal_data.

[48]

Y. Iwasawa, K. Nakayama, I. Yairi, Y. Matsuo, Privacy issues regarding the application of DNNs to activity-recognition using wearables and its countermeasures by use of adversarial training, in: IJCAI, 2017, pp. 1930-1936.

[49]

J.M. Irvine, S.A. Israel, W.T. Scruggs, W.J. Worek, Eigenpulse: Robust human identification from cardiovascular function, Pattern Recognit. 41 (11) (2008) 3427-3435.

[50]

Y. Chen, J. Yu, L. Kong, H. Kong, Y. Zhu, Y.-C. Chen, RF-mic: Live voice eavesdropping via capturing subtle facial speech dynamics leveraging RFID, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 7 (2) (2023) 1-25.

[51]

C. Wang, L. Xie, Y. Lin, W. Wang, Y. Chen, Y. Bu, K. Zhang, S. Lu, Thru-the-wall eavesdropping on loudspeakers via RFID by capturing sub-mm level vibration, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 5 (4) (2021) 1-25.

[52]

P. Hu, W. Li, R. Spolaor, X. Cheng, Mmecho: A mmwave-based acoustic eavesdropping method, in: IEEE Symposium on Security and Privacy, 2022, pp. 836-852.

[53]

J. Zhang, X. Liu, T. Gu, X. Tong, S. Chen, K. Li, Siloc: A speed inconsistency-immune approach to mobile RFID robot localization, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, IEEE, 2021, pp. 1-10.

[54]

F. Hong, Y. Zhang, Z. Zhang, M. Wei, Y. Feng, Z. Guo, Wap: Indoor localization and tracking using WiFi-assisted particle filter, in: 39th Annual IEEE Conference on Local Computer Networks, 2014, pp. 210-217.

[55]

Y. Zhao, Z. Zhang, T. Feng, W.-C. Wong, H.K. Garg, GraphIPS: Calibration- free and map-free indoor positioning using smartphone crowdsourced data, IEEE Internet Things J. 8 (1) (2020) 393-406.

[56]

J. Shen, O. Lederman, J. Cao, F. Berg, S. Tang, A. Pentland, Gina: Group gender identification using privacy-sensitive audio data, in: IEEE International Conference on Data Mining 2018, pp. 457-466.

[57]

T. Van Hamme, G. Garofalo, E. Argones Rúa, D. Preuveneers, W. Joosen, A systematic comparison of age and gender prediction on imu sensor-based gait traces, Sensors 19 (13) (2019) 2945.

[58]

S. Ding, X. Gao, Y. Dong, Y. Tong, X. Fu, Estimating multiple socioeconomic attributes via home location—a case study in China, J. Soc. Comput. 2 (1) (2021) 71-88.

[59]

R. Mishra, H. Gupta, Transforming large-size to lightweight deep neural networks for IoT applications, ACM Comput. Surv. 55 (11) (2023) 1-35.

[60]

M. Xu, A. Sharghi, X. Chen, D.J. Crandall, Fully-coupled two-stream spatiotemporal networks for extremely low resolution action recognition, in: IEEE Winter Conference on Applications of Computer Vision, 2018, pp. 1607-1615.

[61]

M.S. Ryoo, B. Rothrock, C. Fleming, H.J. Yang, Privacy-preserving human activity recognition from extreme low resolution, 2016, arXiv preprint arXiv:1604.03196.

[62]

J. Dai, J. Wu, B. Saghafi, J. Konrad, P. Ishwar, Towards privacy-preserving activity recognition using extremely low temporal and spatial resolution cameras, in:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015, pp. 68-76.

[63]

M. Dimiccoli, J. Marín, E. Thomaz, Mitigating bystander privacy concerns in egocentric activity recognition with deep learning and intentional image degradation, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 1 (4) (2018) 1-18.

[64]

Z. Ren, Y. Jae Lee, M.S. Ryoo, Learning to anonymize faces for privacy preserving action detection, in:Proceedings of the European Conference on Computer Vision, 2018, pp. 620-636.

[65]

S. Kumar, L.T. Nguyen, M. Zeng, K. Liu, J. Zhang, Sound shredding: Privacy preserved audio sensing,in:Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, 2015, pp. 135-140.

[66]

D. Liaqat, E. Nemati, M. Rahman, J. Kuang, A method for preserving privacy during audio recordings by filtering speech, in: IEEE Life Sciences Conference, 2017, pp. 79-82.

[67]

X. Ma, Y. Song, Z. Wang, S. Gao, B. Xiao, A. Hu, You can hear but you cannot record: Privacy protection by jamming audio recording, in: IEEE International Conference on Communications, 2021, pp. 1-6.

[68]

J. Shenoy, Z. Liu, B. Tao, Z. Kabelac, D. Vasisht, RF-protect: privacy against device-free human tracking,in:Proceedings of the ACM SIGCOMM Conference, 2022, pp. 588-600.

[69]

H. Choi, S. Chakraborty, M.B. Srivastava, Srivastava, Design and evaluation of SensorSafe: A framework for achieving behavioral privacy in sharing personal sensory information, in: IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, 2012, pp. 1004-1011.

[70]

N. Saleheen, S. Chakraborty, N. Ali, M.M. Rahman, S.M. Hossain, R. Bari, E. Buder, M. Srivastava, S. Kumar, Msieve: differential behavioral privacy in time series of mobile sensor data,in:Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 706-717.

[71]

C. Lin, P. Wang, H. Song, Y. Zhou, Q. Liu, G. Wu, A differential privacy protection scheme for sensitive big data in body sensor networks, Ann. Telecommun. 71 (2016) 465-475.

[72]

W. Xu, W. Song, J. Liu, Y. Liu, X. Cui, Y. Zheng, J. Han, X. Wang, K. Ren, Mask does not matter: Anti-spoofing face authentication using mmwave without on-site registration,in:Proceedings of the 28th Annual International Conference on Mobile Computing and Networking, 2022, pp. 310-323.

[73]

W. Xu, J. Liu, S. Zhang, Y. Zheng, F. Lin, J. Han, F. Xiao, K. Ren, RFace: anti-spoofing facial authentication using cots rfid, in: IEEE Conference on Computer Communications, 2021, pp. 1-10.

[74]

K.A. Kumari, M. Indusha, D. Dharani, Enhanced human activity recognition based on activity tracker data using secure homomorphic encryption techniques, in:2nd International Conference for Emerging Technology, 2021, pp. 1-7.

[75]

H. Chabanne, A. De Wargny, J. Milgram, C. Morel, E. Prouff, Privacy-preserving classification on deep neural network, Cryptol. ePrint Arch. (2017).

[76]

Z. Ren, Y.J. Lee, M.S. Ryoo, Learning to anonymize faces for privacy preserving action detection, in:Proceedings of the European Conference on Computer Vision, 2018, pp. 620-636.

[77]

A. Boutet, C. Frindel, S. Gambs, T. Jourdan, R.C. Ngueveu, DYSAN: Dynamically sanitizing motion sensor data against sensitive inferences through adversarial networks,in:Proceedings of the ACM Asia Conference on Computer and Communications Security, 2021, pp. 672-686.

[78]

D. Zhang, L. Yao, K. Chen, Z. Yang, X. Gao, Y. Liu, Preventing sensitive information leakage from mobile sensor signals via integrative transformation, IEEE Trans. Mob. Comput. 21 (12) (2021) 4517-4528.

[79]

S.I. Ahamed, V. Ravi, Privacy-preserving wavelet neural network with fully homomorphic encryption, CoRR, 2022.

[80]

B. Pulido-Gaytan, A. Tchernykh, J.M. Cortés-Mendoza, M. Babenko, G. Radchenko, A. Avetisyan, A.Y. Drozdov, Privacy-preserving neural net-works with homomorphic encryption: Challenges and opportunities, Peer-to-Peer Netw. Appl. 14 (3) (2021) 1666-1691.

[81]

S. Chakraborty, C. Shen, K.R. Raghavan, Y. Shoukry, M. Millar, M. Srivastava, ipShield: a framework for enforcing context-aware privacy,in:11th USENIX Symposium on Networked Systems Design and Implementation, 2014, pp. 143-156.

[82]

H. Choi, S. Chakraborty, Z.M. Charbiwala, M.B. Srivastava, Sensorsafe: a framework for privacy-preserving management of personal sensory information,in:Workshop on Secure Data Management, 2011, pp. 85-100.

[83]

W. Han, C. Cao, H. Chen, D. Li, Z. Fang, W. Xu, X.S. Wang, senDroid: Auditing sensor access in android system-wide, IEEE Trans. Dependable Secure Comput. 17 (2) (2017) 407-421.

[84]

R.P. Singh, B. Cassell, S. Keshav, T. Brecht, TussleOS: Managing privacy versus functionality trade-offs on IoT devices, ACM SIGCOMM Comput. Commun. Rev. 46 (3) (2018) 1-8.

[85]

P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, M.B. Srivastava, Sensoract: a privacy and security aware federated middleware for building management,in:Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, 2012, pp. 80-87.

[86]

X. Bai, J. Yin, Y.-P. Wang, Sensor guardian: prevent privacy inference on android sensors, EURASIP J. Inf. Secur. (2017) 1-17.

[87]

Z. Alkindi, M. Sarrab, N. Alzidi, CUPA: a configurable user privacy approach for android mobile application, in: 7th IEEE International Conference on Cyber Security and Cloud Computing /2020 6th IEEE International Conference on Edge Computing and Scalable Cloud, 2020, pp. 216-221.

[88]

I. Gasparis, Z. Qian, C. Song, S.V. Krishnamurthy, R. Gupta, P. Yu, Figment: Fine-grained permission management for mobile apps, in: IEEE Conference on Computer Communications, 2019, pp. 1405-1413.

[89]

E. Yigitoglu, M.E. Gursoy, L. Liu, M. Loper, B. Bamba, K. Lee, PrivacyZone: a novel approach to protecting location privacy of mobile users, in: IEEE International Conference on Big Data, 2018, pp. 1238-1247.

[90]

N. Panwar, S. Sharma, G. Wang, S. Mehrotra, N. Venkatasubramanian, M.H. Diallo, A.A. Sani, IoT notary: Attestable sensor data capture in IoT environments, ACM Trans. Internet Things 3 (1) (2021) 1-30.

[91]

J. Huang, Y. Xiong, W. Huang, C. Xu, F. Miao, SieveDroid: Intercepting undesirable private-data transmissions in android applications, IEEE Syst. J. 14 (1) (2019) 375-386.

[92]

H. Fu, Z. Zheng, S. Zhu, P. Mohapatra, Inspired: Intention-based privacy-preserving permission model, 2017, arXiv preprint arXiv:1709. 06654.

[93]

K. Olejnik, I. Dacosta, J.S. Machado, K. Huguenin, M.E. Khan, J.-P. Hubaux, Smarper: Context-aware and automatic runtime-permissions for mobile devices, in: IEEE Symposium on Security and Privacy, 2017, pp. 1058-1076.

[94]

J.W. Bos, K. Lauter, M. Naehrig, Private predictive analysis on encrypted medical data, J. Biomed. Inf. 50 (2014) 234-243.

[95]

P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, M. Naehrig, Crypto-nets: Neural networks over encrypted data, 2014, arXiv preprint arXiv:1412.6181.

[96]

L. Lyu, X. He, Y.W. Law, M. Palaniswami, Privacy-preserving collaborative deep learning with application to human activity recognition, in:Proceedings of the ACM on Conference on Information and Knowledge Management, 2017, pp. 1219-1228.

[97]

Q. Li, G. Cao, Privacy-preserving participatory sensing, IEEE Commun. Mag. 53 (8) (2015) 68-74.

[98]

D. Christin, Privacy in mobile participatory sensing: Current trends and future challenges, J. Syst. Softw. 116 (2016) 57-68.

[99]

K. Owusu-Agyemeng, Z. Qin, H. Xiong, Y. Liu, T. Zhuang, Z. Qin, MSDP: multi-scheme privacy-preserving deep learning via differential privacy, Pers. Ubiquitous Comput. (2021) 1-13.

[100]

Y. Tian, X. Li, A.K. Sangaiah, E. Ngai, Z. Song, L. Zhang, W. Wang, Privacy-preserving scheme in social participatory sensing based on secure multi-party cooperation, Comput. Commun. 119 (2018) 167-178.

[101]

A.I.K. Kalupahana, A.N. Balaji, X. Xiao, L.-S. Peh, SeRaNDiP: Leveraging inherent sensor random noise for differential privacy preservation in wearable community sensing applications, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 7 (2) (2023) 1-38.

[102]

B. Liu, Y. Jiang, F. Sha, R. Govindan, Cloud-enabled privacy-preserving collaborative learning for mobile sensing, in:Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, 2012, pp. 57-70.

[103]

Y. Zhao, H. Haddadi, S. Skillman, S. Enshaeifar, P. Barnaghi, Privacy-preserving activity and health monitoring on databox, in:Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking, 2020, pp. 49-54.

[104]

J. Feng, C. Rong, F. Sun, D. Guo, Y. Li, Pmf: A privacy-preserving human mobility prediction framework via federated learning, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 4 (1) (2020) 1-21.

[105]

X. Zhang, Q. Wang, Z. Ye, H. Ying, D. Yu, Federated representation learning with data heterogeneity for human mobility prediction, IEEE Trans. Intell. Transp. Syst. (2023).

[106]

X. Ouyang, Z. Xie, J. Zhou, G. Xing, J. Huang, ClusterFL: A clustering-based federated learning system for human activity recognition, ACM Trans. Sensor Netw. 19 (1) (2022) 1-32.

[107]

X. Ouyang, Z. Xie, J. Zhou, J. Huang, G. Xing, Clusterfl: a similarity-aware federated learning system for human activity recognition,in:Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, 2021, pp. 54-66.

[108]

A. Clarke, R. Steele, Local processing to achieve anonymity in a participatory health e-research system, Proc. Soc. Behav. Sci. 147 (2014) 284-292.

[109]

S. Chakraborty, Z. Charbiwala, H. Choi, K.R. Raghavan, M.B. Srivastava, Balancing behavioral privacy and information utility in sensory data flows, Pervasive Mob. Comput. 8 (3) (2012) 331-345.

[110]

M. Gheisari, H.E. Najafabadi, J.A. Alzubi, J. Gao, G. Wang, A.A. Abbasi, A. Castiglione, OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city, Future Gener. Comput. Syst. 123 (2021) 1-13.

[111]

L. Luceri, F. Cardoso, M. Papandrea, S. Giordano, J. Buwaya, S. Kundig, C.M. Angelopoulos, J. Rolim, Z. Zhao, J.L. Carrera, et al., VIVO: A secure, privacy-preserving, and real-time crowd-sensing framework for the internet of things, Pervasive Mob. Comput. 49 (2018) 126-138.

[112]

C. Miao, W. Jiang, L. Su, Y. Li, S. Guo, Z. Qin, H. Xiao, J. Gao, K. Ren, Privacy-preserving truth discovery in crowd sensing systems, ACM Trans. Sensor Netw. 15 (1) (2019) 1-32.

[113]

R. Talat, M.S. Obaidat, M. Muzammal, A.H. Sodhro, Z. Luo, S. Pirbhulal, A decentralised approach to privacy preserving trajectory mining, Future Gener. Comput. Syst. 102 (2020) 382-392.

[114]

L. Wang, C. Zhao, K. Zhao, B. Zhang, S. Jing, Z. Chen, K. Sun, Privacy-preserving collaborative computation for human activity recognition, Secur. Commun. Netw. 2022 (2022).

[115]

S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, J. He, Blochie: a blockchain-based platform for healthcare information exchange, in: IEEE International Conference on Smart Computing, 2018, pp. 49-56.

[116]

F. Zhang, Z. Chang, K. Niu, J. Xiong, B. Jin, Q. Lv, D. Zhang, Exploring lora for long-range through-wall sensing, Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 4 (2) (2020) 1-27.

[117]

M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, D. Katabi, Through-wall human pose estimation using radio signals, in:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7356-7365.

[118]

F. Adib, D. Katabi, See through walls with WiFi!, in:Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013, pp. 75-86.

[119]

R. Ayyalasomayajula, A. Arun, W. Sun, D. Bharadia, Users are closer than they appear: Protecting user location from WiFi APs,in:Proceedings of the 24th International Workshop on Mobile Computing Systems and Applications, 2023, pp. 124-130.

[120]

S. Kaviani, K.J. Han, I. Sohn, Adversarial attacks and defenses on AI in medical imaging informatics: A survey, Expert Syst. Appl. (2022) 116815.

[121]

Z. Yang, Y. Zhao, W. Yan, Adversarial vulnerability in doppler-based human activity recognition, in: IEEE International Joint Conference on Neural Networks, 2020, pp. 1-7.

[122]

J. Yang, H. Zou, L. Xie, SecureSense: Defending adversarial attack for secure device-free human activity recognition, IEEE Trans. Mob. Comput. (2022).

AI Summary AI Mindmap
PDF (629KB)

420

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/