Outlier item detection in bundle recommendation via the attention mechanism

Yuan Liang

High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (3) : 100200

PDF (792KB)
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (3) : 100200 DOI: 10.1016/j.hcc.2024.100200
Research Articles
research-article

Outlier item detection in bundle recommendation via the attention mechanism

Author information +
History +
PDF (792KB)

Abstract

Bundle recommendation offers users more holistic insights by recommending multiple compatible items at once. However, the intricate correlations between items, varied user preferences, and the pronounced data sparsity in combinations present significant challenges for bundle recommendation algorithms. Furthermore, current bundle recommendation methods fail to identify mismatched items within a given set, a process termed as “outlier item detection”. These outlier items are those with the weakest correlations within a bundle. Identifying them can aid users in refining their item combinations. While the correlation among items can predict the detection of such outliers, the adaptability of combinations might not be adequately responsive to shifts in individual items during the learning phase. This limitation can hinder the algorithm’s performance. To tackle these challenges, we introduce an encoder-decoder architecture tailored for outlier item detection. The encoder learns potential item correlations through a self-attention mechanism. Concurrently, the decoder garners efficient inference frameworks by directly assessing item anomalies. We have validated the efficacy and efficiency of our proposed algorithm using real-world datasets.

Keywords

Bundle recommendation / Outlier item detection / Attention mechanism / Decoder encoder

Cite this article

Download citation ▾
Yuan Liang. Outlier item detection in bundle recommendation via the attention mechanism. High-Confidence Computing, 2024, 4(3): 100200 DOI:10.1016/j.hcc.2024.100200

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Guangxi Key Laboratory of Trusted Software, China (KX202037), the Project of Guangxi Science and Technology, China (GuiKeAD 20297054), and the Guangxi Natural Science Foundation Project, China (2020GXNSFBA297108).

References

[1]

X. Han, Z. Wu, P.X. Huang, X. Zhang, M. Zhu, Y. Li, Y. Zhao, L.S. Davis, Automatic spatially-aware fashion concept discovery, in: ICCV, 2017, pp. 1472-1480.

[2]

Y. Gao, Z. Kuang, G. Li, P. Luo, Y. Chen, L. Lin, W. Zhang, Fashion retrieval via graph reasoning networks on a similarity pyramid, IEEE Trans. Pattern Anal. Mach. Intell. 45 (6) (2023) 7019-7034.

[3]

Y. Lin, S.D. Tran, L.S. Davis, Fashion outfit complementary item retrieval, in: CVPR, 2020, pp. 3308-3316.

[4]

W. Hsiao, K. Grauman, Learning the latent "look": Unsupervised discovery of a style-coherent embedding from fashion images, in: ICCV, 2017, pp. 4213-4222.

[5]

Y. Ma, X. Yang, L. Liao, Y. Cao, T. Chua, Who, where, and what to wear?: Extracting fashion knowledge from social media, in: ACM MM, 2019, pp. 257-265.

[6]

U. Mall, K. Matzen, B. Hariharan, N. Snavely, K. Bala, GeoStyle: Discovering fashion trends and events, in: ICCV, 2019, pp. 411-420.

[7]

R. He, J.J. McAuley, Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering, in: WWW, 2016, pp. 507-517.

[8]

X. Han, Z. Wu, Y. Jiang, L.S. Davis, Learning fashion compatibility with bidirectional LSTMs, in: AC MM, 2017, pp. 1078-1086.

[9]

Z. Lu, Y. Hu, Y. Jiang, Y. Chen, B. Zeng, Learning binary code for personalized fashion recommendation, in: CVPR, 2019, pp. 10562-10570.

[10]

H. Abdollahpouri, E.C. Malthouse, J.A. Konstan, B. Mobasher, J. Gilbert, Toward the next generation of news recommender systems, in:Companion of the Web Conference 2021, 2021, pp. 402-406.

[11]

D. Cao, X. He, L. Miao, Y. An, C. Yang, R. Hong, Attentive group recommendation, in: SIGIR, 2018, pp. 645-654.

[12]

J. Chang, C. Gao, X. He, D. Jin, Y. Li, Bundle recommendation and generation with graph neural networks, IEEE Trans. Knowl. Data Eng. 35 (3) (2023) 2326-2340.

[13]

Z. Cheng, X. Wu, Y. Liu, X. Hua, Video2Shop: Exact matching clothes in videos to online shopping images, in: CVPR, 2017, pp. 4169-4177.

[14]

G. Cucurull, P. Taslakian, D. Vázquez, Context-aware visual compatibility prediction, in: CVPR, 2019, pp. 12617-12626.

[15]

Q. Deng, K. Wang, M. Zhao, R. Wu, Y. Ding, Z. Zou, Y. Shang, J. Tao, C. Fan, Build your own bundle - A neural combinatorial optimization method, in: MM, 2021, pp. 2625-2633.

[16]

L. Chen, Y. Liu, X. He, L. Gao, Z. Zheng, Matching user with item set: Collaborative bundle recommendation with deep attention network, in: IJCAI, 2019, pp. 2095-2101.

[17]

Q. Deng, K. Wang, M. Zhao, Z. Zou, R. Wu, J. Tao, C. Fan, L. Chen, Personalized bundle recommendation in online games, in: CIKM, 2020, pp. 2381-2388.

[18]

G. Liu, Y. Fu, G. Chen, H. Xiong, C. Chen, Modeling buying motives for personalized product bundle recommendation, ACM Trans. Knowl. Discov. Data 11 (3) (2017) 28:1-28:26.

[19]

L. Li, M. Li, Z. Zan, Q. Xie, J. Liu, Multi-subspace implicit alignment for cross-modal retrieval on cooking recipes and food images, in: CIKM, 2021, pp. 3211-3215.

[20]

Z. Zhang, B. Du, H. Tong, SuGeR: A subgraph-based graph convolutional network method for bundle recommendation, in: CIKM, 2022, pp. 4712-4716.

[21]

Z. He, H. Zhao, T. Yu, S. Kim, F. Du, J.J. McAuley, Bundle MCR: towards conversational bundle recommendation, in: RecSys, 2022, pp. 288-298.

[22]

Z. Sun, J. Yang, K. Feng, H. Fang, X. Qu, Y.S. Ong, Revisiting bundle recom-mendation: Datasets, tasks, challenges and opportunities for intent-aware product bundling, in: SIGIR, 2022, pp. 2900-2911.

[23]

P. Wei, S. Liu, X. Yang, L. Wang, B. Zheng, Towards personalized bundle creative generation with contrastive non-autoregressive decoding, in: SIGIR, 2022, pp. 2634-2638.

[24]

D. Cao, L. Nie, X. He, X. Wei, S. Zhu, T. Chua, Embedding factorization models for jointly recommending items and user generated lists, in: SIGIR, 2017, pp. 585-594.

[25]

O.S. Shalom, N. Koenigstein, U. Paquet, H.P. Vanchinathan, Beyond collaborative filtering: The list recommendation problem, in: WWW, 2016, pp. 63-72.

[26]

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T. Chua, Neural collaborative filtering, in: WWW, 2017, pp. 173-182.

[27]

Y. He, Y. Zhang, W. Liu, J. Caverlee, Consistency-aware recommendation for user-generated item list continuation, in: WSDM, 2020, pp. 250-258.

[28]

X. Wang, X. Liu, J. Liu, H. Wu, Relational graph neural network with neighbor interactions for bundle recommendation service, in: ICWS, 2021, pp. 167-172.

[29]

Y. He, J. Wang, W. Niu, J. Caverlee, A hierarchical self-attentive model for recommending user-generated item lists, in: CIKM, 2019, pp. 1481-1490.

[30]

W. Cheng, S. Song, C. Chen, S.C. Hidayati, J. Liu, Fashion meets computer vision: A survey, ACM Comput. Surv. 54 (4) (2022) 72:1-72:41.

[31]

X. Li, X. Wang, X. He, L. Chen, J. Xiao, T. Chua, Hierarchical fashion graph network for personalized outfit recommendation, in: SIGIR, 2020, pp. 159-168.

[32]

X. Liu, Y. Sun, Z. Liu, D. Lin, Learning diverse fashion collocation by neural graph filtering, IEEE Trans. Multimed. 23 (2021) 2894-2901.

[33]

M.H. Kiapour, X. Han, S. Lazebnik, A.C. Berg, T.L. Berg, Where to buy it: Matching street clothing photos in online shops, in: ICCV, 2015, pp. 3343-3351.

[34]

Y. Jing, D.C. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue, S. Tavel, Visual search at pinterest, in: KDD, 2015, pp. 1889-1898.

[35]

Y. Zhang, P. Pan, Y. Zheng, K. Zhao, Y. Zhang, X. Ren, R. Jin, Visual search at Alibaba, in: KDD, 2018, pp. 993-1001.

[36]

W. Kang, C. Fang, Z. Wang, J.J. McAuley, Visually-aware fashion recommendation and design with generative image models, in: ICDM, 2017, pp. 207-216.

[37]

J.J. McAuley, C. Targett, Q. Shi, A. van den Hengel, Image-based recommendations on styles and substitutes, in: SIGIR, 2015, pp. 43-52.

[38]

A. Veit, B. Kovacs, S. Bell, J.J. McAuley, K. Bala, S.J. Belongie, Learning visual clothing style with heterogeneous dyadic co-occurrences, in: ICCV, 2015, pp. 4642-4650.

[39]

A. Veit, S.J. Belongie, T. Karaletsos, Conditional similarity networks, in: CVPR, 2017, pp. 1781-1789.

[40]

R. Yin, K. Li, J. Lu, G. Zhang, Enhancing fashion recommendation with visual compatibility relationship, in: WWW, 2019, pp. 3434-3440.

[41]

P. Tangseng, K. Yamaguchi, T. Okatani, Recommending outfits from personal closet, in: ICCV Workshops, 2017, pp. 2275-2279.

[42]

Y. Li, L. Cao, J. Zhu, J. Luo, Mining fashion outfit composition using an end-to-end deep learning approach on set data, IEEE Trans. Multimed. 19 (8) (2017) 1946-1955.

[43]

M.I. Vasileva, B.A. Plummer, K. Dusad, S. Rajpal, R. Kumar, D.A. Forsyth, Learning type-aware embeddings for fashion compatibility, in: ECCV, Vol. 11220, 2018, pp. 405-421.

[44]

X. Yang, Y. Ma, L. Liao, M. Wang, T. Chua, Transnfcm: Translation-based neural fashion compatibility modeling, in: AAAI, 2019, pp. 403-410.

[45]

R. Tan, M.I. Vasileva, K. Saenko, B.A. Plummer, Learning similarity conditions without explicit supervision, in: ICCV, 2019, pp. 10372-10381.

[46]

X. Yang, D. Xie, X. Wang, J. Yuan, W. Ding, P. Yan, Learning tuple compatibility for conditional outfit recommendation, in: ACM MM, 2020, pp. 2636-2644.

[47]

Z. Lu, Y. Hu, Y. Chen, B. Zeng, Personalized outfit recommendation with learnable anchors, in: CVPR, 2021, pp. 12722-12731.

[48]

M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, in: ICML, Vol. 48, 2016, pp. 2014-2023.

[49]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: NIPS, 2017, pp. 5998-6008.

[50]

B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, M. Tomizuka, K. Keutzer, P. Vajda, Visual transformers: Token-based image representation and processing for computer vision, CoRR abs/2006.03677, 2020.

[51]

L.J. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, CoRR abs/1607.06450, 2016.

[52]

J. Lee, Y. Lee, J. Kim, A.R. Kosiorek, S. Choi, Y.W. Teh, Set transformer: A framework for attention-based permutation-invariant neural networks, in: ICML, Vol. 97, 2019, pp. 3744-3753.

[53]

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR, 2016, pp. 770-778.

AI Summary AI Mindmap
PDF (792KB)

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/