A cognitive spectrum allocation scheme for data transmission in smart distribution grids

Zhongguo Zhou , You Li , Ziming Zhu , Qinghe Gao , Sisi Xiao , Tao Yan , Yan Huo

High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (3) : 100198

PDF (1151KB)
High-Confidence Computing ›› 2024, Vol. 4 ›› Issue (3) : 100198 DOI: 10.1016/j.hcc.2024.100198
Research Articles
research-article

A cognitive spectrum allocation scheme for data transmission in smart distribution grids

Author information +
History +
PDF (1151KB)

Abstract

As the communication needs in the smart distribution grid continue to rise, using existing resources to meet this growing demand poses a significant challenge. This paper researches on spectrum allocation strategies utilizing cognitive radio (CR) technology. We consider a model containing strong time-sensitive and regular communication service requirements such as distribution terminal communication services, which can be seen as a user with primary data (PD) and weak time-sensitive services such as power quality monitoring, which can be seen as a user with secondary data (SD). To fit the diversity of services in smart distribution grids (SDGs), we formulate an optimization problem with two indicators, including the sum of SD transmission rates and the maximum latency of them. Then, we analyze the two convex sub-problems and utilize convex optimization methods to obtain the optimal power and frequency bandwidth allocation for the users with SD. The simulation results indicate that, when the available transmission power of SD is low, Maximization of Transmission Sum Rate (MTSR) achieves lower maximum transmit time. Conversely, when the available transmission power is high, the performance of Minimization of the Maximum Latency (MML) is better, compared with MTSR.

Keywords

Cognitive radio technologies / Smart distribution grids / Spectrum allocation / Convex optimization

Cite this article

Download citation ▾
Zhongguo Zhou, You Li, Ziming Zhu, Qinghe Gao, Sisi Xiao, Tao Yan, Yan Huo. A cognitive spectrum allocation scheme for data transmission in smart distribution grids. High-Confidence Computing, 2024, 4(3): 100198 DOI:10.1016/j.hcc.2024.100198

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Fundamental Research Funds for the Central Universities (2023JBZX029), in part by the National Natural Science Foundation of China (61931001 and 62202035), and in part by the S&T Program of Hebei, China (SZX2020034).

References

[1]

A. Ghosal, M. Conti, Key management systems for smart grid advanced metering infrastructure: A survey, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2831-2848, http://dx.doi.org/10.1109/COMST.2019.2907650.

[2]

Z. Cai, X. Zheng, A private and efficient mechanism for data uploading in smart cyber-physical systems, IEEE Trans. Netw. Sci. Eng. 7 (2) (2020) 766-775, http://dx.doi.org/10.1109/TNSE.2018.2830307.

[3]

M. Orlando, A. Estebsari, E. Pons, M. Pau, S. Quer, M. Poncino, L. Bottaccioli, E. Patti, A smart meter infrastructure for smart grid IoT applications, IEEE Internet Things J. 9 (14) (2022) 12529-12541, http://dx.doi.org/10.1109/JIOT.2021.3137596.

[4]

Z. Cai, Q. Chen, Latency-and-coverage aware data aggregation scheduling for multihop battery-free wireless networks, IEEE Trans. Wireless Commun. 20 (3) (2021) 1770-1784, http://dx.doi.org/10.1109/TWC.2020.3036408.

[5]

A.R. Devidas, M.V. Ramesh, Cost optimal hybrid communication model for smart distribution grid, IEEE Trans. Smart Grid 13 (6) (2022) 4931-4942, http://dx.doi.org/10.1109/TSG.2022.3185740.

[6]

R.A. Jabr, I. Džafić, Distribution management systems for smart grid: Architecture, work flows, and interoperability, J. Mod. Power Syst. Clean Energy 10 (2) (2022) 300-308, http://dx.doi.org/10.35833/MPCE.2021.000542.

[7]

X. Xing, T. Jing, W. Cheng, Y. Huo, X. Cheng, Spectrum prediction in cognitive radio networks, IEEE Wirel. Commun. 20 (2) (2013) 90-96, http://dx.doi.org/10.1109/MWC.2013.6507399.

[8]

Z. Cai, S. Ji, J. He, L. Wei, A.G. Bourgeois, Distributed and asynchronous data collection in cognitive radio networks with fairness consideration, IEEE Trans. Parallel Distrib. Syst. 25 (8) (2014) 2020-2029, http://dx.doi.org/10.1109/TPDS.2013.75.

[9]

Q. Chen, Z. Cai, L. Cheng, H. Gao, Low-latency data aggregation scheduling for cognitive radio networks with non-predetermined structure, IEEE Trans. Mob. Comput. 20 (7) (2021) 2412-2426, http://dx.doi.org/10.1109/TMC.2020.2979710.

[10]

T. LeAnh, M. Van Nguyen, C.T. Do, C.S. Hong, S. Lee, J.P. Hong, Optimal network selection coordination in heterogeneous cognitive radio networks, in: The International Conference on Information Networking 2013, ICOIN, 2013, pp. 163-168, http://dx.doi.org/10.1109/ICOIN.2013.6496370.

[11]

L. Ge, G. Chen, Y. Zhang, J. Tang, J. Wang, J.A. Chambers, Performance analysis for multihop cognitive radio networks with energy harvesting by using stochastic geometry, IEEE Internet Things J. 7 (2) (2020) 1154-1163, http://dx.doi.org/10.1109/JIOT.2019.2953130.

[12]

A.A. Sardar, D. Roy, W.U. Mondal, G. Das, Coalition formation for out-sourced spectrum sensing in cognitive radio network, IEEE Trans. Cogn. Commun. Netw. 9 (3) (2023) 580-592, http://dx.doi.org/10.1109/TCCN.2023.3254512.

[13]

J. Tiwari, A. Prakash, R. Tripathi, K. Naik, A fair and cooperative MAC protocol for heterogeneous cognitive radio enabled vehicular ad-hoc networks, IEEE Trans. Cogn. Commun. Netw. 8 (2) (2022) 1005-1018, http://dx.doi.org/10.1109/TCCN.2022.3168673.

[14]

Z. Cai, Y. Duan, A.G. Bourgeois, Delay efficient opportunistic routing in asynchronous multi-channel cognitive radio networks, J. Comb. Optim. 20 (2015) 815-835, http://dx.doi.org/10.1007/s10878-013-9623-y.

[15]

K. Ma, P. Liu, J. Yang, X. Wei, C. Dou, Spectrum allocation and power optimization for demand-side cooperative and cognitive communications in smart grid, IEEE Trans. Ind. Inform. 15 (3) (2019) 1830-1839, http://dx.doi.org/10.1109/TII.2018.2868868.

[16]

H. Rajab, M.B.M. Kamel, A.K. Hamoud, H. Farag, T. Cinkler, P. Ligeti, Cognitive radio for smart grid: A decentralized emergency management approach, in: 2022 32nd International Telecommunication Networks and Applications Conference, ITNAC, 2022, pp. 267-272, http://dx.doi.org/10.1109/ITNAC55475.2022.9998396.

[17]

E. Demarchou, C. Psomas, I. Krikidis, Asynchronous ad hoc networks with wireless powered cognitive communications, IEEE Trans. Cogn. Commun. Netw. 5 (2) (2019) 440-451, http://dx.doi.org/10.1109/TCCN.2019.2908855.

[18]

B. Shukla, S. Tiwari, A.S. Raghvanshi, A. Singh, Outage probability analysis of cognitive radio based PLC system, in: 2017 8th International Conference on Computing, Communication and Networking Technologies, ICCCNT, 2017, pp. 1-6, http://dx.doi.org/10.1109/ICCCNT.2017.8204008.

[19]

S. Ghafoor, P.D. Sutton, C.J. Sreenan, K.N. Brown, Cognitive radio for disaster response networks: Survey, potential, and challenges, IEEE Wirel. Commun. 21 (5) (2014) 70-80, http://dx.doi.org/10.1109/MWC.2014.6940435.

[20]

G. Baldini, S. Karanasios, D. Allen, F. Vergari, Survey of wireless communication technologies for public safety, IEEE Commun. Surv. Tutor. 16 (2) (2014) 619-641, http://dx.doi.org/10.1109/SURV.2013.082713.00034.

[21]

T. Jiang, C. Ni, D. Qu, C. Wang, Energy-efficient NC-OFDM/OQAM-based cognitive radio networks, IEEE Commun. Mag. 52 (7) (2014) 54-60, http://dx.doi.org/10.1109/MCOM.2014.6852083.

[22]

A. Mesodiakaki, F. Adelantado, L. Alonso, C. Verikoukis, Energy-efficient user association in cognitive heterogeneous networks, IEEE Commun. Mag. 52 (7) (2014) 22-29, http://dx.doi.org/10.1109/MCOM.2014.6852079.

[23]

Z. Cai, S. Ji, J. He, A.G. Bourgeois, Optimal distributed data collection for asynchronous cognitive radio networks, in: 2012 IEEE 32nd International Conference on Distributed Computing Systems, 2012, pp. 245-254, http://dx.doi.org/10.1109/ICDCS.2012.29.

[24]

S. Shi, N. Liang, X. Gu, A resource allocation method of heterogeneous wireless cognitive networks based on convex optimization theory, in: 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014, pp. 139-144, http://dx.doi.org/10.1109/IMCCC.2014.37.

[25]

V. Sharma, S. Joshi, A literature review on spectrum sensing in cognitive radio applications, in: 2018 Second International Conference on Intelligent Computing and Control Systems, ICICCS, 2018, pp. 883-893, http://dx.doi.org/10.1109/ICCONS.2018.8663089.

AI Summary AI Mindmap
PDF (1151KB)

221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/