Strategies towards robust interpretations of Pb isotopes

J Liebmann , B Ware , A Zametzer , C.L Kirkland , M.I.H. Hartnady

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101989

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101989 DOI: 10.1016/j.gsf.2024.101989

Strategies towards robust interpretations of Pb isotopes

Author information +
History +
PDF

Abstract

Lead (Pb) isotopes can provide key information to address fundamental geologic problems related to the formation and evolution of rocky planets. The Pb isotope system supports a diversity of applications, as it provides access to information on magma sources as well as geologic age. Consequently, a wide range of analytical techniques, data validation and interpretation strategies have been advanced across a range of Pb isotope studies. Given the multiple different Pb isotope pairs, reflecting different decay rates and ultimate parental isotope concentrations, Pb isotopes have been viewed as one of the more challenging isotope systems to comprehend. Here we provide an overview of the various analytical and interpretative approaches, for this system, and highlight their respective strengths in the context of applications, such as magma source tracking and model age determination. A discussion of different methods to determine magma source parameters (e.g., U/Pb ratio and model age) is presented, along with recommendations for data validation and reporting. A checklist for recommended data and metadata to report for Pb isotopes is provided. The aim of this contribution is to provide a framework that enables a robust interpretation of Pb isotope signatures, promoting data transparency and comparison across different analytical approaches.

Keywords

Pb isotopes / Model ages / Source tracking / Best practice / Data reporting

Cite this article

Download citation ▾
J Liebmann, B Ware, A Zametzer, C.L Kirkland, M.I.H. Hartnady. Strategies towards robust interpretations of Pb isotopes. Geoscience Frontiers, 2025, 16(2): 101989 DOI:10.1016/j.gsf.2024.101989

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

J. Liebmann: Writing – review & editing, Writing – original draft, Visualization, Methodology, Investigation, Formal analysis, Conceptualization. B. Ware: Writing – review & editing, Visualization, Methodology, Investigation, Formal analysis, Conceptualization. A. Zametzer: Writing – review & editing, Investigation, Conceptualization. C.L. Kirkland: Writing – review & editing, Investigation, Funding acquisition, Conceptualization. M.I.H. Hartnady: Writing – review & editing, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Patrick Carr and an anonymous reviewer for their constructive comments on this work. M Santosh is thanked for editorial handling. Research in the John de Laeter Centre GeoHistory Facility was enabled by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). The NPII multi-collector was obtained via funding from the Australian Research Council LIEF programme (LE150100013).

References

[1]

G. Åberg, G. Charalampides, G. Fosse, H. Hjelmseth. The use of Pb isotopes to differentiate between contemporary and ancient sources of pollution in Greece. Atmos. Environ., 35 (2001), pp. 4609-4615,

[2]

J. Aggarwal, J. Habicht-Mauche, C. Juarez. Application of heavy stable isotopes in forensic isotope geochemistry: a review. Appl. Geochem., 23 (9) (2008), pp. 2658-2666,

[3]

F. Albarède. Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461 (7268) (2009), pp. 1227-1233,

[4]

F. Albarède. Pb Model Age Calculator. Research Gate (2020),

[5]

F. Albarede, M. Juteau. Unscrambling the lead model ages. Geochim. Cosmochim. Acta, 48 (1) (1984), pp. 207-212,

[6]

F. Albarede, J. Blichert-Toft, L. Gentelli, J. Milot, M. Vaxevanopoulos, S. Klein, K. Westner, T. Birch, G. Davis, F. de Callataÿ. A miner’s perspective on Pb isotope provenances in the Western and Central Mediterranean. J. Archaeol. Sci., 121 (2020), p. 105194,

[7]

F. Albarède, A.M. Desaulty, J. Blichert-Toft. A geological perspective on the use of Pb isotopes in Archaeometry. Archaeometry, 54 (5) (2012), pp. 853-867,

[8]

M.B. Andersen, C.H. Stirling, S. Weyer. Uranium isotope fractionation. Rev. Mineral. Geochem., 82 (1) (2017), pp. 799-850,

[9]

S.E. Armistead, B.M. Eglington, S.J. Pehrsson. PbIso: an R package and web app for calculating and plotting Pb isotope data. Can. J. Earth Sci., 61 (2024), pp. 1-15,

[10]

J. Baker, D. Peate, T. Waight, C. Meyzen. Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol., 211 (3–4) (2004), pp. 275-303,

[11]

V. Balaram, K.S.V. Subramanyam. Sample preparation for geochemical analysis: strategies and significance. Adv. Sample Prep., 1 (2022), Article 100010,

[12]

Z. Bao, L. Chen, C. Zong, H. Yuan, K. Chen, M. Dai. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. Int. J. Mass Spectrom., 421 (2017), pp. 255-262,

[13]

E.J. Bartelink, L.A. Chesson. Recent applications of isotope analysis to forensic anthropology. Forensic Sci. Res., 4 (1) (2019), pp. 29-44,

[14]

J.J. Bellucci, A.A. Nemchin, M.J. Whitehouse, M. Humayun, R. Hewins, B. Zanda. Pb-isotopic evidence for an early, enriched crust on Mars. Earth Planet. Sci. Lett., 410 (2015), pp. 34-41,

[15]

J. Blichert-Toft, H. Delile, C.-T. Lee, Z. Stos-Gale, K. Billström, T. Andersen, H. Hannu, F. Albarède. Large-scale tectonic cycles in Europe revealed by distinct Pb isotope provinces. Geochem. Geophys. Geosyst., 17 (10) (2016), pp. 3854-3864,

[16]

B.B. Boltwood. ART. VII.--On the Ultimate Disintegration Products of the Radio-active Elements. Part II. The Disintegration Products of Uranium American Journal of Science (1907), pp. 1880-1910

[17]

R.A. Bouchet, J. Blichert-Toft, M.R. Reid, A. Levander, F. Albarède. Similarities between the Th/U map of the western US crystalline basement and the seismic properties of the underlying lithosphere. Earth Planet. Sci. Lett., 391 (2014), pp. 243-254,

[18]

C.F. Boutron. A clean laboratory for ultralow concentration heavy metal analysis. Fresenius J. Anal. Chem., 337 (1990), pp. 482-491,

[19]

G.R. Carr, J.A. Dean, D.W. Suppel, P.S. Heithersay. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Econ. Geol., 90 (6) (1995), pp. 1467-1505,

[20]

E.J. Catanzaro, T.J. Murphy, W.R. Shields, E.L. Garner. Absolute isotopic abundance ratios of common, equal-atom, and radiogenic lead isotopic standards. Journal of Research of the National Bureau of Standards Section a: Physics and Chemistry, 72A (3) (1968), p. 261,

[21]

N.D. Chapman, M. Ferguson, S.J. Meffre, A. Stepanov, R. Maas, K.J. Ehrig. Pb-isotopic constraints on the source of A-type Suites: insights from the Hiltaba Suite - Gawler Range Volcanics Magmatic Event, Gawler Craton South Australia. Lithos, 346–347 (2019), Article 105156,

[22]

J.N. Christensen, A.N. Halliday, D.-C. Lee, C.M. Hall. In situ Sr isotopic analysis by laser ablation. Earth Planet. Sci. Lett., 136 (1–2) (1995), pp. 79-85,

[23]

W. Compston, V.M. Oversby. Lead isotopic analysis using a double spike. J. Geophys. Res., 74 (17) (1969), pp. 4338-4348,

[24]

W. Compston, I.S. Williams, C. Meyer. Initial Pb isotopic compositions of lunar granites as determined by ion microprobe. A Tribute to Samuel Epstein. The Geochemical Society, Special Publication, Stable Isotope Geochemistry (1991), p. 3

[25]

J.N. Connelly, J. Bollard, M.M. Costa, P. Vermeesch, M. Bizzarro. Improved methods for high-precision Pb–Pb dating of extra-terrestrial materials. J. Anal. At. Spectrom, 36 (12) (2021), pp. 2579-2587,

[26]

J.A. Cooper, P.H. Reynolds, J.R. Richards. Double-spike calibration of the broken hill standard lead. Earth Planet. Sci. Lett., 6 (6) (1969), pp. 467-478,

[27]

G.L. Cumming, J.R. Richards. Ore lead isotope ratios in a continuously changing earth. Earth Planet. Sci. Lett., 28 (2) (1975), pp. 155-171,

[28]

W.J. Davis, C. Gariépy, O. van Breemen. Pb isotopic composition of late Archaean granites and the extent of recycling early Archaean crust in the Slave Province, northwest Canada. Chem. Geol., 130 (3–4) (1996), pp. 255-269,

[29]

Smith, M. J. de, Goodchild, M. F., & Longley, P. A. (2018). Geospatial Analysis: A Comprehensive Guide to Principles Teachniques and Software Tools 6th Edition, The Winchelsea Press. Retrieved from www.spatialanalysisonline.com.

[30]

H. Delavault, B. Dhuime, C.J. Hawkesworth, P.A. Cawood, H. Marschall. Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology, 44 (10) (2016), pp. 819-822,

[31]

H. Delavault, B. Dhuime, C. Hawkesworth, H.R. Marschall. Laser-ablation MC-ICP-MS lead isotope microanalysis down to 10 μm: application to K-feldspar inclusions within zircon. J. Anal. At. Spectrom., 33 (2) (2018), pp. 195-204,

[32]

C.U. Desem, R. Maas, J. Woodhead, G. Carr, A. Greig. The utility of rapid throughput single-collector sector-field ICP-MS for soil Pb isotope studies. Appl. Geochem., 143 (2022), Article 105361,

[33]

C.P. DeWolf, K. Mezger. Lead isotope analyses of leached feldspars: Constraints on the early crustal history of the Grenville Orogen. Geochim. Cosmochim. Acta, 58 (24) (1994), pp. 5537-5550

[34]

B.R. Doe, J.S. Stacey. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: a review. Econ. Geol., 69 (6) (1974), pp. 757-776

[35]

L.S. Doucet, Z.X. Li, D. Fougerouse, H.K.H. Olierook, H. Gamaleldien, C.L. Kirkland, M.I.H. Hartnady. The global lead isotope system: Toward a new framework reflecting Earth’s dynamic evolution. Earth Sci. Rev., 243 (2023), Article 104483,

[36]

T. Elliott, A. Zindler, B. Bourdon. Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett., 169 (1–2) (1999), pp. 129-145,

[37]

J.A. Evans, V. Pashley, K. Mee, D. Wagner, M. Parker Pearson, D. Fremondeau, U. Albarella, R. Madgwick. Applying lead (Pb) isotopes to explore mobility in humans and animals. PLoS One, 17 (10) (2022), Article e0274831,

[38]

D. Gagnevin, J.S. Daly, T.E. Waight, D. Morgan, G. Poli. Pb isotopic zoning of K-feldspar megacrysts determined by Laser Ablation Multi-Collector ICP-MS: insights into granite petrogenesis. Geochim. Cosmochim. Acta, 69 (7) (2005), pp. 1899-1915,

[39]

S.E. Gilbert, S. Glorie. Removal of Hg interferences for common Pb correction when dating apatite and titanite by LA-ICP-MS/MS. J. Anal. At. Spectrom, 35 (7) (2020), pp. 1472-1481,

[40]

A. Goldmann, G. Brennecka, J. Noordmann, S. Weyer, M. Wadhwa. The uranium isotopic composition of the Earth and the Solar System. Geochim. Cosmochim. Acta, 148 (2015), pp. 145-158,

[41]

B.L. Gulson, D. Howarthl, K.J. Mizon, A.J. Law, M.J. Korsch, J.J. Davis. Source of lead in humans from Broken Hill mining community. Environ. Geochem. Health, 16 (1994), pp. 19-25,

[42]

J. Halla. Pb isotopes – a multi-function tool for assessing tectonothermal events and crust-mantle recycling at late Archaean convergent margins. Lithos, 320–321 (2018), pp. 207-221,

[43]

J. Halla, E. Heilimo. Deformation-induced Pb isotope exchange between K-feldspar and whole rock in Neoarchean granitoids: Implications for assessing Proterozoic imprints. Chem. Geol., 265 (3–4) (2009), pp. 303-312,

[44]

J. Halla. Recycling of lead at Neoarchean continental margins. Y. Dilek, H. Furnes (Eds.), Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences, 7, Springer, Dordrecht (2014), pp. 195-213,

[45]

R.E. Harmer, J.M. Auret, B.M. Eglington. Lead isotope variations within the Bushveld complex, Southern Africa: a reconnaissance study. J. Afr. Earth Sc., 21 (4) (1995), pp. 595-606,

[46]

M.I.H. Hartnady, C.L. Kirkland, R.H. Smithies, S.P. Johnson, T.E. Johnson. Pb isotope insight into the formation of the Earth’s first stable continents. Earth Planet. Sci. Lett., 578 (2022), Article 117319,

[47]

S. Hemming, E. Rasbury. Pb isotope measurements of sanidine monitor standards: implications for provenance analysis and tephrochronology. Chem. Geol., 165 (3–4) (2000), pp. 331-337,

[48]

J. Hiess, D.J. Condon, N. McLean, S.R. Noble. 238U/ 235U systematics in terrestrial uranium-bearing minerals. Science, 335 (6076) (2012), pp. 1610-1614,

[49]

T. Hirata, T. Iizuka, Y. Orihashi. Reduction of mercury background on ICP-mass spectrometry for in situ U–Pb age determinations of zircon samples. J. Anal. At. Spectrom, 20 (2005), p. 696,

[50]

A.W. Hofmann. Lead isotopes and the age of the Earth — a geochemical accident. Geol. Soc. Lond. Spec. Publ., 190 (1) (2001), pp. 223-236,

[51]

A. Holmes. An estimate of the age of the earth. Nature, 157 (3995) (1946), pp. 680-684,

[52]

Holmes, A., 1911. The association of lead with uranium in rock-minerals, and its application to the measurement of geological time. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 85(578), 248–256. https://doi.org/10.1098/rspa.1911.0036.

[53]

I. Horn, R.L. Rudnick, W.F. McDonough. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chem. Geol., 164 (3–4) (2000), pp. 281-301,

[54]

T. Housh, S.A. Bowring. Lead isotopic heterogeneities within alkali feldspars: implications for the determination of initial lead isotopic compositions. Geochim. Cosmochim. Acta, 55 (8) (1991), pp. 2309-2316,

[55]

F.G. Houtermans. Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans. Naturwissenschaften, 33 (6) (1946), pp. 185-186,

[56]

A.H. Jaffey, K.F. Flynn, L.E. Glendenin, W.C. Bentley, A.M. Essling. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C, 4 (5) (1971), pp. 1889-1906,

[57]

K.P. Jochum, B. Stoll, K. Herwig, M. Amini, W. Abouchami, A.W. Hofmann. Lead isotope ratio measurements in geological glasses by laser ablation-sector field-ICP mass spectrometry (LA-SF-ICPMS). Int. J. Mass Spectrom., 242 (2–3) (2005), pp. 281-289,

[58]

K.P. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hofmann. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res., 29 (3) (2005), pp. 333-338,

[59]

S.P. Johnson, C.L. Kirkland, N.J. Evans, B.J. McDonald, H.N. Cutten. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar. Geosci. Front., 9 (5) (2018), pp. 1515-1527,

[60]

B.S. Kamber, S. Moorbath. Initial Pb of the Amı̂tsoq gneiss revisited: implication for the timing of early Archaean crustal evolution in West Greenland. Chem. Geol., 150 (1–2) (1998), pp. 19-41,

[61]

A.T. Keller, L.A. Regan, C.C. Lundstrom, N.W. Bower. Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing of human remains. Forensic Sci. Int., 261 (2016), pp. 83-92,

[62]

A.I.S. Kemp, C.J. Hawkesworth, B.A. Paterson, P.D. Kinny. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439 (7076) (2006), pp. 580-583,

[63]

M. Klaver, R.J. Smeets, J.M. Koornneef, G.R. Davies, P.Z. Vroon. Pb isotope analysis of ng size samples by TIMS equipped with a 1013 Ω resistor using a 207Pb– 204Pb double spike. J. Anal. At. Spectrom, 31 (1) (2016), pp. 171-178,

[64]

T. Kuritani, E. Nakamura. Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes. Chem. Geol., 186 (1–2) (2002), pp. 31-43,

[65]

L.A. Le Roux, L.E. Glendenin. Half-life of 232Th. Proc. Natl. Meet. Nuclear Energy, Pretoria, South Africa, 83 (1963), p. 94

[66]

W. Li, C.M. Johnson, B.L. Beard. U–Th–Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt. Earth Planet. Sci. Lett., 319–320 (2012), pp. 197-206,

[67]

J. Liebmann, B. Ware, M.I.H. Hartnady, C.L. Kirkland, N.E. Timms, N.J. Evans. Albany K‐Feldspar: a new Pb isotope reference material. Geostand. Geoanal. Res. 47(3), 637-655 (2023),

[68]

J. Liebmann, B. Ware, D. Mole, C. Kirkland, G. Fraser, K. Waltenberg, S. Bodorkos, D. Huston, N. Evans, B. McDonald, K. Rankenburg, P. Datta, S. Tessalina. A crustal Pb isotope map of southeastern Australia. Sci. Data 11, 1222 (2024)

[69]

K. Ludwig. Calculation of uncertainties of U-Pb isotope data. Earth Planet. Sci. Lett., 46 (2) (1980), pp. 212-220,

[70]

K.R. Ludwig, L.T. Silver. Lead-isotope inhomogeneity in Precambrian igneous K-feldspars. Geochim. Cosmochim. Acta, 41 (10) (1977), pp. 1457-1471,

[71]

A. Maltese, K. Mezger. The Pb isotope evolution of Bulk Silicate Earth: constraints from its accretion and early differentiation history. Geochim. Cosmochim. Acta, 271 (2020), pp. 179-193,

[72]

J.M. Mattinson. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol., 275 (2010), pp. 186-198,

[73]

S. McLaren, M. Sandiford, R. Powell, N. Neumann, J. Woodhead. Palaeozoic intraplate crustal anatexis in the mount painter province, south australia: timing, thermal budgets and the role of crustal heat production. J. Petrol., 47 (12) (2006), pp. 2281-2302,

[74]

S.M. McLennan, S.R. Taylor. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 285 (5767) (1980), pp. 621-624,

[75]

J. Milot, J. Blichert-Toft, M.A. Sanz, N. Fetter, P. Télouk, F. Albarède. The significance of galena Pb model ages and the formation of large Pb-Zn sedimentary deposits. Chem. Geol., 583 (2021), Article 120444,

[76]

S. Moorbath, H. Welke, N.H. Gale. The significance of lead isotope studies in ancient, high-grade metamorphic basement complexes, as exemplified by the Lewisian rocks of Northwest Scotland. Earth Planet. Sci. Lett., 6 (4) (1969), pp. 245-256,

[77]

K. Newman, R.B. Georg. The measurement of Pb isotope ratios in sub-ng quantities by fast scanning single collector sector field-ICP-MS. Chem. Geol., 304–305 (2012), pp. 151-157,

[78]

C. Patterson. Age of meteorites and the earth. Geochim. Cosmochim. Acta, 10 (4) (1956), pp. 230-237,

[79]

C. Patterson, G. Tilton, M. Inghram. Age of the earth. Science, 121 (3134) (1955), pp. 69-75,

[80]

B. Paul, J.D. Woodhead, J. Hergt. Improved in situ isotope analysis of low-Pb materials using LA-MC-ICP-MS with parallel ion counter and Faraday detection. J. Anal. At. Spectrom, 20 (12) (2005), p. 1350,

[81]

D.G. Pearson, S.W. Parman, G.M. Nowell. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449 (7159) (2007), pp. 202-205,

[82]

T. Pettke, F. Oberli, C.A. Heinrich. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett., 296 (3–4) (2010), pp. 267-277,

[83]

G.D. Pollack, E.J. Krogstad, A. Bekker. U–Th–Pb–REE systematics of organic-rich shales from the ca. 2.15 Ga Sengoma Argillite Formation, Botswana: evidence for oxidative continental weathering during the Great Oxidation Event. Chem. Geol., 260 (3–4) (2009), pp. 172-185,

[84]

W. Pretorius, D. Weis, G. Williams, D. Hanano, B. Kieffer, J. Scoates. Complete trace elemental characterisation of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res., 30 (1) (2006), pp. 39-54,

[85]

M. Rehkämper, K. Mezger. Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP-MS: verification and application of optimized analytical protocols. J. Anal. At. Spectrom, 15 (2000), pp. 1451-1460,

[86]

J.N. Rosholt, R.E. Zartman, I.T. Nkomo. Lead isotope systematics and uranium depletion in the granite mountains Wyoming. Geological Society of America Bulletin, 84 (3) (1973), p. 989,

[87]

W.A. Russell, D.A. Papanastassiou, T.A. Tombrello. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta, 42 (8) (1978), pp. 1075-1090,

[88]

N.S. Saji, D. Wielandt, C. Paton, M. Bizzarro. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS. J. Anal. At. Spectrom, 31 (7) (2016), pp. 1490-1504,

[89]

B. Schoene. 4.10-U–Th–Pb geochronology treatise on geochemistry. Treatise on Geochemistry, 4 (2014), pp. 341-378

[90]

K.E. Smith, D. Weis. Evaluating spatiotemporal resolution of trace element concentrations and Pb isotopic compositions of honeybees and hive products as biomonitors for urban metal distribution. GeoHealth, 4 (7) (2020), Article e2020GH000264,

[91]

F. Soddy. Intra-atomic charge. Nature, 92 (2301) (1913), pp. 399-400,

[92]

A.K. Souders, P.J. Sylvester. Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J. Anal. At. Spectrom, 25 (7) (2010), p. 975,

[93]

J.S. Stacey, J.D. Kramers. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26 (2) (1975), pp. 207-221,

[94]

R.H. Steiger, E. Jäger. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36 (3) (1977), pp. 359-362,

[95]

J. Švedkauskaite-LeGore, K. Mayer, S. Millet, A. Nicholl, G. Rasmussen, D. Baltrunas. Investigation of the isotopic composition of lead and of trace elements concentrations in natural uranium materials as a signature in nuclear forensics. Radiochim. Acta, 95 (10) (2007), pp. 601-605,

[96]

M. Tatsumoto, R.J. Knight, C.J. Allegre. Time differences in the formation of meteorites as determined from the ratio of Lead-207 to Lead-206. Science, 180 (4092) (1973), pp. 1279-1283,

[97]

R.N. Taylor, O. Ishizuka, A. Michalik, J.A. Milton, I.W. Croudace. Evaluating the precision of Pb isotope measurement by mass spectrometry. J. Anal. At. Spectrom, 30 (1) (2015), pp. 198-213,

[98]

M.F. Thirlwall. Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb–204Pb double spike. Chem. Geol., 163 (1–4) (2000), pp. 299-322,

[99]

M.F. Thirlwall. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb-204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol., 184 (2002), pp. 255-279,

[100]

R.I. Thorpe. The Pb Isotope Linear Array for Volcanogenic Massive Sulfide Deposits of the Abitibi and Wawa Subprovinces, Canadian Shield. M.D. Hannington, C.T. Barrie (Eds.), The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Society of Economic Geologists (1999), pp. 555-575,

[101]

E. Todd, A. Stracke, E.E. Scherer. Effects of simple acid leaching of crushed and powdered geological materials on high-precision Pb isotope analyses. Geochem. Geophys. Geosyst., 16 (7) (2015), pp. 2276-2302,

[102]

Tyrrell, S., Haughton , P.D., Daly , J.S., Shannon , P.M., Sylvester, P., 2012. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. In: Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks , 42 . Mineralogical Association of Canada, Short Course Series, pp. 203–217.

[103]

S. Tyrrell, P.D.W. Haughton, J.S. Daly, T.F. Kokfelt, D. Gagnevin. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to upper carboniferous paleodrainage, Northern England. J. Sediment. Res., 76 (2) (2006), pp. 324-345,

[104]

I.M. Villa, J.M. Hanchar. K-feldspar hygrochronology. Geochim. Cosmochim. Acta, 101 (2013), pp. 24-33,

[105]

D. Weis, B. Kieffer, C. Maerschalk, W. Pretorius, J. Barling. High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem. Geophys. Geosyst., 6 (2) (2005), p. Q02002,

[106]

D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. de Jong, G.A. Williams, D. Hanano, W. Pretorius, N. Mattielli, J.S. Scoates, A. Goolaerts, R.M. Friedman, J.B. Mahoney. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst., 7 (8) (2006), p. Q08006,

[107]

M.J. Whitehouse. Pb-isotopic evidence for U-Th-Pb behaviour in a prograde amphibolite to granulite fades transition from the Lewisian complex of north-west Scotland: Implications for Pb-Pb dating. Geochim. Cosmochim. Acta, 53 (3) (1989), pp. 717-724,

[108]

J.D. Woodhead, J.M. Hergt. Application of the ‘double spike’ technique to Pb-isotope geochronology. Chem. Geol., 138 (3–4) (1997), pp. 311-321,

[109]

J.D. Woodhead, J.M. Hergt. Pb-isotope analyses of USGS reference materials. Geostand. Geoanal. Res., 24 (1) (2000), pp. 33-38,

[110]

J.D. Woodhead, J.M. Hergt. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostand. Geoanal. Res., 25 (2–3) (2001), pp. 261-266,

[111]

J.D. Woodhead, F. Volker, M.T. McCulloch. Routine lead isotope determinations using a lead-207–lead-204 double spike: a long-term assessment of analytical precision and accuracy. Analyst, 120 (1) (1995), pp. 35-39,

[112]

D. Xiang, Z. Zhang, T. Zack, D. Chew, Y. Yang, L. Wu, J. Hogmalm. Apatite U‐Pb dating with common Pb correction using LA‐ICP‐MS/MS. Geostand. Geoanal. Res., 45 (2021), pp. 621-642,

[113]

A. Zametzer, C.L. Kirkland, M.I.H. Hartnady, M. Barham, D.C. Champion, S. Bodorkos, R.H. Smithies, S.P. Johnson. Applications of Pb isotopes in granite K-feldspar and Pb evolution in the Yilgarn Craton. Geochim. Cosmochim. Acta, 320 (2022), pp. 279-303,

[114]

A. Zametzer, C.L. Kirkland, M. Barham, N.E. Timms, M.I.H. Hartnady, A.J. Cavosie, B. Ware, W.D.A. Rickard, T. Erickson. Feldspar Pb isotope evidence of cryptic impact-driven hydrothermal alteration in the Paleoproterozoic. Earth Planet. Sci. Lett., 607 (2023), p. 118073,

[115]

R.E. Zartman, B.R. Doe. Plumbotectonics—the model. Tectonophysics, 75 (1–2) (1981), pp. 135-162,

[116]

I.C. Zutterkirch, M. Barham, C.L. Kirkland, C. Elders. Contrasting detrital feldspar Pb isotope ratios and zircon geochronology to distinguish proximal versus distal transport. J. Geol., 131 (2023), pp. 25-73,

AI Summary AI Mindmap
PDF

393

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/