Strategies towards robust interpretations of Pb isotopes

J Liebmann, B Ware, A Zametzer, C.L Kirkland, M.I.H. Hartnady

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101989.

Geoscience Frontiers All Journals
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 101989. DOI: 10.1016/j.gsf.2024.101989

Strategies towards robust interpretations of Pb isotopes

Author information +
History +

Abstract

Lead (Pb) isotopes can provide key information to address fundamental geologic problems related to the formation and evolution of rocky planets. The Pb isotope system supports a diversity of applications, as it provides access to information on magma sources as well as geologic age. Consequently, a wide range of analytical techniques, data validation and interpretation strategies have been advanced across a range of Pb isotope studies. Given the multiple different Pb isotope pairs, reflecting different decay rates and ultimate parental isotope concentrations, Pb isotopes have been viewed as one of the more challenging isotope systems to comprehend. Here we provide an overview of the various analytical and interpretative approaches, for this system, and highlight their respective strengths in the context of applications, such as magma source tracking and model age determination. A discussion of different methods to determine magma source parameters (e.g., U/Pb ratio and model age) is presented, along with recommendations for data validation and reporting. A checklist for recommended data and metadata to report for Pb isotopes is provided. The aim of this contribution is to provide a framework that enables a robust interpretation of Pb isotope signatures, promoting data transparency and comparison across different analytical approaches.

Keywords

Pb isotopes / Model ages / Source tracking / Best practice / Data reporting

Cite this article

Download citation ▾
J Liebmann, B Ware, A Zametzer, C.L Kirkland, M.I.H. Hartnady. Strategies towards robust interpretations of Pb isotopes. Geoscience Frontiers, 2025, 16(2): 101989 https://doi.org/10.1016/j.gsf.2024.101989

CRediT authorship contribution statement

J. Liebmann: Writing – review & editing, Writing – original draft, Visualization, Methodology, Investigation, Formal analysis, Conceptualization. B. Ware: Writing – review & editing, Visualization, Methodology, Investigation, Formal analysis, Conceptualization. A. Zametzer: Writing – review & editing, Investigation, Conceptualization. C.L. Kirkland: Writing – review & editing, Investigation, Funding acquisition, Conceptualization. M.I.H. Hartnady: Writing – review & editing, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Patrick Carr and an anonymous reviewer for their constructive comments on this work. M Santosh is thanked for editorial handling. Research in the John de Laeter Centre GeoHistory Facility was enabled by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). The NPII multi-collector was obtained via funding from the Australian Research Council LIEF programme (LE150100013).

References

G. Åberg, G. Charalampides, G. Fosse, H. Hjelmseth. The use of Pb isotopes to differentiate between contemporary and ancient sources of pollution in Greece. Atmos. Environ., 35 (2001), pp. 4609-4615,
CrossRef Google scholar
J. Aggarwal, J. Habicht-Mauche, C. Juarez. Application of heavy stable isotopes in forensic isotope geochemistry: a review. Appl. Geochem., 23 (9) (2008), pp. 2658-2666,
CrossRef Google scholar
F. Albarède. Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461 (7268) (2009), pp. 1227-1233,
CrossRef Google scholar
F. Albarède. Pb Model Age Calculator. Research Gate (2020),
CrossRef Google scholar
F. Albarede, M. Juteau. Unscrambling the lead model ages. Geochim. Cosmochim. Acta, 48 (1) (1984), pp. 207-212,
CrossRef Google scholar
F. Albarede, J. Blichert-Toft, L. Gentelli, J. Milot, M. Vaxevanopoulos, S. Klein, K. Westner, T. Birch, G. Davis, F. de Callataÿ. A miner’s perspective on Pb isotope provenances in the Western and Central Mediterranean. J. Archaeol. Sci., 121 (2020), p. 105194,
CrossRef Google scholar
F. Albarède, A.M. Desaulty, J. Blichert-Toft. A geological perspective on the use of Pb isotopes in Archaeometry. Archaeometry, 54 (5) (2012), pp. 853-867,
CrossRef Google scholar
M.B. Andersen, C.H. Stirling, S. Weyer. Uranium isotope fractionation. Rev. Mineral. Geochem., 82 (1) (2017), pp. 799-850,
CrossRef Google scholar
S.E. Armistead, B.M. Eglington, S.J. Pehrsson. PbIso: an R package and web app for calculating and plotting Pb isotope data. Can. J. Earth Sci., 61 (2024), pp. 1-15,
CrossRef Google scholar
J. Baker, D. Peate, T. Waight, C. Meyzen. Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol., 211 (3–4) (2004), pp. 275-303,
CrossRef Google scholar
V. Balaram, K.S.V. Subramanyam. Sample preparation for geochemical analysis: strategies and significance. Adv. Sample Prep., 1 (2022), Article 100010,
CrossRef Google scholar
Z. Bao, L. Chen, C. Zong, H. Yuan, K. Chen, M. Dai. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. Int. J. Mass Spectrom., 421 (2017), pp. 255-262,
CrossRef Google scholar
E.J. Bartelink, L.A. Chesson. Recent applications of isotope analysis to forensic anthropology. Forensic Sci. Res., 4 (1) (2019), pp. 29-44,
CrossRef Google scholar
J.J. Bellucci, A.A. Nemchin, M.J. Whitehouse, M. Humayun, R. Hewins, B. Zanda. Pb-isotopic evidence for an early, enriched crust on Mars. Earth Planet. Sci. Lett., 410 (2015), pp. 34-41,
CrossRef Google scholar
J. Blichert-Toft, H. Delile, C.-T. Lee, Z. Stos-Gale, K. Billström, T. Andersen, H. Hannu, F. Albarède. Large-scale tectonic cycles in Europe revealed by distinct Pb isotope provinces. Geochem. Geophys. Geosyst., 17 (10) (2016), pp. 3854-3864,
CrossRef Google scholar
B.B. Boltwood. ART. VII.--On the Ultimate Disintegration Products of the Radio-active Elements. Part II. The Disintegration Products of Uranium American Journal of Science (1907), pp. 1880-1910
R.A. Bouchet, J. Blichert-Toft, M.R. Reid, A. Levander, F. Albarède. Similarities between the Th/U map of the western US crystalline basement and the seismic properties of the underlying lithosphere. Earth Planet. Sci. Lett., 391 (2014), pp. 243-254,
CrossRef Google scholar
C.F. Boutron. A clean laboratory for ultralow concentration heavy metal analysis. Fresenius J. Anal. Chem., 337 (1990), pp. 482-491,
CrossRef Google scholar
G.R. Carr, J.A. Dean, D.W. Suppel, P.S. Heithersay. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Econ. Geol., 90 (6) (1995), pp. 1467-1505,
CrossRef Google scholar
E.J. Catanzaro, T.J. Murphy, W.R. Shields, E.L. Garner. Absolute isotopic abundance ratios of common, equal-atom, and radiogenic lead isotopic standards. Journal of Research of the National Bureau of Standards Section a: Physics and Chemistry, 72A (3) (1968), p. 261,
CrossRef Google scholar
N.D. Chapman, M. Ferguson, S.J. Meffre, A. Stepanov, R. Maas, K.J. Ehrig. Pb-isotopic constraints on the source of A-type Suites: insights from the Hiltaba Suite - Gawler Range Volcanics Magmatic Event, Gawler Craton South Australia. Lithos, 346–347 (2019), Article 105156,
CrossRef Google scholar
J.N. Christensen, A.N. Halliday, D.-C. Lee, C.M. Hall. In situ Sr isotopic analysis by laser ablation. Earth Planet. Sci. Lett., 136 (1–2) (1995), pp. 79-85,
CrossRef Google scholar
W. Compston, V.M. Oversby. Lead isotopic analysis using a double spike. J. Geophys. Res., 74 (17) (1969), pp. 4338-4348,
CrossRef Google scholar
W. Compston, I.S. Williams, C. Meyer. Initial Pb isotopic compositions of lunar granites as determined by ion microprobe. A Tribute to Samuel Epstein. The Geochemical Society, Special Publication, Stable Isotope Geochemistry (1991), p. 3
J.N. Connelly, J. Bollard, M.M. Costa, P. Vermeesch, M. Bizzarro. Improved methods for high-precision Pb–Pb dating of extra-terrestrial materials. J. Anal. At. Spectrom, 36 (12) (2021), pp. 2579-2587,
CrossRef Google scholar
J.A. Cooper, P.H. Reynolds, J.R. Richards. Double-spike calibration of the broken hill standard lead. Earth Planet. Sci. Lett., 6 (6) (1969), pp. 467-478,
CrossRef Google scholar
G.L. Cumming, J.R. Richards. Ore lead isotope ratios in a continuously changing earth. Earth Planet. Sci. Lett., 28 (2) (1975), pp. 155-171,
CrossRef Google scholar
W.J. Davis, C. Gariépy, O. van Breemen. Pb isotopic composition of late Archaean granites and the extent of recycling early Archaean crust in the Slave Province, northwest Canada. Chem. Geol., 130 (3–4) (1996), pp. 255-269,
CrossRef Google scholar
Smith, M. J. de, Goodchild, M. F., & Longley, P. A. (2018). Geospatial Analysis: A Comprehensive Guide to Principles Teachniques and Software Tools 6th Edition, The Winchelsea Press. Retrieved from www.spatialanalysisonline.com.
H. Delavault, B. Dhuime, C.J. Hawkesworth, P.A. Cawood, H. Marschall. Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology, 44 (10) (2016), pp. 819-822,
CrossRef Google scholar
H. Delavault, B. Dhuime, C. Hawkesworth, H.R. Marschall. Laser-ablation MC-ICP-MS lead isotope microanalysis down to 10 μm: application to K-feldspar inclusions within zircon. J. Anal. At. Spectrom., 33 (2) (2018), pp. 195-204,
CrossRef Google scholar
C.U. Desem, R. Maas, J. Woodhead, G. Carr, A. Greig. The utility of rapid throughput single-collector sector-field ICP-MS for soil Pb isotope studies. Appl. Geochem., 143 (2022), Article 105361,
CrossRef Google scholar
C.P. DeWolf, K. Mezger. Lead isotope analyses of leached feldspars: Constraints on the early crustal history of the Grenville Orogen. Geochim. Cosmochim. Acta, 58 (24) (1994), pp. 5537-5550
B.R. Doe, J.S. Stacey. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: a review. Econ. Geol., 69 (6) (1974), pp. 757-776
L.S. Doucet, Z.X. Li, D. Fougerouse, H.K.H. Olierook, H. Gamaleldien, C.L. Kirkland, M.I.H. Hartnady. The global lead isotope system: Toward a new framework reflecting Earth’s dynamic evolution. Earth Sci. Rev., 243 (2023), Article 104483,
CrossRef Google scholar
T. Elliott, A. Zindler, B. Bourdon. Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett., 169 (1–2) (1999), pp. 129-145,
CrossRef Google scholar
J.A. Evans, V. Pashley, K. Mee, D. Wagner, M. Parker Pearson, D. Fremondeau, U. Albarella, R. Madgwick. Applying lead (Pb) isotopes to explore mobility in humans and animals. PLoS One, 17 (10) (2022), Article e0274831,
CrossRef Google scholar
D. Gagnevin, J.S. Daly, T.E. Waight, D. Morgan, G. Poli. Pb isotopic zoning of K-feldspar megacrysts determined by Laser Ablation Multi-Collector ICP-MS: insights into granite petrogenesis. Geochim. Cosmochim. Acta, 69 (7) (2005), pp. 1899-1915,
CrossRef Google scholar
S.E. Gilbert, S. Glorie. Removal of Hg interferences for common Pb correction when dating apatite and titanite by LA-ICP-MS/MS. J. Anal. At. Spectrom, 35 (7) (2020), pp. 1472-1481,
CrossRef Google scholar
A. Goldmann, G. Brennecka, J. Noordmann, S. Weyer, M. Wadhwa. The uranium isotopic composition of the Earth and the Solar System. Geochim. Cosmochim. Acta, 148 (2015), pp. 145-158,
CrossRef Google scholar
B.L. Gulson, D. Howarthl, K.J. Mizon, A.J. Law, M.J. Korsch, J.J. Davis. Source of lead in humans from Broken Hill mining community. Environ. Geochem. Health, 16 (1994), pp. 19-25,
CrossRef Google scholar
J. Halla. Pb isotopes – a multi-function tool for assessing tectonothermal events and crust-mantle recycling at late Archaean convergent margins. Lithos, 320–321 (2018), pp. 207-221,
CrossRef Google scholar
J. Halla, E. Heilimo. Deformation-induced Pb isotope exchange between K-feldspar and whole rock in Neoarchean granitoids: Implications for assessing Proterozoic imprints. Chem. Geol., 265 (3–4) (2009), pp. 303-312,
CrossRef Google scholar
J. Halla. Recycling of lead at Neoarchean continental margins. Y. Dilek, H. Furnes (Eds.), Evolution of Archean Crust and Early Life, Modern Approaches in Solid Earth Sciences, 7, Springer, Dordrecht (2014), pp. 195-213,
CrossRef Google scholar
R.E. Harmer, J.M. Auret, B.M. Eglington. Lead isotope variations within the Bushveld complex, Southern Africa: a reconnaissance study. J. Afr. Earth Sc., 21 (4) (1995), pp. 595-606,
CrossRef Google scholar
M.I.H. Hartnady, C.L. Kirkland, R.H. Smithies, S.P. Johnson, T.E. Johnson. Pb isotope insight into the formation of the Earth’s first stable continents. Earth Planet. Sci. Lett., 578 (2022), Article 117319,
CrossRef Google scholar
S. Hemming, E. Rasbury. Pb isotope measurements of sanidine monitor standards: implications for provenance analysis and tephrochronology. Chem. Geol., 165 (3–4) (2000), pp. 331-337,
CrossRef Google scholar
J. Hiess, D.J. Condon, N. McLean, S.R. Noble. 238U/ 235U systematics in terrestrial uranium-bearing minerals. Science, 335 (6076) (2012), pp. 1610-1614,
CrossRef Google scholar
T. Hirata, T. Iizuka, Y. Orihashi. Reduction of mercury background on ICP-mass spectrometry for in situ U–Pb age determinations of zircon samples. J. Anal. At. Spectrom, 20 (2005), p. 696,
CrossRef Google scholar
A.W. Hofmann. Lead isotopes and the age of the Earth — a geochemical accident. Geol. Soc. Lond. Spec. Publ., 190 (1) (2001), pp. 223-236,
CrossRef Google scholar
A. Holmes. An estimate of the age of the earth. Nature, 157 (3995) (1946), pp. 680-684,
CrossRef Google scholar
Holmes, A., 1911. The association of lead with uranium in rock-minerals, and its application to the measurement of geological time. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 85(578), 248–256. https://doi.org/10.1098/rspa.1911.0036.
I. Horn, R.L. Rudnick, W.F. McDonough. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chem. Geol., 164 (3–4) (2000), pp. 281-301,
CrossRef Google scholar
T. Housh, S.A. Bowring. Lead isotopic heterogeneities within alkali feldspars: implications for the determination of initial lead isotopic compositions. Geochim. Cosmochim. Acta, 55 (8) (1991), pp. 2309-2316,
CrossRef Google scholar
F.G. Houtermans. Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans. Naturwissenschaften, 33 (6) (1946), pp. 185-186,
CrossRef Google scholar
A.H. Jaffey, K.F. Flynn, L.E. Glendenin, W.C. Bentley, A.M. Essling. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C, 4 (5) (1971), pp. 1889-1906,
CrossRef Google scholar
K.P. Jochum, B. Stoll, K. Herwig, M. Amini, W. Abouchami, A.W. Hofmann. Lead isotope ratio measurements in geological glasses by laser ablation-sector field-ICP mass spectrometry (LA-SF-ICPMS). Int. J. Mass Spectrom., 242 (2–3) (2005), pp. 281-289,
CrossRef Google scholar
K.P. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hofmann. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res., 29 (3) (2005), pp. 333-338,
CrossRef Google scholar
S.P. Johnson, C.L. Kirkland, N.J. Evans, B.J. McDonald, H.N. Cutten. The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar. Geosci. Front., 9 (5) (2018), pp. 1515-1527,
CrossRef Google scholar
B.S. Kamber, S. Moorbath. Initial Pb of the Amı̂tsoq gneiss revisited: implication for the timing of early Archaean crustal evolution in West Greenland. Chem. Geol., 150 (1–2) (1998), pp. 19-41,
CrossRef Google scholar
A.T. Keller, L.A. Regan, C.C. Lundstrom, N.W. Bower. Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing of human remains. Forensic Sci. Int., 261 (2016), pp. 83-92,
CrossRef Google scholar
A.I.S. Kemp, C.J. Hawkesworth, B.A. Paterson, P.D. Kinny. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439 (7076) (2006), pp. 580-583,
CrossRef Google scholar
M. Klaver, R.J. Smeets, J.M. Koornneef, G.R. Davies, P.Z. Vroon. Pb isotope analysis of ng size samples by TIMS equipped with a 1013 Ω resistor using a 207Pb– 204Pb double spike. J. Anal. At. Spectrom, 31 (1) (2016), pp. 171-178,
CrossRef Google scholar
T. Kuritani, E. Nakamura. Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes. Chem. Geol., 186 (1–2) (2002), pp. 31-43,
CrossRef Google scholar
L.A. Le Roux, L.E. Glendenin. Half-life of 232Th. Proc. Natl. Meet. Nuclear Energy, Pretoria, South Africa, 83 (1963), p. 94
W. Li, C.M. Johnson, B.L. Beard. U–Th–Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt. Earth Planet. Sci. Lett., 319–320 (2012), pp. 197-206,
CrossRef Google scholar
J. Liebmann, B. Ware, M.I.H. Hartnady, C.L. Kirkland, N.E. Timms, N.J. Evans. Albany K‐Feldspar: a new Pb isotope reference material. Geostand. Geoanal. Res. 47(3), 637-655 (2023),
CrossRef Google scholar
J. Liebmann, B. Ware, D. Mole, C. Kirkland, G. Fraser, K. Waltenberg, S. Bodorkos, D. Huston, N. Evans, B. McDonald, K. Rankenburg, P. Datta, S. Tessalina. A crustal Pb isotope map of southeastern Australia. Sci. Data 11, 1222 (2024)
K. Ludwig. Calculation of uncertainties of U-Pb isotope data. Earth Planet. Sci. Lett., 46 (2) (1980), pp. 212-220,
CrossRef Google scholar
K.R. Ludwig, L.T. Silver. Lead-isotope inhomogeneity in Precambrian igneous K-feldspars. Geochim. Cosmochim. Acta, 41 (10) (1977), pp. 1457-1471,
CrossRef Google scholar
A. Maltese, K. Mezger. The Pb isotope evolution of Bulk Silicate Earth: constraints from its accretion and early differentiation history. Geochim. Cosmochim. Acta, 271 (2020), pp. 179-193,
CrossRef Google scholar
J.M. Mattinson. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol., 275 (2010), pp. 186-198,
CrossRef Google scholar
S. McLaren, M. Sandiford, R. Powell, N. Neumann, J. Woodhead. Palaeozoic intraplate crustal anatexis in the mount painter province, south australia: timing, thermal budgets and the role of crustal heat production. J. Petrol., 47 (12) (2006), pp. 2281-2302,
CrossRef Google scholar
S.M. McLennan, S.R. Taylor. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 285 (5767) (1980), pp. 621-624,
CrossRef Google scholar
J. Milot, J. Blichert-Toft, M.A. Sanz, N. Fetter, P. Télouk, F. Albarède. The significance of galena Pb model ages and the formation of large Pb-Zn sedimentary deposits. Chem. Geol., 583 (2021), Article 120444,
CrossRef Google scholar
S. Moorbath, H. Welke, N.H. Gale. The significance of lead isotope studies in ancient, high-grade metamorphic basement complexes, as exemplified by the Lewisian rocks of Northwest Scotland. Earth Planet. Sci. Lett., 6 (4) (1969), pp. 245-256,
CrossRef Google scholar
K. Newman, R.B. Georg. The measurement of Pb isotope ratios in sub-ng quantities by fast scanning single collector sector field-ICP-MS. Chem. Geol., 304–305 (2012), pp. 151-157,
CrossRef Google scholar
C. Patterson. Age of meteorites and the earth. Geochim. Cosmochim. Acta, 10 (4) (1956), pp. 230-237,
CrossRef Google scholar
C. Patterson, G. Tilton, M. Inghram. Age of the earth. Science, 121 (3134) (1955), pp. 69-75,
CrossRef Google scholar
B. Paul, J.D. Woodhead, J. Hergt. Improved in situ isotope analysis of low-Pb materials using LA-MC-ICP-MS with parallel ion counter and Faraday detection. J. Anal. At. Spectrom, 20 (12) (2005), p. 1350,
CrossRef Google scholar
D.G. Pearson, S.W. Parman, G.M. Nowell. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449 (7159) (2007), pp. 202-205,
CrossRef Google scholar
T. Pettke, F. Oberli, C.A. Heinrich. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett., 296 (3–4) (2010), pp. 267-277,
CrossRef Google scholar
G.D. Pollack, E.J. Krogstad, A. Bekker. U–Th–Pb–REE systematics of organic-rich shales from the ca. 2.15 Ga Sengoma Argillite Formation, Botswana: evidence for oxidative continental weathering during the Great Oxidation Event. Chem. Geol., 260 (3–4) (2009), pp. 172-185,
CrossRef Google scholar
W. Pretorius, D. Weis, G. Williams, D. Hanano, B. Kieffer, J. Scoates. Complete trace elemental characterisation of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res., 30 (1) (2006), pp. 39-54,
CrossRef Google scholar
M. Rehkämper, K. Mezger. Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP-MS: verification and application of optimized analytical protocols. J. Anal. At. Spectrom, 15 (2000), pp. 1451-1460,
CrossRef Google scholar
J.N. Rosholt, R.E. Zartman, I.T. Nkomo. Lead isotope systematics and uranium depletion in the granite mountains Wyoming. Geological Society of America Bulletin, 84 (3) (1973), p. 989,
CrossRef Google scholar
W.A. Russell, D.A. Papanastassiou, T.A. Tombrello. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta, 42 (8) (1978), pp. 1075-1090,
CrossRef Google scholar
N.S. Saji, D. Wielandt, C. Paton, M. Bizzarro. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS. J. Anal. At. Spectrom, 31 (7) (2016), pp. 1490-1504,
CrossRef Google scholar
B. Schoene. 4.10-U–Th–Pb geochronology treatise on geochemistry. Treatise on Geochemistry, 4 (2014), pp. 341-378
K.E. Smith, D. Weis. Evaluating spatiotemporal resolution of trace element concentrations and Pb isotopic compositions of honeybees and hive products as biomonitors for urban metal distribution. GeoHealth, 4 (7) (2020), Article e2020GH000264,
CrossRef Google scholar
F. Soddy. Intra-atomic charge. Nature, 92 (2301) (1913), pp. 399-400,
CrossRef Google scholar
A.K. Souders, P.J. Sylvester. Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J. Anal. At. Spectrom, 25 (7) (2010), p. 975,
CrossRef Google scholar
J.S. Stacey, J.D. Kramers. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26 (2) (1975), pp. 207-221,
CrossRef Google scholar
R.H. Steiger, E. Jäger. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36 (3) (1977), pp. 359-362,
CrossRef Google scholar
J. Švedkauskaite-LeGore, K. Mayer, S. Millet, A. Nicholl, G. Rasmussen, D. Baltrunas. Investigation of the isotopic composition of lead and of trace elements concentrations in natural uranium materials as a signature in nuclear forensics. Radiochim. Acta, 95 (10) (2007), pp. 601-605,
CrossRef Google scholar
M. Tatsumoto, R.J. Knight, C.J. Allegre. Time differences in the formation of meteorites as determined from the ratio of Lead-207 to Lead-206. Science, 180 (4092) (1973), pp. 1279-1283,
CrossRef Google scholar
R.N. Taylor, O. Ishizuka, A. Michalik, J.A. Milton, I.W. Croudace. Evaluating the precision of Pb isotope measurement by mass spectrometry. J. Anal. At. Spectrom, 30 (1) (2015), pp. 198-213,
CrossRef Google scholar
M.F. Thirlwall. Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb–204Pb double spike. Chem. Geol., 163 (1–4) (2000), pp. 299-322,
CrossRef Google scholar
M.F. Thirlwall. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb-204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol., 184 (2002), pp. 255-279,
CrossRef Google scholar
R.I. Thorpe. The Pb Isotope Linear Array for Volcanogenic Massive Sulfide Deposits of the Abitibi and Wawa Subprovinces, Canadian Shield. M.D. Hannington, C.T. Barrie (Eds.), The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Society of Economic Geologists (1999), pp. 555-575,
CrossRef Google scholar
E. Todd, A. Stracke, E.E. Scherer. Effects of simple acid leaching of crushed and powdered geological materials on high-precision Pb isotope analyses. Geochem. Geophys. Geosyst., 16 (7) (2015), pp. 2276-2302,
CrossRef Google scholar
Tyrrell, S., Haughton , P.D., Daly , J.S., Shannon , P.M., Sylvester, P., 2012. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage. In: Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks , 42 . Mineralogical Association of Canada, Short Course Series, pp. 203–217.
S. Tyrrell, P.D.W. Haughton, J.S. Daly, T.F. Kokfelt, D. Gagnevin. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to upper carboniferous paleodrainage, Northern England. J. Sediment. Res., 76 (2) (2006), pp. 324-345,
CrossRef Google scholar
I.M. Villa, J.M. Hanchar. K-feldspar hygrochronology. Geochim. Cosmochim. Acta, 101 (2013), pp. 24-33,
CrossRef Google scholar
D. Weis, B. Kieffer, C. Maerschalk, W. Pretorius, J. Barling. High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem. Geophys. Geosyst., 6 (2) (2005), p. Q02002,
CrossRef Google scholar
D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. de Jong, G.A. Williams, D. Hanano, W. Pretorius, N. Mattielli, J.S. Scoates, A. Goolaerts, R.M. Friedman, J.B. Mahoney. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst., 7 (8) (2006), p. Q08006,
CrossRef Google scholar
M.J. Whitehouse. Pb-isotopic evidence for U-Th-Pb behaviour in a prograde amphibolite to granulite fades transition from the Lewisian complex of north-west Scotland: Implications for Pb-Pb dating. Geochim. Cosmochim. Acta, 53 (3) (1989), pp. 717-724,
CrossRef Google scholar
J.D. Woodhead, J.M. Hergt. Application of the ‘double spike’ technique to Pb-isotope geochronology. Chem. Geol., 138 (3–4) (1997), pp. 311-321,
CrossRef Google scholar
J.D. Woodhead, J.M. Hergt. Pb-isotope analyses of USGS reference materials. Geostand. Geoanal. Res., 24 (1) (2000), pp. 33-38,
CrossRef Google scholar
J.D. Woodhead, J.M. Hergt. Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostand. Geoanal. Res., 25 (2–3) (2001), pp. 261-266,
CrossRef Google scholar
J.D. Woodhead, F. Volker, M.T. McCulloch. Routine lead isotope determinations using a lead-207–lead-204 double spike: a long-term assessment of analytical precision and accuracy. Analyst, 120 (1) (1995), pp. 35-39,
CrossRef Google scholar
D. Xiang, Z. Zhang, T. Zack, D. Chew, Y. Yang, L. Wu, J. Hogmalm. Apatite U‐Pb dating with common Pb correction using LA‐ICP‐MS/MS. Geostand. Geoanal. Res., 45 (2021), pp. 621-642,
CrossRef Google scholar
A. Zametzer, C.L. Kirkland, M.I.H. Hartnady, M. Barham, D.C. Champion, S. Bodorkos, R.H. Smithies, S.P. Johnson. Applications of Pb isotopes in granite K-feldspar and Pb evolution in the Yilgarn Craton. Geochim. Cosmochim. Acta, 320 (2022), pp. 279-303,
CrossRef Google scholar
A. Zametzer, C.L. Kirkland, M. Barham, N.E. Timms, M.I.H. Hartnady, A.J. Cavosie, B. Ware, W.D.A. Rickard, T. Erickson. Feldspar Pb isotope evidence of cryptic impact-driven hydrothermal alteration in the Paleoproterozoic. Earth Planet. Sci. Lett., 607 (2023), p. 118073,
CrossRef Google scholar
R.E. Zartman, B.R. Doe. Plumbotectonics—the model. Tectonophysics, 75 (1–2) (1981), pp. 135-162,
CrossRef Google scholar
I.C. Zutterkirch, M. Barham, C.L. Kirkland, C. Elders. Contrasting detrital feldspar Pb isotope ratios and zircon geochronology to distinguish proximal versus distal transport. J. Geol., 131 (2023), pp. 25-73,
CrossRef Google scholar

37

Accesses

2

Citations

2

Altmetric

Detail

Sections
Recommended

/