Kaapvaal lamproite melts (aka orangeites): A new type of alkali-carbonate liquid? insights from olivine-hosted multiphase inclusions (Silvery Home, South Africa)

Adam Abersteiner , Alexey Tarasov , Alexander Golovin , Geoffrey H. Howarth , Vadim S. Kamenetsky

Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101864

PDF
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101864 DOI: 10.1016/j.gsf.2024.101864

Kaapvaal lamproite melts (aka orangeites): A new type of alkali-carbonate liquid? insights from olivine-hosted multiphase inclusions (Silvery Home, South Africa)

Author information +
History +
PDF

Abstract

Kaapvaal lamproites (aka orangeites) are a group of volatile-rich (H2O, CO2), micaceous, ultrapotassic igneous rocks that are unique to the Kaapvaal craton in southern Africa. However, the composition of the melts that give rise to these rocks remains poorly understood due to overprinting effects of contamination by mantle and crustal material, volatile exsolution, fractional crystallisation and post-magmatic alteration. Consequently, this lack of reliable data on the initial composition of the Kaapvaal lamproite melts hampers our understanding of their source, petrogenesis and ascent mechanisms.

Keywords

Lamproite / Kaapvaal / Multiphase inclusions / Olivine / Orangeite

Cite this article

Download citation ▾
Adam Abersteiner, Alexey Tarasov, Alexander Golovin, Geoffrey H. Howarth, Vadim S. Kamenetsky. Kaapvaal lamproite melts (aka orangeites): A new type of alkali-carbonate liquid? insights from olivine-hosted multiphase inclusions (Silvery Home, South Africa). Geoscience Frontiers, 2024, 15(5): 101864 DOI:10.1016/j.gsf.2024.101864

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Adam Abersteiner: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Writing – original draft, Writing – review & editing. Alexey Tarasov: Data curation, Investigation, Methodology, Visualization, Writing – review & editing. Alexander Golovin: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. Geoffrey H. Howarth: Resources, Writing – original draft, Writing – review & editing. Vadim S. Kamenetsky: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Jasper Berndt (University of Münster) and Benjamin Wade (University of Adelaide) for EMP assistance, Sari Lukkari (Geological Survey of Finland) for FE-SEM assistance. This manuscript has benefited from useful discussions with Andrea Giuliani and Sebastian Tappe. This is HelLabs publication number #0016. A.A.’s research is funded by the K. H. Renlund Foundation (Finland) and Future Making Fellowship (University of Adelaide). AVG and AAT were supported by the state assignment of IGM SB RAS (No.122041400157-9).

References

[1]

A. Antonakos, E. Liarokapis, T. Leventouri. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28 (2007), pp. 3043-3054,

[2]

A.V. Arefiev, A. Shatskiy, I.V. Podborodnikov, S.V. Rashchenko, A.D. Chanyshev, K.D. Litasov. The system K2CO3–CaCO3 at 3 GPa: link between phase relations and variety of K-Ca double carbonates at ≤ 0.1 and 6 GPa. Phys. Chem. Miner., 46 (2019), pp. 229-244,

[3]

Armstrong, J.T., 1988. Quantitative analysis of silicate and oxide minerals: Comparison of Monte Carlo, ZAF, and φ(ρz) procedures. In: Newbury, D.E. (Ed.), Microbeam Analysis, San Fransisco Press, 239-246.

[4]

V.G. Batanova, J.M. Thompson, L.V. Danyushevsky, M.V. Portnyagin, D. Garbe-Schönberg, E. Hauri, J.I. Kimura, Q. Chang, R. Senda, K. Goemann. New olivine reference material for in situ microanalysis. Geostand. Geoanal. Res., 43 (2019), pp. 453-473,

[5]

Becker, M., le Roex, A. P., Class, C., 2007. Geochemistry and petrogenesis of South African transitional kimberlites located on and off the Kaapvaal Craton. S. Afr. J. Geol. 110, 631-646. https://doi.org/10.2113/gssajg.110.4.631. Böttcher, M.E., Gehlken, P.-L., Skogby, H., Reutel, C., 1997. The vibrational spectra of BaMg(CO3)2 (norsethite). Mineral. Mag. 61, 249-256. https://doi.org/10.1180/minmag.1997.061.405.08.

[6]

M. Becker, A.P. le Roex. Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. J. Petrol., 47 (2006), pp. 673-703,

[7]

Y. Bussweiler, A. Giuliani, A. Greig, B.A. Kjarsgaard, D. Petts, S.E. Jackson, N. Barrett, Y. Luo, D.G. Pearson. Trace element analysis of high-Mg olivine by LA-ICP-MS–Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chem. Geol., 524 (2019), pp. 136-157,

[8]

N. Buzgar, A.I. Apopei. The Raman study of certain carbonates. Geologie Tomul L, 2 (2009), pp. 97-112, 10.13140/2.1.1358.3368

[9]

N. Buzgar, A. Buzatu, I.V. Sanislav. The Raman study on certain sulfates. An. Stiint. u. Al. I-Mat, 55 (2009), pp. 5-23

[10]

J.J. Donovan, T.N. Tingle. An improved mean atomic number background correction for quantitative microanalysis. Microsc. Microanal., 1 (1996), pp. 1-7,

[11]

J.J. Donovan, J.W. Singer, J.T. Armstrong. A new EPMA method for fast trace element analysis in simple matrices. Am. Mineral., 101 (8) (2016), pp. 1839-1853,

[12]

H.G. Edwards, S.E.J. Villar, J. Jehlicka, T. Munshi. FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim. Acta a., 61 (2005), pp. 2273-2280,

[13]

S.F. Foley. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28 (1992), pp. 435-453,

[14]

S.F. Foley, D. Prelevic, T. Rehfeldt, D.E. Jacob. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett., 363 (2013), pp. 181-191,

[15]

R.L. Frost, M.J. Dickfos. Raman spectroscopy of halogen-containing carbonates. J. Raman Spectrosc., 38 (2007), pp. 1516-1522,

[16]

J. Gao, W. Huang, X. Wu, D. Fan, Z. Wu, D. Xia, S. Qin. Compressibility of carbonophosphate bradleyite Na3Mg (CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner., 42 (2015), pp. 191-201,

[17]

A. Giuliani. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos, 312–313 (2018), pp. 322-342,

[18]

A. Giuliani, D. Phillips, J.D. Woodhead, V.S. Kamenetsky, M.L. Fiorentini, R. Maas, A. Soltys, R.A. Armstrong. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?. Nat. Commun., 6 (2015), p. 6837,

[19]

A. Giuliani, A. Soltys, D. Phillips, V.S. Kamenetsky, R. Maas, K. Goemann, J.D. Woodhead, R. Drysdale, W.L. Griffin. The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem. Geol., 455 (2017), pp. 342-356,

[20]

A. Giuliani, M.W. Schmidt, T.H. Torsvik, Y. Fedortchouk. Genesis and evolution of kimberlites. Nat. Rev. Earth Environ., 4 (2023), pp. 738-753,

[21]

A. Golovin, V. Kamenetsky. Compositions of kimberlite melts: A review of melt inclusions in kimberlite minerals. Petrology, 31 (2023), pp. 175-210,

[22]

A.V. Golovin, A.V. Korsakov, P.N. Gavryushkin, A.N. Zaitsev, V.G. Thomas, B.N. Moine. Raman spectra of nyerereite, gregoryite and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions. J. Raman Spectrosc., 48 (2017), pp. 1574-1582,

[23]

A.V. Golovin, I.S. Sharygin, V.S. Kamenetsky, A.V. Korsakov, G.M. Yaxley. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol., 483 (2018), pp. 261-274,

[24]

A.V. Golovin, I.S. Sharygin, A.V. Korsakov, V.S. Kamenetsky, A. Abersteiner. Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc., 51 (2020), pp. 1849-1867,

[25]

A.V. Golovin, A.A. Tarasov, E.V. Agasheva. Mineral Assemblage of Olivine-Hosted Melt Inclusions in a Mantle Xenolith from the V. Grib Kimberlite Pipe: Direct Evidence for the Presence of an Alkali-Rich Carbonate Melt in the Mantle Beneath the Baltic Super-Craton. Minerals, 13 (5) (2023), p. 645,

[26]

G.H. Howarth, T. Nembambula. Petrogenesis of Kaapvaal lamproites (aka orangeites) constrained by the composition of olivine and similarities with kimberlites and other diamondiferous lamproites. Lithos, 406–407 (2021),

[27]

P.V. Jentzsch, B. Kampe, V. Ciobotă, P. Rösch, J. Popp. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim. Acta a., 115 (2013), pp. 697-708,

[28]

V.S. Kamenetsky, M.B. Kamenetsky, A.V. Sobolev, A.V. Golovin, S. Demouchy, K. Faure, V.V. Sharygin, D.V. Kuzmin. Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. J. Petrol., 49 (2008), pp. 823-839,

[29]

V.S. Kamenetsky, M.B. Kamenetsky, Y. Weiss, O. Navon, T.F.D. Nielsen, T.P. Mernagh. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos, 112S (2009), pp. 334-346,

[30]

V.S. Kamenetsky, A.V. Golovin, R. Maas, A. Giuliani, M.B. Kamenetsky, Y. Weiss. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev., 139 (2014), pp. 145-167,

[31]

B.A. Kjarsgaard, D.G. Pearson, S. Tappe, G.M. Nowell, D.P. Dowall. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos, 112S (2009), pp. 236-248,

[32]

O. Klein-BenDavid, R. Wirth, O. Navon. TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am. Mineral., 91 (2006), pp. 353-365,

[33]

O. Klein-BenDavid, E.S. Izraeli, E. Hauri, O. Navon. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim. Cosmochim. Acta, 71 (2007), pp. 723-744,

[34]

O. Klein-BenDavid, A.M. Logvinova, M. Schrauder, Z.V. Spetius, Y. Weiss, E.H. Hauri, F.V. Kaminsky, N.V. Sobolev, O. Navon. High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos, 112 (2009), pp. 648-659,

[35]

E.N. Kozlov, E.N. Fomina, V.N. Bocharov, M.Y. Sidorov, N.S. Vlasenko, V.V. Shilovskikh. A Raman spectroscopic study of the natural carbonophosphates Na3MCO3PO4 (M is Mn, Fe, and Mg). Eur. J. Mineral., 33 (2021), pp. 283-297,

[36]

Lafuente, B., Downs, R. T., Yang, H., Stone, N., 2015. The power of databases: The RRUFF project. Highlights in Mineralogical Crystallography, 1-30. https://doi.org/

[37]

A.M. Logvinova, A. Shatskiy, R. Wirth, A.A. Tomilenko, S.S. Ugap'eva, N.V. Sobolev. Carbonatite melt in type Ia gem diamond. Lithos, 342–343 (2019), pp. 463-467,

[38]

D.A. McKeown, M.I. Bell, E.S. Etz. Raman spectra and vibrational analysis of the trioctahedral mica phlogopite. Am. Mineral., 84 (1999), pp. 970-976,

[39]

R.H. Mitchell. Kimberlites, Orangeites and Related Rocks. Plenum Press, New York (1995), p. 410 pp.

[40]

R.H. Mitchell. Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: a review of their nomenclature, characterization and origins. Geosci. Canada, 47 (2020), pp. 119-142, 10.12789/geocanj.2020.47.162

[41]

Mitchell, R. H., 1986. Kimberlites: Mineralogy, Geochemistry and Petrology. Plenum Publishing Company, New York, 442 pp. https://doi.org/10.1007/978-1-4899-0568-0.

[42]

M.L. Moreira, E.C. Paris, G.S. do Nascimento, V.M. Longo, J.R. Sambrano, V.R. Mastelaro, M.I.B. Bernardi, J. Andrés, J.A. Varela, E. Longo. Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Mater., 57 (2009), pp. 5174-5185,

[43]

D.G. Pearson, J. Woodhead, P.E. Janney. Kimberlites as geochemical probes of earth’s mantle. Elements, 15 (2019), pp. 387-392,

[44]

J. Perrin, D. Vielzeuf, D. Laporte, A. Ricolleau, G.R. Rossman, N. Floquet. Raman characterization of synthetic magnesian calcites. Am. Mineral., 101 (2016), pp. 2525-2538,

[45]

P. Richet, B.O. Mysen, J. Ingrin. High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys. Chem. Miner., 25 (1998), pp. 401-414,

[46]

Roedder, E., 1984. Fluid Inclusions, Michigan, Book Crafters Inc., Mineralogical Society of America, Reviews in Mineralogy, 12, 644 pp. https://doi.org/10.1515/9781501508271.

[47]

S. Sarkar, A. Giuliani, D. Phillips, G.H. Howarth, S. Ghosh, H. Dalton. Sublithospheric melt input in cratonic lamproites. Geology, 50 (11) (2022), pp. 1296-1300,

[48]

S. Sarkar, A. Giuliani, H. Dalton, D. Phillips, S. Ghosh, S. Misev, R. Maas. Derivation of lamproites and kimberlites from a common evolving source in the convective mantle: The case for southern African “transitional kimberlites”. J. Petrol., 64 (2023), p. egad043,

[49]

I.S. Sharygin, A.V. Golovin, A.V. Korsakov, N.P. Pokhilenko. Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia)–A new locality and host rock type. Eur. J. Mineral., 25 (2013), pp. 825-834,

[50]

I.S. Sharygin, A.V. Golovin, A.A. Tarasov, A.M. Dymshits, E. Kovaleva. Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkali-rich carbonate melt in the mantle beneath Kaapvaal Craton. J. Raman Spectrosc., 53 (3) (2021), pp. 508-524,

[51]

A. Shatskiy, P.N. Gavryushkin, I.S. Sharygin, K.D. Litasov, I.N. Kupriyanov, Y. Higo, Y.M. Borzdov, K.-I. Funakoshi, Y.N. Palyanov, E. Ohtani. Melting and subsolidus phase relations in the system Na2CO3-MgCO3±H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am. Mineral., 98 (2013), pp. 2172-2182,

[52]

A. Shatskiy, A.V. Arefiev, I.V. Podborodnikov, K.D. Litasov. Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Res., 75 (2019), pp. 154-171,

[53]

A. Shatskiy, A. Bekhtenova, I.V. Podborodnikov, A.V. Arefiev, K.D. Litasov. Metasomatic interaction of the eutectic Na- and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200°C: Toward carbonatite melt composition in SCLM. Lithos, 374–375 (2020), Article 105725,

[54]

E.M.W. Skinner. Contrasting Group I and Group II kimberlite petrology: towards a genetic model for kimberlites, Kimberlites and Related Rocks. 4th International Kimberlite Conference, Volume 1, Geological Society of Australia, Perth (1989), pp. 528-544

[55]

C.B. Smith. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature, 304 (1983), pp. 51-54,

[56]

A. Soltys, A. Giuliani, D. Phillips. A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos, 304–307 (2018), pp. 1-15,

[57]

S. Tappe, A.M. Shaikh, A.H. Wilson, A. Stracke. Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate. Geol. Soc. London Spec. Pubs., 15 (2021), pp. 17-44,

[58]

A. Tarasov, A. Golovin, I. Sharygin. Alkali-containing minerals within melt inclusions in olivine of mantle xenoliths from Bultfontein kimberlite pipe (Kaapvaal craton): evidence on high concentrations of alkalis in kimberlite melts. Geodyn. Tectonophys., 13 (2022), p. 0662,

[59]

M. Tovey, A. Giuliani, D. Phillips, S. Moss. Controls on the explosive emplacement of diamondiferous kimberlites: New insights from hypabyssal and pyroclastic units in the Diavik mine, Canada. Lithos, 360–361 (2020), Article 105410,

[60]

P. Ulmer, R.J. Sweeney. Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim. Cosmochim. Acta, 66 (2002), pp. 2139-2153,

[61]

P. Wagner. The diamond fields of southern Africa. Nature, 93 (1914), p. 527,

[62]

L.N. Warr. IMA–CNMNC approved mineral symbols. Mineral. Mag., 85 (2021), pp. 291-320,

[63]

Y. Weiss, R. Kessel, W.L. Griffin, I. Kiflawi, O. Klein-BenDavid, D.R. Bell, J.W. Harris, O. Navon. A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos, 112 (2009), pp. 660-674,

[64]

J. Woodhead, J. Hergt, A. Giuliani, R. Maas, D. Phillips, D.G. Pearson, G. Nowell. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature, 573 (2019), pp. 578-581,

[65]

A. Zaitsev, J. Keller, J. Spratt, T. Jeffries, V. Sharygin. Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Geol. Ore Deposits, 51 (2009), pp. 608-616,

[66]

D.A. Zedgenizov, A.L. Ragozin, V.S. Shatsky, D. Araujo, W.L. Griffin, H. Kagi. Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos, 112 (2009), pp. 638-647,

[67]

D.A. Zedgenizov, A.L. Ragozin, V.S. Shatsky, W.L. Griffin. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Mineral. Petrol., 173 (2018),

AI Summary AI Mindmap
PDF

327

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/