Kaapvaal lamproite melts (aka orangeites): A new type of alkali-carbonate liquid? insights from olivine-hosted multiphase inclusions (Silvery Home, South Africa)
Adam Abersteiner, Alexey Tarasov, Alexander Golovin, Geoffrey H. Howarth, Vadim S. Kamenetsky
Geoscience Frontiers ›› 2024, Vol. 15 ›› Issue (5) : 101864.
Kaapvaal lamproite melts (aka orangeites): A new type of alkali-carbonate liquid? insights from olivine-hosted multiphase inclusions (Silvery Home, South Africa)
Kaapvaal lamproites (aka orangeites) are a group of volatile-rich (H2O, CO2), micaceous, ultrapotassic igneous rocks that are unique to the Kaapvaal craton in southern Africa. However, the composition of the melts that give rise to these rocks remains poorly understood due to overprinting effects of contamination by mantle and crustal material, volatile exsolution, fractional crystallisation and post-magmatic alteration. Consequently, this lack of reliable data on the initial composition of the Kaapvaal lamproite melts hampers our understanding of their source, petrogenesis and ascent mechanisms.
Lamproite / Kaapvaal / Multiphase inclusions / Olivine / Orangeite
A. Antonakos, E. Liarokapis, T. Leventouri. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28 (2007), pp. 3043-3054,
CrossRef
Google scholar
|
A.V. Arefiev, A. Shatskiy, I.V. Podborodnikov, S.V. Rashchenko, A.D. Chanyshev, K.D. Litasov. The system K2CO3–CaCO3 at 3 GPa: link between phase relations and variety of K-Ca double carbonates at ≤ 0.1 and 6 GPa. Phys. Chem. Miner., 46 (2019), pp. 229-244,
CrossRef
Google scholar
|
Armstrong, J.T., 1988. Quantitative analysis of silicate and oxide minerals: Comparison of Monte Carlo, ZAF, and φ(ρz) procedures. In: Newbury, D.E. (Ed.), Microbeam Analysis, San Fransisco Press, 239-246.
|
V.G. Batanova, J.M. Thompson, L.V. Danyushevsky, M.V. Portnyagin, D. Garbe-Schönberg, E. Hauri, J.I. Kimura, Q. Chang, R. Senda, K. Goemann. New olivine reference material for in situ microanalysis. Geostand. Geoanal. Res., 43 (2019), pp. 453-473,
CrossRef
Google scholar
|
Becker, M., le Roex, A. P., Class, C., 2007. Geochemistry and petrogenesis of South African transitional kimberlites located on and off the Kaapvaal Craton. S. Afr. J. Geol. 110, 631-646. https://doi.org/10.2113/gssajg.110.4.631. Böttcher, M.E., Gehlken, P.-L., Skogby, H., Reutel, C., 1997. The vibrational spectra of BaMg(CO3)2 (norsethite). Mineral. Mag. 61, 249-256. https://doi.org/10.1180/minmag.1997.061.405.08.
|
M. Becker, A.P. le Roex. Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. J. Petrol., 47 (2006), pp. 673-703,
CrossRef
Google scholar
|
Y. Bussweiler, A. Giuliani, A. Greig, B.A. Kjarsgaard, D. Petts, S.E. Jackson, N. Barrett, Y. Luo, D.G. Pearson. Trace element analysis of high-Mg olivine by LA-ICP-MS–Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chem. Geol., 524 (2019), pp. 136-157,
CrossRef
Google scholar
|
N. Buzgar, A.I. Apopei. The Raman study of certain carbonates. Geologie Tomul L, 2 (2009), pp. 97-112, 10.13140/2.1.1358.3368
|
N. Buzgar, A. Buzatu, I.V. Sanislav. The Raman study on certain sulfates. An. Stiint. u. Al. I-Mat, 55 (2009), pp. 5-23
|
J.J. Donovan, T.N. Tingle. An improved mean atomic number background correction for quantitative microanalysis. Microsc. Microanal., 1 (1996), pp. 1-7,
CrossRef
Google scholar
|
J.J. Donovan, J.W. Singer, J.T. Armstrong. A new EPMA method for fast trace element analysis in simple matrices. Am. Mineral., 101 (8) (2016), pp. 1839-1853,
CrossRef
Google scholar
|
H.G. Edwards, S.E.J. Villar, J. Jehlicka, T. Munshi. FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochim. Acta a., 61 (2005), pp. 2273-2280,
CrossRef
Google scholar
|
S.F. Foley. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28 (1992), pp. 435-453,
CrossRef
Google scholar
|
S.F. Foley, D. Prelevic, T. Rehfeldt, D.E. Jacob. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett., 363 (2013), pp. 181-191,
CrossRef
Google scholar
|
R.L. Frost, M.J. Dickfos. Raman spectroscopy of halogen-containing carbonates. J. Raman Spectrosc., 38 (2007), pp. 1516-1522,
CrossRef
Google scholar
|
J. Gao, W. Huang, X. Wu, D. Fan, Z. Wu, D. Xia, S. Qin. Compressibility of carbonophosphate bradleyite Na3Mg (CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Phys. Chem. Miner., 42 (2015), pp. 191-201,
CrossRef
Google scholar
|
A. Giuliani. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos, 312–313 (2018), pp. 322-342,
CrossRef
Google scholar
|
A. Giuliani, D. Phillips, J.D. Woodhead, V.S. Kamenetsky, M.L. Fiorentini, R. Maas, A. Soltys, R.A. Armstrong. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?. Nat. Commun., 6 (2015), p. 6837,
CrossRef
Google scholar
|
A. Giuliani, A. Soltys, D. Phillips, V.S. Kamenetsky, R. Maas, K. Goemann, J.D. Woodhead, R. Drysdale, W.L. Griffin. The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem. Geol., 455 (2017), pp. 342-356,
CrossRef
Google scholar
|
A. Giuliani, M.W. Schmidt, T.H. Torsvik, Y. Fedortchouk. Genesis and evolution of kimberlites. Nat. Rev. Earth Environ., 4 (2023), pp. 738-753,
CrossRef
Google scholar
|
A. Golovin, V. Kamenetsky. Compositions of kimberlite melts: A review of melt inclusions in kimberlite minerals. Petrology, 31 (2023), pp. 175-210,
CrossRef
Google scholar
|
A.V. Golovin, A.V. Korsakov, P.N. Gavryushkin, A.N. Zaitsev, V.G. Thomas, B.N. Moine. Raman spectra of nyerereite, gregoryite and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions. J. Raman Spectrosc., 48 (2017), pp. 1574-1582,
CrossRef
Google scholar
|
A.V. Golovin, I.S. Sharygin, V.S. Kamenetsky, A.V. Korsakov, G.M. Yaxley. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol., 483 (2018), pp. 261-274,
CrossRef
Google scholar
|
A.V. Golovin, I.S. Sharygin, A.V. Korsakov, V.S. Kamenetsky, A. Abersteiner. Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths. J. Raman Spectrosc., 51 (2020), pp. 1849-1867,
CrossRef
Google scholar
|
A.V. Golovin, A.A. Tarasov, E.V. Agasheva. Mineral Assemblage of Olivine-Hosted Melt Inclusions in a Mantle Xenolith from the V. Grib Kimberlite Pipe: Direct Evidence for the Presence of an Alkali-Rich Carbonate Melt in the Mantle Beneath the Baltic Super-Craton. Minerals, 13 (5) (2023), p. 645,
CrossRef
Google scholar
|
G.H. Howarth, T. Nembambula. Petrogenesis of Kaapvaal lamproites (aka orangeites) constrained by the composition of olivine and similarities with kimberlites and other diamondiferous lamproites. Lithos, 406–407 (2021),
CrossRef
Google scholar
|
P.V. Jentzsch, B. Kampe, V. Ciobotă, P. Rösch, J. Popp. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim. Acta a., 115 (2013), pp. 697-708,
CrossRef
Google scholar
|
V.S. Kamenetsky, M.B. Kamenetsky, A.V. Sobolev, A.V. Golovin, S. Demouchy, K. Faure, V.V. Sharygin, D.V. Kuzmin. Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): Types, Compositions and Origins. J. Petrol., 49 (2008), pp. 823-839,
CrossRef
Google scholar
|
V.S. Kamenetsky, M.B. Kamenetsky, Y. Weiss, O. Navon, T.F.D. Nielsen, T.P. Mernagh. How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos, 112S (2009), pp. 334-346,
CrossRef
Google scholar
|
V.S. Kamenetsky, A.V. Golovin, R. Maas, A. Giuliani, M.B. Kamenetsky, Y. Weiss. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev., 139 (2014), pp. 145-167,
CrossRef
Google scholar
|
B.A. Kjarsgaard, D.G. Pearson, S. Tappe, G.M. Nowell, D.P. Dowall. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos, 112S (2009), pp. 236-248,
CrossRef
Google scholar
|
O. Klein-BenDavid, R. Wirth, O. Navon. TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am. Mineral., 91 (2006), pp. 353-365,
CrossRef
Google scholar
|
O. Klein-BenDavid, E.S. Izraeli, E. Hauri, O. Navon. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim. Cosmochim. Acta, 71 (2007), pp. 723-744,
CrossRef
Google scholar
|
O. Klein-BenDavid, A.M. Logvinova, M. Schrauder, Z.V. Spetius, Y. Weiss, E.H. Hauri, F.V. Kaminsky, N.V. Sobolev, O. Navon. High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos, 112 (2009), pp. 648-659,
CrossRef
Google scholar
|
E.N. Kozlov, E.N. Fomina, V.N. Bocharov, M.Y. Sidorov, N.S. Vlasenko, V.V. Shilovskikh. A Raman spectroscopic study of the natural carbonophosphates Na3MCO3PO4 (M is Mn, Fe, and Mg). Eur. J. Mineral., 33 (2021), pp. 283-297,
CrossRef
Google scholar
|
Lafuente, B., Downs, R. T., Yang, H., Stone, N., 2015. The power of databases: The RRUFF project. Highlights in Mineralogical Crystallography, 1-30. https://doi.org/
CrossRef
Google scholar
|
A.M. Logvinova, A. Shatskiy, R. Wirth, A.A. Tomilenko, S.S. Ugap'eva, N.V. Sobolev. Carbonatite melt in type Ia gem diamond. Lithos, 342–343 (2019), pp. 463-467,
CrossRef
Google scholar
|
D.A. McKeown, M.I. Bell, E.S. Etz. Raman spectra and vibrational analysis of the trioctahedral mica phlogopite. Am. Mineral., 84 (1999), pp. 970-976,
CrossRef
Google scholar
|
R.H. Mitchell. Kimberlites, Orangeites and Related Rocks. Plenum Press, New York (1995), p. 410 pp.
|
R.H. Mitchell. Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: a review of their nomenclature, characterization and origins. Geosci. Canada, 47 (2020), pp. 119-142, 10.12789/geocanj.2020.47.162
|
Mitchell, R. H., 1986. Kimberlites: Mineralogy, Geochemistry and Petrology. Plenum Publishing Company, New York, 442 pp. https://doi.org/10.1007/978-1-4899-0568-0.
|
M.L. Moreira, E.C. Paris, G.S. do Nascimento, V.M. Longo, J.R. Sambrano, V.R. Mastelaro, M.I.B. Bernardi, J. Andrés, J.A. Varela, E. Longo. Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Mater., 57 (2009), pp. 5174-5185,
CrossRef
Google scholar
|
D.G. Pearson, J. Woodhead, P.E. Janney. Kimberlites as geochemical probes of earth’s mantle. Elements, 15 (2019), pp. 387-392,
CrossRef
Google scholar
|
J. Perrin, D. Vielzeuf, D. Laporte, A. Ricolleau, G.R. Rossman, N. Floquet. Raman characterization of synthetic magnesian calcites. Am. Mineral., 101 (2016), pp. 2525-2538,
CrossRef
Google scholar
|
P. Richet, B.O. Mysen, J. Ingrin. High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys. Chem. Miner., 25 (1998), pp. 401-414,
CrossRef
Google scholar
|
Roedder, E., 1984. Fluid Inclusions, Michigan, Book Crafters Inc., Mineralogical Society of America, Reviews in Mineralogy, 12, 644 pp. https://doi.org/10.1515/9781501508271.
|
S. Sarkar, A. Giuliani, D. Phillips, G.H. Howarth, S. Ghosh, H. Dalton. Sublithospheric melt input in cratonic lamproites. Geology, 50 (11) (2022), pp. 1296-1300,
CrossRef
Google scholar
|
S. Sarkar, A. Giuliani, H. Dalton, D. Phillips, S. Ghosh, S. Misev, R. Maas. Derivation of lamproites and kimberlites from a common evolving source in the convective mantle: The case for southern African “transitional kimberlites”. J. Petrol., 64 (2023), p. egad043,
CrossRef
Google scholar
|
I.S. Sharygin, A.V. Golovin, A.V. Korsakov, N.P. Pokhilenko. Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia)–A new locality and host rock type. Eur. J. Mineral., 25 (2013), pp. 825-834,
CrossRef
Google scholar
|
I.S. Sharygin, A.V. Golovin, A.A. Tarasov, A.M. Dymshits, E. Kovaleva. Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkali-rich carbonate melt in the mantle beneath Kaapvaal Craton. J. Raman Spectrosc., 53 (3) (2021), pp. 508-524,
CrossRef
Google scholar
|
A. Shatskiy, P.N. Gavryushkin, I.S. Sharygin, K.D. Litasov, I.N. Kupriyanov, Y. Higo, Y.M. Borzdov, K.-I. Funakoshi, Y.N. Palyanov, E. Ohtani. Melting and subsolidus phase relations in the system Na2CO3-MgCO3±H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am. Mineral., 98 (2013), pp. 2172-2182,
CrossRef
Google scholar
|
A. Shatskiy, A.V. Arefiev, I.V. Podborodnikov, K.D. Litasov. Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Res., 75 (2019), pp. 154-171,
CrossRef
Google scholar
|
A. Shatskiy, A. Bekhtenova, I.V. Podborodnikov, A.V. Arefiev, K.D. Litasov. Metasomatic interaction of the eutectic Na- and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200°C: Toward carbonatite melt composition in SCLM. Lithos, 374–375 (2020), Article 105725,
CrossRef
Google scholar
|
E.M.W. Skinner. Contrasting Group I and Group II kimberlite petrology: towards a genetic model for kimberlites, Kimberlites and Related Rocks. 4th International Kimberlite Conference, Volume 1, Geological Society of Australia, Perth (1989), pp. 528-544
|
C.B. Smith. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature, 304 (1983), pp. 51-54,
CrossRef
Google scholar
|
A. Soltys, A. Giuliani, D. Phillips. A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos, 304–307 (2018), pp. 1-15,
CrossRef
Google scholar
|
S. Tappe, A.M. Shaikh, A.H. Wilson, A. Stracke. Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate. Geol. Soc. London Spec. Pubs., 15 (2021), pp. 17-44,
CrossRef
Google scholar
|
A. Tarasov, A. Golovin, I. Sharygin. Alkali-containing minerals within melt inclusions in olivine of mantle xenoliths from Bultfontein kimberlite pipe (Kaapvaal craton): evidence on high concentrations of alkalis in kimberlite melts. Geodyn. Tectonophys., 13 (2022), p. 0662,
CrossRef
Google scholar
|
M. Tovey, A. Giuliani, D. Phillips, S. Moss. Controls on the explosive emplacement of diamondiferous kimberlites: New insights from hypabyssal and pyroclastic units in the Diavik mine, Canada. Lithos, 360–361 (2020), Article 105410,
CrossRef
Google scholar
|
P. Ulmer, R.J. Sweeney. Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim. Cosmochim. Acta, 66 (2002), pp. 2139-2153,
CrossRef
Google scholar
|
P. Wagner. The diamond fields of southern Africa. Nature, 93 (1914), p. 527,
CrossRef
Google scholar
|
L.N. Warr. IMA–CNMNC approved mineral symbols. Mineral. Mag., 85 (2021), pp. 291-320,
CrossRef
Google scholar
|
Y. Weiss, R. Kessel, W.L. Griffin, I. Kiflawi, O. Klein-BenDavid, D.R. Bell, J.W. Harris, O. Navon. A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos, 112 (2009), pp. 660-674,
CrossRef
Google scholar
|
J. Woodhead, J. Hergt, A. Giuliani, R. Maas, D. Phillips, D.G. Pearson, G. Nowell. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature, 573 (2019), pp. 578-581,
CrossRef
Google scholar
|
A. Zaitsev, J. Keller, J. Spratt, T. Jeffries, V. Sharygin. Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai volcano, Tanzania. Geol. Ore Deposits, 51 (2009), pp. 608-616,
CrossRef
Google scholar
|
D.A. Zedgenizov, A.L. Ragozin, V.S. Shatsky, D. Araujo, W.L. Griffin, H. Kagi. Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos, 112 (2009), pp. 638-647,
CrossRef
Google scholar
|
D.A. Zedgenizov, A.L. Ragozin, V.S. Shatsky, W.L. Griffin. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Mineral. Petrol., 173 (2018),
CrossRef
Google scholar
|
/
〈 |
|
〉 |