Stable carbon isotope compositions of individual light hydrocarbons in oils: New indicator of source facies and maturity

Donglin Zhang , Meijun Li , Rongzhen Qiao

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102126

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102126 DOI: 10.1016/j.gsf.2025.102126
research-article

Stable carbon isotope compositions of individual light hydrocarbons in oils: New indicator of source facies and maturity

Author information +
History +
PDF

Abstract

Light hydrocarbons (LHs) are key components of petroleum, and the carbon isotopes composition (δ13C) of individual LHs contains a wealth of geochemical information. Forty-four oil samples from five different basins were analyzed using gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-isotope ratio mass spectrometry (GC-IRMS). The δ13C values of forty-three LHs were recognized and determined by comparing the GC and GC-IRMS methods. The results revealed significant differences in δ13C distribution characteristics among different LH compounds. The δ13C variation of individual LHs in iso-paraffins showed the widest range, followed by cycloalkanes and aromatics, whereas the δ13C variation in n-paraffins showed the narrowest range. The δ13C values of most individual LHs are primarily affected by the source facies and thermal evolution. Among them, c-1, 3-dimethylcyclohexane (c-1, 3DMCH) is mainly sourced from higher plants but may also form through abiotic mechanisms such as catalysis or cyclization. The δ13C values of c-1, 3DMCH (δ13Cc-1, 3DMCH) primarily exhibit parental genetic characteristics, enabling effective distinction of oil from different source facies. Specifically, the δ13Cc-1, 3DMCH in marine oils, lacustrine oils, terrigenous oils, and coal-formed oils are < -22‰, from -22‰ to −20.2‰, from −20.2‰ to −18.4‰, and > −18.4‰, respectively. Moreover, maturity is the primary controlling factor for δ13C values of 3MC7 (δ13C3MC7, 3MC7: 3-methylheptane), while the source facies serve as a secondary influence. The plot of δ13Cc-1, 3DMCH and δ13C3MC7 was introduced to classify source facies. As δ13Cc-1, 3DMCH and δ13C3MC7 increase, the source facies transits from marine to lacustrine, then terrigenous, and finally coal facies. Additionally, increasing δ13C3MC7 indicates a relative increase in maturity. Therefore, the δ13Cc-1, 3DMCH vs. δ13C3MC7 plot serves as an effective tool for distinguishing source facies and assessing relative maturity.

Keywords

Light hydrocarbons / Individual carbon isotope / Source facies / Maturity

Cite this article

Download citation ▾
Donglin Zhang, Meijun Li, Rongzhen Qiao. Stable carbon isotope compositions of individual light hydrocarbons in oils: New indicator of source facies and maturity. Geoscience Frontiers, 2025, 16(5): 102126 DOI:10.1016/j.gsf.2025.102126

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Donglin Zhang: Writing - review & editing, Methodology, Writing - original draft, Conceptualization. Meijun Li: Writing - review & editing, Resources, Supervision. Rongzhen Qiao: Soft-ware, Data curation, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was funded by the National Natural Science Founda-tion of China (Grant No. 42173054).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102126.

References

[1]

Abelson, P.H., Hoering, T.C., 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. PNAS 47 (5), 623-632. https://doi.org/10.1073/pnas.47.5.623.

[2]

Andrusevich, V.E., Engel, M.H., Zumberge, J.E., Brothers, L.A., 1998. Secular, episodic changes in stable carbon isotope composition of crude oils. Chem. Geol. 152 (1- 2), 59-72. https://doi.org/10.1016/S0009-2541(98)00096-5

[3]

Bjorøy, M., Hall, P.B., Hustad, E., Williams, J.A., 1992. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity. Org. Geochem. 19 (1-3), 89-105. https://doi.org/10.1016/0146-6380(92)90029-W

[4]

Brooks, J.D., Gould, K., Smith, J.W., 1969. Isoprenoid hydrocarbons in coal and petroleum. Nature 222, 257-259. https://doi.org/10.1038/222257a0.

[5]

Cai, C.F., Amrani, A., Worden, R.H., Xiao, Q.L., Wang, T.K., Gvirtzman, Z., Li, H.X., Said-Ahmad, W., Jia, L.Q., 2016. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the lower Paleozoic petroleum pools of the Tarim Basin, NW China. Geochim. Cosmochim. Acta 182, 88-108. https://doi.org/10.1016/j.gca.2016.02.036.

[6]

Cai, C.F., Dong, H.L., Li, H.T., Xiao, X.J., Ou, G.X., Zhang, C.M., 2007. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China. Chem. Geol. 236 (1-2), 167-179. https://doi.org/10.1016/j.chemgeo.2006.09.007.

[7]

Cai, C.F., Xiang, L., Yuan, Y.Y., Xu, C.L., He, W.X., Tang, Y.J., Borjigin, T., 2017. Sulfur and carbon isotopic compositions of the Permian to Triassic TSR and non-TSR altered solid bitumen and its parent source rock in NE Sichuan Basin. Org. Geochem. 105, 1-12. https://doi.org/10.1016/j.orggeochem.2016.12.004.

[8]

Cañipa-Morales, N.K., Galán-Vidal, C.A., Guzmán-Vega, M., Jarvie, D., 2003. Effect of evaporation on C 7 light hydrocarbon parameters. Org. Geochem. 34 (6), 813-826. https://doi.org/10.1016/S0146-6380(03)00002-0

[9]

Chang, X.C., Mao, L.X., Xu, Y.D., Li, T.T., 2017. C 8 light hydrocarbon parameters to indicate source facies and thermal maturity characterized by comprehensive two-dimensional gas chromatography. Energy Fuel 31 (9), 9223-9231. https://doi.org/10.1021/acs.energyfuels.7b01595.

[10]

Chen, J.H., Fu, J.M., Sheng, G.Y., Liu, D.H., Zhang, J.J., 1996. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils. Org. Geochem. 25 (3-4), 179-190. https://doi.org/10.1016/S0146-6380(96)00125-8

[11]

Chen, S., Wang, X.J., Li, X.Y., Sui, J.K., Yang, Y.D., Yang, Q., Li, Y.D., Dai, C.M., 2024. Geophysical prediction technology for sweet spots of continental shale oil: a case study of the Lianggaoshan Formation, Sichuan Basin, China. Fuel 365, 131146. https://doi.org/10.1016/j.fuel.2024.131146.

[12]

Chen, Z.H., Qiao, R.Z., Li, C.Y., Wang, D.Y., Cao, Y., 2022. Hydrocarbon generation potential and model of the deep lacustrine source rocks in the Dongying Depression, Bohai Bay Basin. Mar. Pet. Geol. 140, 105656. https://doi.org/10.1016/j.marpetgeo.2022.105656.

[13]

Chung, H.M., Rooney, M.A., Toon, M.B., Claypool, G.E., 1992. Carbon isotope composition of marine crude oils. AAPG Bull. 76 (7), 1000-1007. https://doi.org/10.1306/BDFF8952-1718-11D7-8645000102C1865D

[14]

Dai, J.X., Li, J., Luo, X., Zhang, W.Z., Hu, G.Y., Ma, C.H., Guo, J.M., Ge, S.G., 2005. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Org. Geochem. 36 (12), 1617-1635. https://doi.org/10.1016/j.orggeochem.2005.08.017.

[15]

Deng, H.Y., Zhang, H.Z., Zhang, Y.M., Chen, N.D., Mo, T., Cheng, B., Liao, Z.W., 2023. Genetic identification of light oils and condensates using dD indices of C 7 hydrocarbons: a case study in the Tarim Basin, NW China. Int. J. Coal Geol. 279, 104372. https://doi.org/10.1016/j.coal.2023.104372.

[16]

Farouk, S., Lofty, N.M., Qteishat, A., Ahmad, F., Shehata, A.M., Al-Kahtany, K., Hsu, C. S., 2023. Source and thermal maturity assessment of the Paleozoic-Mesozoic organic matter in the Risha gas field, Jordan. Fuel 335, 126998. https://doi.org/10.1016/j.fuel.2022.126998.

[17]

Fu, J., Li, M.J., Sun, Y.G., Li, Y.C., Yang, Y.C., Lu, X.L., Lai, G.T., 2023. Thermal maturity of crude oils in the Baiyun sag, Pearl River Mouth basin, South China Sea: Insights from biomarkers,aromatic hydrocarbon and adamantane compounds. Mar. Pet. Geol. 155, 106353. https://doi.org/10.1016/j.marpetgeo.2023.106353.

[18]

Gan, H.J., Wang, H., Shi, Y., Ma, Q.L., Liu, E.T., Yan, D.T., Pan, Z.J., 2020. Geochemical characteristics and genetic origin of crude oil in the Fushan sag, Beibuwan Basin, South China Sea. Pet. Geol. 112, 104114. https://doi.org/10.1016/j.marpetgeo.2019.104114.

[19]

Gentzis, T., Carvajal-Ortiz, H., 2018. Comparative study of conventional maturity proxies with the methyldiamondoid ratio: examples from West Texas, the Middle East, and northern South America. Int. J Coal Geol. 197, 115-125. https://doi.org/10.1016/j.coal.2018.08.009.

[20]

Graven, H., Keeling, R.F., Rogelj, J., 2020. Changes to carbon isotopes in atmospheric CO 2 over the industrial era and into the future. Glob. Biogeochem. Cycles 34 (11), 1-21. https://doi.org/10.1029/2019GB006170.

[21]

Hayes, J.M., Freeman, K.H., Popp, B.N., Hoham, C.H., 1990. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16 (4-6), 1115-1128. https://doi.org/10.1016/0146-6380(90)90147-R

[22]

He, J.H., Wang, T., Tang, Y.J., Zhang, D.L., Zhang, T.L., Diao, H., Liu, B., Hu, Y., 2023. Geochemical characteristics and gas-washing accumulation mechanism of hydrocarbon from the Xihu Sag, East China Sea Basin. Geoenergy Sci. Eng. 224, 211639. https://doi.org/10.1016/j.geoen.2023.211639.

[23]

Hu, G.Y., Peng, W.L., Yu, C., 2017. Insight into the C 8 light hydrocarbon compositional differences between coal-derived and oil-associated gases. J. Nat. Gas Geosci. 2 (3), 157-163. https://doi.org/10.1016/j.jnggs.2017.08.001.

[24]

Huang, S.P., Fang, C.C., Peng, W.L., Jiang, Q.C., Feng, Z.Q., 2017. Stable carbon isotopic composition of light hydrocarbons and n-alkanes of condensates in the Tarim Basin, NW China. J. Nat. Gas Geosci. 2 (3), 165-177. https://doi.org/10.1016/j.jnggs.2017.08.002.

[25]

Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 59 (17), 3581-3598. https://doi.org/10.1016/0016-7037(95)00225-O

[26]

Hunt, J.M., 1984. Generation and migration of light hydrocarbons. Science 226 (4680), 1265-1270. https://doi.org/10.1126/science.226.4680.126.

[27]

Hunt, J.M., Huc, A.C., Whelan, J.K., 1980. Generation of light hydrocarbons in sedimentary rocks. Nature 288 (5792), 688-690. https://doi.org/10.1038/ 288688A0.

[28]

Jia, W.L., Wang, Q.L., Peng, P.A., Xiao, Z.Y., Li, B.H., 2013. Isotopic compositions and biomarkers in crude oils from the Tarim Basin: Oil maturity and oil mixing. Org. Geochem. 57, 95-106. https://doi.org/10.1016/j.orggeochem.2013.01.002.

[29]

Jiang, W.M., Chen, C., Long, Z.L., Li, Y., Yang, C., Xiong, Y.Q., 2022. Geochemical characteristics and possible sources of crude oils in the Baiyun deep-water area of the Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 135, 105410. https://doi.org/10.1016/j.marpetgeo.2021.105410.

[30]

Kissin, Y.V., 1987. Free-radical reactions of high molecular weight isoalkanes. Ind. Eng. Chem. Res. 26 (8), 1633-1638. https://doi.org/10.1021/ie00068a023.

[31]

Kissin, Y.V., 1990. Catagenesis of light cycioalkanes in petroleum. Org. Geochem. 15 (6), 575-594. https://doi.org/10.1016/0146-6380(90)90103-7

[32]

Konan, N.F.D.S., Li, M.J., Mohammadian, E., Liu, B., Pan, Z.J., 2025. Stable carbon isotope compositions of polycyclic aromatic hydrocarbons: New indicator of crude oil maturation stage. Fuel 379, 133023. https://doi.org/10.1016/j.fuel.2024.133023.

[33]

Konan, N.F.D.S., Li, M.J., Tang, Y.J., Mohammadian, E., Liu, B., Tine, A.H.L., Olayinka, L. A., Pan, Z.J., 2024. Geochemical fingerprints of Dongpu Depression crude oils in Bohai Bay Basin, northern China: Insights from biomarkers and isotopic compositions of selected alkylnaphthalenes and alkylphenanthrenes. Org. Geochem. 195, 104845. https://doi.org/10.1016/j.orggeochem.2024.104845.

[34]

Koopmans, M.P., Köster, J., van Kaam-Peters, H.M.E., Kenig, F., Schouten, S., Hartgers, W.A., de Leeuw, J.W., Sinninghe Damsté J.S., 1996. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60 (22), 4467-4496. https://doi.org/10.1016/S0016-7037(96)00238-4

[35]

Körmös, S., Sachsenhofer, R.F., Bechtel, A., Radovics, B.G., Milota, K., Schubert, F., 2021. Source rock potential, crude oil characteristics and oil-to-source rock correlation in a Central Paratethys sub-basin, the Hungarian Palaeogene Basin (Pannonian basin). Mar. Pet. Geol. 127, 104955. https://doi.org/10.1016/j.marpetgeo.2021.104955.

[36]

Lafargue, E., Le Thiez, P., 1996. Effect of waterwashing on light ends compositional heterogeneity. Org. Geochem. 24 (12), 1141-1150. https://doi.org/10.1016/S0146-6380(96)00095-2

[37]

Leythaeuser, D., Schaefer, R., Cornford, C., Weiner, B., 1979. Generation and migration of light hydrocarbons (C2-C7) in sedimentary basins. Org. Geochem. 1 (4), 191-204. https://doi.org/10.1016/0146-6380(79)90022-6

[38]

Liao, Y.H., Fang, Y.X., Wu, L.L., Geng, A.S., Hsu, C.S., 2012. The characteristics of the biomarkers and d 13 C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis. Org. Geochem. 46, 56-65. https://doi.org/10.1016/j.orggeochem.2012.01.014.

[39]

Liu, W.N., Jia, W.L., Wang, Q., Chen, J., Li, J.B., Peng, P.A., 2024. Influencing factors of hydrogen isotopic fractionation of light hydrocarbons during evaporation and implications. Org. Geochem. 198, 104894. https://doi.org/10.1016/j.orggeochem.2024.104894.

[40]

Lu, X.L., Li, M.J., Li, Y.C., Yang, Y.C., Yang, H.Z., Wang, N., Ran, Z.C., Ali, S., 2024. Early Oligocene marine transgression and organic matter accumulation recorded in the upper Eocene to lower Oligocene Enping Formation of the Baiyun Sag, Pearl River Mouth Basin, South China Sea. J. Asian Earth Sci. 259, 105909. https://doi.org/10.1016/j.jseaes.2023.105909.

[41]

Mango, F.D., 1990. Theoriginoflightcycloalkanesinpetroleum.Geochim.Cosmochim. Acta54(1),23-27.https://doi.org/10.1016/0016-7037(90)90191-M

[42]

Mango, F.D., 1997. The light hydrocarbons in petroleum: a critical review. Org. Geochem. 26 (7-8), 417-440. https://doi.org/10.1016/S0146-6380(97)00031-4

[43]

Maslen, E., Grice, K., Le Métayer, P., Dawson, D., Edwards, D., 2011. Stable carbon isotopic compositions of individual aromatic hydrocarbons as source and age indicators in oils from western Australian basins. Org. Geochem. 42 (4), 387-398. https://doi.org/10.1016/j.orggeochem.2011.02.005.

[44]

Masterson, D., Dzou, L.I.P., Holba, A.G., Fincannon, A.L., Ellis, L., 2001. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org. Geochem. 32 (3), 411-441. https://doi.org/10.1016/S0146-6380(00)00187-X

[45]

Monin, J.C., Boudou, J.P., Durand, B., Oudin, J.L., 1981. Example of the enrichment of carbon-13 in coals in the process of coalification. Fuel 60 (10), 957-960. https://doi.org/10.1016/0016-2361(81)90091-0

[46]

Pedentchouk, N., Freeman, K.H., Harris, N.B., Clifford, D.J., Grice, K., 2004. Sources of alkylbenzenes in lower cretaceous lacustrine source rocks, West African Rift Basins. Org. Geochem. 35 (1), 33-45. https://doi.org/10.1016/j.orggeochem.2003.04.001.

[47]

Powell, T.G., Mckirdy, D.M., 1973. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nat. Phys. Sci. 243, 37-39. https://doi.org/10.1038/physci243037a0.

[48]

Qiao, R.Z., Li, M.J., Zhang, D.L., Xiao, H., 2024a. Distribution and origin of higher diamondoids in the ultra-deep Paleozoic condensates of the Shunbei oilfield in the Tarim Basin, NW China. Org. Geochem. 197, 104883. https://doi.org/10.1016/j.orggeochem.2024.104883.

[49]

Qiao, R.Z., Li, M.J., Zhang, D.L., Xiao, H., 2024b. Geochemistry and accumulation of the ultra-deep Ordovician oils in the Shunbei oilfield, Tarim Basin: Coupling of reservoir secondary processes and filling events. Mar. Pet. Geol. 167, 106959. https://doi.org/10.1016/j.marpetgeo.2024.106959.

[50]

Qiao, R.Z., Li, M.J., Zhang, D.L., Xiao, H., 2025a. Polycyclic aromatic compounds in crude oil as proxies for Permian Tarim large igneous province activities. Geosci. Front. 16 (2), 102000. https://doi.org/10.1016/j.gsf.2024.102000.

[51]

Qiao, R.Z., Li, M.J., Zhang, D.L., Xiao, H., 2025b. Enlightenment of geochemistry for ultra-deep petroleum accumulation: Coupling of secondary processes and filling events. Pet. Sci. 22 (4), 1465-1484. https://doi.org/10.1016/j.petsci.2025.02.019.

[52]

Qiao, R.Z., Li, M.J., Zhang, D.L., Xiao, H., 2025c. Sulfur ions reduce the activation energy of steranes and terpanes under hydrothermal action. Org. Geochem. 208, 105044. https://doi.org/10.1016/j.orggeochem.2025.105044.

[53]

Radke, M., Welte, D., 1981. The methylphenanthrene index (MPI):a maturity parameter based on aromatic hydrocarbons. In: Bjøroy, M. (Ed.), Advances in Organic Geochemistry. Wiley, Chichester, pp. 504-512.

[54]

Shanmugam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bull. 69 (8), 1241-1254. https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D

[55]

Silva, R.C., Silva, R.S.F., de Castro, E.V.R., Peters, K.E., Azevedo, D.A., 2013. Extended diamondoid assessment in crude oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Fuel 112, 125-133. https://doi.org/10.1016/j.fuel.2013.05.027.

[56]

Sofer, Z., 1984. Stable carbon isotope compositions of crude oils: Application to source depositional environments and petroleum alteration. AAPG Bull. 68 (1), 31-49. https://doi.org/10.1306/AD460963-16F7-11D7-8645000102C1865D

[57]

Thompson, K.F.M., 1983. Classification and thermal history of petroleum based on light hydrocarbons. Geochim. Cosmochim. Acta 47 (2), 303-316. https://doi.org/10.1016/0016-7037(83)90143-6

[58]

Thompson, K.F.M., 1987. Fractionated aromatic petroleums and the generation of gas-condensates. Org. Geochem. 11 (6), 573-590. https://doi.org/10.1016/0146-6380(87)90011-8

[59]

Thompson, K.F.M., 1979. Light hydrocarbons in subsurface sediments. Geochim. Cosmochim. Acta 43 (5), 657-672. https://doi.org/10.1016/0016-7037(79) 90251-5

[60]

Tian, L.J., Hu, G.Y., Guo, J.H., Wang, X.M., He, F., Qi, X.N., Li, Z.S., Guo, C.Y., 2023. New insight into abiotic or biotic gas in deep reservoirs of the CL-I gas field in Songliao Basin (China) by light hydrocarbons associated with natural gas. Mar. Pet. Geol. 149, 106091. https://doi.org/10.1016/j.marpetgeo.2022.106091.

[61]

Ungerer, P., Behar, F., Villalba, M., Heum, O.R., Audibert, A., 1988. Kinetic modelling of oil cracking. Org. Geochem. 13 (4-6), 857-868. https://doi.org/10.1016/0146-6380(88)90238-0

[62]

Wang, D.W., Kutuzov, I., Zhang, H., Cao, Z.C., Wang, Q.H., Amrani, A., Cai, C.F., 2024a. Application of sulfur isotopes of volatile organic sulfur compounds to determine the natural gas secondary alterations and possible sources in the Tarim Basin, NW China. Mar. Pet. Geol. 169, 107078. https://doi.org/10.1016/j.marpetgeo.2024.107078.

[63]

Wang, Q.H., Deng, H.Y., Mo, T., Zhang, H.Z., Cheng, B., Wang, Y.P., Liao, Z.W., 2024b. Carbon and hydrogen isotopic compositions of C7 hydrocarbons and their geochemical significance in light oils/condensates from the Kuqa Depression, Tarim Basin, NW China. Org. Geochem. 192, 104783. https://doi.org/10.1016/j.orggeochem.2024.104783.

[64]

Wang, X., Li, M.J., Shi, Y., Guo, H., Zeng, B., He, X., 2025. Detailed oil-source correlation within the sequence and sedimentary framework in the Fushan Depression, Beibuwan Basin, South China Sea. Pet. Sci. 22 (1), 90-109. https://doi.org/10.1016/j.petsci.2024.08.005.

[65]

Xiao, Q.L., Sun, Y.G., Zhang, Y.D., Chai, P.X., 2012. Stable carbon isotope fractionation of individual light hydrocarbons in the C6-C 8 range in crude oil as induced by natural evaporation: Experimental results and geological implications. Org. Geochem. 50, 44-56. https://doi.org/10.1016/j.orggeochem.2012.06.003.

[66]

Xiong, Y.Q., Geng, A.S., 2000. Carbon isotopic composition of individual light hydrocarbons evolved from pyrolysis of source rocks from Ying-Qiong Basins, China. Mar. Pet. Geol. 17 (9), 1041-1051. https://doi.org/10.1016/S0264-8172(00)00031-3

[67]

Xu, Q.L., Ma, Y.S., Song, X.M., Wang, Y.J., Xin, X.K., Chen, Z.X., 2017. Controlling factors and dynamical formation models of lacustrine organic matter accumulation for the Jurassic Da’anzhai Member in the central Sichuan Basin, southwestern China. Mar. Pet. Geol. 86, 1391-1405. https://doi.org/10.1016/j.marpetgeo.2017.07.014.

[68]

Zhai, J., He, K., Mi, J.K., Yang, C.L., Qi, X.N., Zhang, Q., Li, X.Q., 2023. Carbon isotope reversal gas generated in the hydrothermal experiments involving 1-MNa and MnCO3. ACS Earth Space Chem. 7 (3), 571-581. https://doi.org/10.1021/acsearthspacechem.2c00337.

[69]

Zhu, G.Y., Zhang, S.C., Huang, H.P., Liang, Y.B., Meng, S.C., Li, Y.G., 2011. Gas genetic type and origin of hydrogen sulfide in the Zhongba gas field of the western Sichuan Basin, China. Appl. Geochem 26 (7), 1261-1273. https://doi.org/10.1016/j.apgeochem.2011.04.016.

[70]

Zhu, X.J., Chen, J.F., Zhang, C., Wang, Y.X., Liu, K.X., Zhang, T., 2021. Effects of evaporative fractionation on diamondoid hydrocarbons in condensates from the Xihu Sag, East China Sea Shelf Basin. Mar. Pet. Geol. 126, 104929. https://doi.org/10.1016/j.marpetgeo.2021.104929.

[71]

Zhu, Y.M., Hao, F., Zou, H.Y., Cai, X.Y., Luo, Y., 2007. Jurassic oils in the central Sichuan basin, southwest China: Unusual biomarker distribution and possible origin. Org. Geochem. 38 (11), 1884-1896. https://doi.org/10.1016/j.orggeochem.2007.06.016.

[72]

Zhang, D.L., Li, M.J., Qiao, R.Z., Xiao, H., 2024. Applicability and limitation of aromatic maturity parameters in high-maturity oil from ultradeep reservoirs. Energy Fuel 38 (19), 18413-18430. https://doi.org/10.1021/acs.energyfuels.4c02159.

[73]

Zhang, D.L., Li, M.J., Qiao, R.Z., 2025. Applications of light hydrocarbons in petroleum geochemistry: a review. Earth-Sci. Rev. 267, 105164. https://doi.org/10.1016/j.earscirev.2025.105164.

[74]

Zhang, D., Wang, P., Mao, Z., Xu, G., 2010. Stable carbon isotope composition of monoterpanes in essential oils and crude oils. Sci. China Earth Sci. 53, 522-528. https://doi.org/10.1007/s11430-010-0038-7.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/