Arc magma evolution: Insights from magnesium and iron isotope in mafic-ultramafic rocks, Eastern Kunlun, NW China

Zhixiong Zhao , Guochen Dong , Shan Ke , Dicheng Zhu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102125

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102125 DOI: 10.1016/j.gsf.2025.102125
research-article

Arc magma evolution: Insights from magnesium and iron isotope in mafic-ultramafic rocks, Eastern Kunlun, NW China

Author information +
History +
PDF

Abstract

The origin of magnesium and iron isotope variations in mafic-ultramafic rocks has long been debated. In particular, a substantial lack of understanding exists regarding how the variation in the Mg and Fe isotopic compositions of arc magmas relates to fractional crystallization. Here, we report new Mg and Fe isotopic analyses of mafic-ultramafic rocks formed by co-genetic magmatic evolution in the Eastern Kunlun orogenic belt. The ultramafic and gabbro samples present mantle-like Mg isotopic compositions, with δ26Mg values ranging from −0.279‰ to −0.266‰ for wehrlite, −0.266‰ to −0.243‰ for clinopyroxenite, and −0.284‰ to −0.253‰ for gabbro. In contrast, the δ26Mg values of the hornblende gabbro samples are significantly higher (−0.195‰ to −0.176‰). These rocks have similar heavy Fe isotopic compositions, with δ56Fe values ranging from 0.020‰ to 0.157‰. The high δ26Mg values observed in the hornblende gabbro are interpreted as indicating a maximum of 6% olivine fractionation, whereas the slightly high δ26Mg values in the clinopyroxenite are ascribed to the accumulation of titanomagnetite. The Fe isotopic signatures of these rocks are inherited from magmatic sources. A comparison of the studied rocks with other mafic-ultramafic rocks implies that partial melting of mantle wedges induced by metasomatism of marine sediment-derived melts could generate “dry” arc magmatism, which would necessitate a more comprehensive and detailed analysis in further investigations.

Keywords

Mg-Fe isotopes / Mafic-ultramafic rocks / Fractionation crystallization / East Kunlun

Cite this article

Download citation ▾
Zhixiong Zhao, Guochen Dong, Shan Ke, Dicheng Zhu. Arc magma evolution: Insights from magnesium and iron isotope in mafic-ultramafic rocks, Eastern Kunlun, NW China. Geoscience Frontiers, 2025, 16(5): 102125 DOI:10.1016/j.gsf.2025.102125

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was financially co-supported by the National Nat-ural Science Foundation of China (Grant Nos. 42121002 and 91755207). We thank Dr. Shiying Zhang for assistance in Mg and Fe isotope measurements and AJE (www.aje.cn) for its linguistic assistance during the preparation of this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102125.

References

[1]

An, Y.J., Huang, J.X., Griffin, W.L., Liu, C.Z., Huang, F., 2017. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons. Geochim. Cosmochim. Acta 200, 167-185. https://doi.org/10.1016/j.gca.2016.11.041.

[2]

Beinlich, A., Mavromatis, V., Austrheim, H., Oelkers, E.H., 2014. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration - implications for the global Mg-cycle. Earth Planet. Sci. Lett. 392, 166-176. https://doi.org/10.1016/j.epsl.2014.02.028.

[3]

Chen, L.M., Teng, F.Z., Song, X.Y., Hu, R.Z., Yu, S.Y., Zhu, D., Kang, J., 2018. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion. Earth Planet. Sci. Lett. 487, 74-83. https://doi.org/10.1016/j.epsl.2018.01.036.

[4]

Chen, J.J., Fu, L.B., Wei, J.H., Selby, D., Zhang, D.H., Zhou, H.Z., Zhao, X., Liu, Y., 2020. Proto-Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian-Middle Devonian A-type magmatism, east Kunlun orogen, northern Tibetan plateau, China. Lithos 356-357, 105304. https://doi.org/10.1016/j.lithos.2019.105304.

[5]

Chen, Y.H., Niu, Y.L., Xue, Q.Q., Gao, Y.J., Castillo, P., 2021. An iron isotope perspective on back-arc basin development: Messages from Mariana Trough basalts. Earth Planet. Sci. Lett. 572, 117133. https://doi.org/10.1016/j.epsl.2021.117133.

[6]

Chen, Z.X., Chen, J.B., Tamehe, L.S., Zhang, Y.X., Zeng, Z.G., Zhang, T., Shuai, W.C., Yin, X.B., 2023. Light Fe isotopes in arc magmas from cold subduction zones: Implications for serpentinite-derived fluids oxidized the sub-arc mantle. Geochim. Cosmochim. Acta 342, 1-14. https://doi.org/10.1016/j.gca.2022.12.005.

[7]

Craddock, P.R., Warren, J.M., Dauphas, N., 2013. Abyssal peridotites reveal the near chondritic Fe isotopic composition of the Earth. Earth Planet. Sci. Lett. 365, 63-76. https://doi.org/10.1016/j.epsl.2013.01.011.

[8]

Cui, X.G., Xu, J.D., Yu, H.M., Zhao, B., Yang, W.J., Wei, F.X., 2022. Contribution of recycled sediments to the mantle reservoir beneath Hainan Island: Evidence from Sr, Nd, Pb, Hf, and Mg isotopic analyses of Late Cenozoic basalts. Geochemistry 82, 125883. https://doi.org/10.1016/j.chemer.2022.125883.

[9]

Debret, B., Reekie, C.D.J., Mattielli, N., Beunon, H., Menez, B., Savov, I.P., Williams, H. M., 2020. Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc. Geochem. Perspect. Lett. 12, 46-51. https://doi.org/10.7185/geochemlet.2003.

[10]

Deng, J., He, Y., Zartman, R.E., Yang, X., Sun, W., 2022. Large iron isotope fractionation during mantle wedge serpentinization: Implications for iron isotopes of arc magmas. Earth Planet. Sci. Lett. 583, 117423. https://doi.org/10.1016/j.epsl.2022.117423.

[11]

Dhuime, B., Bosch, D., Bodinier, J.L., Garrido, C.J., Bruguier, O., Hussain, S.S., Dawood, H., 2007. Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet. Sci. Lett. 261, 179-200. https://doi.org/10.1016/j.epsl.2007.06.026.

[12]

Dong, G.C., Luo, M.F., Mo, X.X., Zhao, Z.D., Dong, L.Q., Yu, X.H., Wang, X., Li, X.W., Huang, X.F., Liu, Y.B., 2018. Petrogenesis and tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geosci. Front. 9, 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003.

[13]

Dong, Y.P., Sun, S.S., Santosh, M., Hui, B., Sun, J.P., Zhang, F.F., Cheng, B., Yang, Z., Shi, X.H., He, D.F., Cheng, C., Liu, X.M., Zhou, X.H., Wang, W., Qi, N., 2022. Cross Orogenic Belts in Central China: Implications for the tectonic and paleogeographic evolution of the East Asian continental collage. Gondwana Res. 109, 18-88. https://doi.org/10.1016/j.gr.2022.04.012.

[14]

Du, D.H., Luo, X.L., Wang, X.L., Palmer, M.R., Ersoy, E.Y., Li, W.Q., 2024. A recipe for making potassium-rich magmas in collisional orogens: New insights from K and Fe isotopes. Earth Planet. Sci. Lett. 632, 118642. https://doi.org/10.1016/j.epsl.2024.118642.

[15]

Foden, J., Sossi, P.A., Nebel, O., 2018. Controls on the iron isotopic composition of global arc magmas. Earth Planet. Sci. Lett. 494, 190-201. https://doi.org/10.1016/j.epsl.2018.04.039.

[16]

Gao, T., Ke, S., Li, R., Meng, X., He, Y., Liu, C., Wang, Y., Li, Z., Zhu, J.M., 2019. High-precision magnesium isotope analysis of geological and environmental reference materials by multiple-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Sp. 33, 767-777. https://doi.org/10.1002/rcm.8376.

[17]

Gleeson, M.L.M., Gibson, S.A., Williams, H.M., 2020. Novel insights from Fe-isotopes into the lithological heterogeneity of Ocean Island Basalts and plume-influenced MORBs. Earth Planet. Sci. Lett. 535, 116114. https://doi.org/10.1016/j.epsl.2020.116114.

[18]

Guo, P.Y., Niu, Y.L., Chen, S., Duan, M., Sun, P., Chen, Y.H., Gong, H.M., Wang, X.H., 2023. Low-degree melt metasomatic origin of heavy Fe isotope enrichment in the MORB mantle. Earth Planet. Sci. Lett. 601, 117892. https://doi.org/10.1016/j.epsl.2022.117892.

[19]

He, D.F., Dong, Y.P., Zhang, F.F., Yang, Z., Sun, S.S., Cheng, B., Zhou, B., Liu, X.M., 2016. The 1.0 Ga S-type granite in the east Kunlun Orogen, northern Tibetan plateau: Implications for the Meso-to Neoproterozoic tectonic evolution. J. Asian Earth Sci. 130, 46-59. https://doi.org/10.1016/j.jseaes.2016.07.019.

[20]

He, Y.S., Ke, S., Teng, F.Z., Wang, T., Wu, H., Lu, Y., Li, S., 2015. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS. Geostand. Geoanal. Res. 39, 341-356. https://doi.org/10.1111/j.1751-908X.2014.00304.x

[21]

He, Y.S., Sun, A.Y., Zhang, Y.C., Yang, R.Y., Ke, S., Wang, Y., Teng, F.Z., 2022. High-precision and high-accuracy magnesium isotope analysis on multiple-collector inductively coupled plasma mass spectrometry using a critical mixture double spike technique. Solid Earth Sci. 7, 188-199. https://doi.org/10.1016/j.sesci.2022.05.001.

[22]

Herzberg, C., Asimow, P.D., 2015. PRIMELT 3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16, 563-578. https://doi.org/10.1002/2014GC005631.

[23]

Huang, F., Liu, Y.F., Xu, J.F., Liu, F., Lv, M.D., Zeng, Y.C., Zhang, Z.F., 2024. Mg-Ca-Fe isotopes of post-collisional magmatic rocks record the crust-mantle interaction processes beneath southern Tibet. Chem. Geol. 648, 121930. https://doi.org/10.1016/j.chemgeo.2024.121930.

[24]

Huang, J., Guo, S., Jin, Q.Z., Huang, F., 2020. Iron and magnesium isotopic compositions of subduction-zone fluids and implications for arc volcanism. Geochim. Cosmochim. Acta 278, 376-391. https://doi.org/10.1016/j.gca.2019.06.020.

[25]

Jagoutz, O., Müntener, O., Burg, J.P., Ulmer, P., Jagoutz, E., 2006. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet. Sci. Lett. 242, 320-342. https://doi.org/10.1016/j.epsl.2005.12.005.

[26]

Johnson, C., Beard, B., Weyer, S., 2020. High-temperature Fe isotope geochemistry. In: Johnson, C., Beard, B., Weyer, S. (Eds.), Iron Geochemistry: An Isotopic Perspective. Springer, Cham, pp. 85-147. https://doi.org/10.1007/978-3-030-33828-2_4.

[27]

Li, L., Xiao, W.J., Windley, B.F., Zhao, G.C., Yang, H., Sang, M., Jia, X.L., 2023. An early Paleozoic accumulation-foundering cycle of ultramafic cumulates in the Harlik arc and its implications for continental crustal growth in the Altaids. Lithos 462-463, 107404. https://doi.org/10.1016/j.lithos.2023.107404.

[28]

Li, S.G., Yang, W., Ke, S., Meng, X., Tian, H., Xu, L., He, Y., Huang, J., Wang, X.C., Xia, Q., Sun, W., Yang, X., Ren, Z.Y., Wei, H., Liu, Y., Meng, F., Yan, J., 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl. Sci. Rev. 4, 111-120. https://doi.org/10.1093/nsr/nww070.

[29]

Li, X., He, Y.S., Ke, S., Sun, A.Y., Zhang, Y.C., Wang, Y., Yang, R.Y., Wang, P.J., 2022. High-precision Fe isotope analysis on MC-ICPMS using a 57 Fe-58 Fe double spike technique. Atom. Spectrosc. 43, 164-173. https://doi.org/10.46770/AS.2022.062.

[30]

Liu, X.N., Hin, R.C., Coath, C.D., Soest, M., Melekhova, E., Elliott, T., 2022. Equilibrium olivine-melt Mg isotopic fractionation explains high d 26 Mg values in arc lavas. Geochem. Perspect. Lett. 22, 42-47. https://doi.org/10.7185/geochemlet.2226.

[31]

Liu, X.N., Hin, R.C., Coath, C.D., Elliott, T., 2024. Mg and Fe isotope compositions of mid-ocean ridge basalts modified by Mg-Fe inter-diffusion during melt transport. Earth Planet. Sci. Lett. 642, 118868. https://doi.org/10.1016/j.epsl.2024.118868.

[32]

Mazzeo, F.C., D’Antonio, M., Arienzo, I., Aulinas, M., Di Renzo, V., Gimeno, D., 2014. Subduction-related enrichment of the Neapolitan volcanoes (Southern Italy) mantle source: New constraints on the characteristics of the slab-derived components. Chem. Geol. 386, 165-183. https://doi.org/10.1016/j.chemgeo.2014.08.014.

[33]

Miao, Z., Li, X.Q., Zhao, Z.D., Niu, Y.L., Xu, B., Lei, H.S., Wu, J.K., Yang, Y.Y., Ma, Q., Liu, D., Wang, Q., Zhu, D.C., Mo, X.X., 2023. Deciphering mantle heterogeneity associated with ancient subduction-related metasomatism: insights from Mg-K isotopes in potassic alkaline rocks. Geochim. Cosmochim. Acta 348, 258-277. https://doi.org/10.1016/j.gca.2023.03.020.

[34]

Nebel, O., Sossi, P.A., B´enard, A., Wille, M., Vroon, P.Z., Arculus, R.J., 2015. Redox-variability and controls in subduction zones from an iron-isotope perspective. Earth Planet. Sci. Lett. 432, 142-151. https://doi.org/10.1016/j.epsl.2015.09.036.

[35]

Nebel, O., Sossi, P.A., B´enard, A., Arculus, Yaxley, R.J., Woodhead, G.M., Rhodri, J.D., Davies, D., Ruttor, S., 2019. Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes. Earth Planet. Sci. Lett. 521, 60-67. https://doi.org/10.1016/j.epsl.2019.05.037.

[36]

Pang, K.N., Teng, F.Z., Sun, Y., Chung, S.L., Zarrinkoub, M.H., 2020. Magnesium isotopic systematics of the Makran arc magmas, Iran: Implications for crust-mantle Mg isotopic balance. Geochim. Cosmochim. Acta 278, 110-121. https://doi.org/10.1016/j.gca.2019.10.005.

[37]

Pettigrew, N.T., Hattori, K.H., 2006. The Quetico intrusions of western Superior Province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions. Precambrian Res. 149, 21-42. https://doi.org/10.1016/j.precamres.2006.06.004.

[38]

Prissel, K.B., Krawczynski, M.J., Nie, N.X., Dauphas, N., Aarons, S.M., Heard, A.W., Hu, M.Y., Alp, E.E., Zhao, J.Y., 2024. Fractionation of iron and titanium isotopes by ilmenite and the isotopic compositions of lunar magma ocean cumulates. Geochim. Cosmochim. Acta 372, 154-170. https://doi.org/10.1016/j.gca.2024.01.006.

[39]

Schauble, E.A., 2004. Applying stable isotope fractionation theory to new systems. Rev. Mineral. Geochem. 55, 65-111. https://doi.org/10.2138/gsrmg.55.1.65.

[40]

Schuessler, J.A., Schoenberg, R., Sigmarsson, O., 2009. Iron and lithium isotope systematics of the Hekla volcano, Iceland—Evidence for Fe isotope fractionation during magma differentiation. Chem. Geol. 258, 78-91. https://doi.org/10.1016/j.chemgeo.2008.06.021.

[41]

Sedaghatpour, F., Jacobsen, S.B., 2019. Magnesium stable isotopes support the lunar magma ocean cumulate remelting model for mare basalts. Proc. Natl. Acad. Sci. 116, 73-78. https://doi.org/10.1073/pnas.1811377115.

[42]

Sedaghatpour, F., Teng, F.Z., Liu, Y., Sears, D.W.G., Taylor, L.A., 2013. Magnesium isotopic composition of the Moon. Geochim. Cosmochim. Acta 120, 1-16. https://doi.org/10.1016/j.gca.2013.06.026.

[43]

Shao, F.L., Niu, Y.L., Liu, Y., Chen, S., Kong, J.J., Duan, M., 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 282-283, 33-44. https://doi.org/10.1016/j.lithos.2017.03.002.

[44]

Sio, C.K.I., Dauphas, N., Teng, F.Z., Chaussidon, M., Helz, R.T., Roskosz, M., 2013. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim. Cosmochim. Acta 123, 302-321. https://doi.org/10.1016/j.gca.2013.06.008.

[45]

Soderman, C.R., Matthews, S., Shorttle, O., Jackson, M.G., Day, J.M.D., Kamenetsky, V., Williams, H.M., 2024. Global oceanic basalt sources and processes viewed through combined Fe and Mg stable isotopes. Earth Planet. Sci. Lett. 638, 118749. https://doi.org/10.1016/j.epsl.2024.118749.

[46]

Sossi, P.A., Foden, J.D., Halverson, G.P., 2012. Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania. Contrib. Mineral. Petrol. 164 (5), 757-772. https://doi.org/10.1007/s00410-012-0769-x

[47]

Su, B.X., Teng, F.Z., Hu, Y., Shi, R.D., Zhou, M.F., Zhu, B., Liu, F., Gong, X.H., Huang, Q.S., Xiao, Y., Chen, C., He, Y.S., 2015. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolites. Earth Planet. Sci. Lett. 430, 523-532. https://doi.org/10.1016/j.epsl.2015.08.020.

[48]

Su, B.X., Hu, Y., Teng, F.Z., Xiao, Y., Zhang, H.F., Sun, Y., Bai, Y., Zhu, B., Zhou, X.H., Ying, J.F., 2017. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism. Earth Planet. Sci. Lett. 522, 79-86. https://doi.org/10.1016/j.epsl.2019.06.016.

[49]

Sun, P., Niu, Y.L., Guo, P.Y., Duan, M., Chen, S., Gong, H.M., Wang, X.H., Xiao, Y.Y., 2020. Large iron isotope variation in the eastern Pacific mantle as a consequence of ancient low-degree melt metasomatism. Geochim. Cosmochim. Acta 286, 269-288. https://doi.org/10.1016/j.gca.2020.07.029.

[50]

Sun, Y., Teng, F.Z., Rooney, T.O., Pang, K.N., Wang, Z.Z., 2024. Magnesium isotope behavior during titanomagnetite fractionation in basaltic lavas. Chem. Geol. 655, 122088. https://doi.org/10.1016/j.chemgeo.2024.122088.

[51]

Teng, F.Z., Wadhwa, M., Helz, R.T., 2007. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet. Sci. Lett. 261, 84-92. https://doi.org/10.1016/j.epsl.2007.06.004.

[52]

Teng, F.Z., Dauphas, N., Helz, R.T., 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320, 1620-1622. https://doi.org/10.1126/science.1157166.

[53]

Teng, F.Z., Li, W.Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu, F.Y., Pourmand, A., 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim. Cosmochim. Acta 74, 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019.

[54]

Teng, F.Z., Dauphas, N., Huang, S., Marty, B., 2013. Iron isotopic systematics of oceanic basalts. Geochim. Cosmochim. Acta 107, 12-26. https://doi.org/10.1016/j.gca.2012.12.027.

[55]

Teng, F.Z., Hu, Y., Chauvel, C., 2016. Magnesium isotope geochemistry in arc volcanism. P. Natl. Acad. Sci. USA 113, 7082-7087. https://doi.org/10.1073/ pnas.1518456113.

[56]

Teng, F.Z., 2017. Magnesium isotope geochemistry. Rev. Mineral. Geochem. 82, 219-287. https://doi.org/10.2138/rmg.2017.82.7.

[57]

Toplis, M.J., Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J. Petrol. 36, 1137-1170. https://doi.org/10.1093/ petrology/36.5.1137.

[58]

Wang, S.J., Kang, J.T., Ding, X., Perfit, M.R., Wanless, V.D., Huang, F., 2024. Magnesium isotope behavior in oceanic magmatic systems: constraints from mid-ocean ridge lavas from the East Pacific Rise. Earth Planet. Sci. Lett. 638, 118739. https://doi.org/10.1016/j.epsl.2024.118739.

[59]

Wang, X.J., Chen, L.H., Hofmann, A.W., Hanyu, T., Kawabata, H., Zhong, Y., Xie, L.W., Shi, J.H., Miyazaki, T., Hirahara, Y., Takahashi, T., Senda, R., Chang, Q., Vaglarov, B.S., Kimura, J.I., 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. P. Natl. Acad. Sci. USA 115, 8682-8687. https://doi.org/10.1073/ pnas.1719570115.

[60]

Wang, X.J., Chen, L.H., Hanyu, T., Zhong, Y., Shi, J.H., Liu, X.W., Kawabata, H., Zeng, G., Xie, L.W., 2021. Magnesium isotopic fractionation during basalt differentiation as recorded by evolved magmas. Earth Planet. Sci. Lett. 565, 116954. https://doi.org/10.1016/j.epsl.2021.116954.

[61]

Williams, H.M., Bizimis, M., 2014. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth Planet. Sci. Lett. 404, 396-407. https://doi.org/10.1016/j.epsl.2014.07.033.

[62]

Wu, C., Zuza, A.V., Chen, X.H., Ding, L., Levy, D.A., Liu, C.F., Liu, W.C., Jiang, T., Stockli, D.F., 2019. Tectonics of the Eastern Kunlun Range: Cenozoic reactivation of a Paleozoic-early Mesozoic orogen. Tectonics 38, 1609-1650. https://doi.org/10.1029/2018TC005370.

[63]

Xiong, F.H., Ma, C.Q., Chen, B., Ducea, M.N., Hou, M.C., Ni, S.J., 2019. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: a window into paleo-arc magma feeding system. Lithos 340-341, 152-165. https://doi.org/10.1016/j.lithos.2019.05.012.

[64]

Yang, W., Teng, F.Z., Li, W.Y., Liu, S.A., Ke, S., Liu, Y.S., Zhang, H.F., Gao, S., 2016. Magnesium isotopic composition of the deep continental crust. Am. Mineral. 101, 243-252. https://doi.org/10.2138/am-2016-5275.

[65]

Yu, S.Y., Xu, Y.G., Huang, K.J., Lan, J.B., Chen, L.M., Zhou, S.H., 2021. Magnesium isotope constraints on contributions of recycled oceanic crust and lithospheric mantle to generation of intraplate basalts in a big mantle wedge. Lithos 398-399, 106327. https://doi.org/10.1016/j.lithos.2021.106327.

[66]

Zaronikola, N., Debaille, V., Rogkala, A., Petrounias, P., Mathur, R., Decr´ee, S., Pomonis, P., Hatzipanagiotou, K., Tsikouras, B., 2023. Investigation of metasomatism using Cu, Zn and Fe stable isotopes: Rodingitization of mafic and ultramafic rocks in ophiolites from northern Greece. Lithos 436-437, 106945. https://doi.org/10.1016/j.lithos.2022.106945.

[67]

Zhang, M.J., Liu, Y.G., Chen, A.P., Liang, K.K., Yang, Y., Xu, W.B., 2021. The tectonic links between Palaeozoic eclogites and mafic magmatic Cu-Ni-Co mineralization in East Kunlun orogenic belt, western China. Int. Geol. Rev. 65, 1158-1178. https://doi.org/10.1080/00206814.2021.1885504.

[68]

Zhao, X.M., Cao, H.H., Mi, X., Evans, N.J., Qi, Y.H., Huang, F., Zhang, H.F., 2017. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism. Contrib. Mineral. Petr. 172, 1-26. https://doi.org/10.1007/s00410-017-1356-y

[69]

Zhao, Z.X., Dong, G.C., Santosh, M., Zhu, D.C., Kong, H.L., S.J., Zhong, P.Y., 2025. The mafic-ultramafic roots of a magmatic arc from the East Kunlun Orogen, NW China. Gondwana Res. 143, 142-156. https://doi.org/10.1016/j.gr.2025.02.031.

[70]

Zhong, Y., Chen, L.H., Wang, X.J., Zhang, G.L., Xie, L.W., Zeng, G., 2017. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth Planet. Sci. Lett. 463, 127-135. https://doi.org/10.1016/j.epsl.2017.01.040.

[71]

Zhu, D.C., Wang, Q., Weinberg, R.F., Cawood, P.A., Chung, S.L., Zheng, Y.F., Zhao, Z.D., Hou, Z.Q., Mo, X.X., 2022. Interplay between oceanic subduction and continental collision in building continental crust. Nat. Commun. 13, 7141. https://doi.org/10.1038/s41467-022-34826-0.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/