Hydrochemical characteristics, driving factors and health risk of fluoride in groundwater from the northwestern Ordos Basin, China
Jiacong Tian , Zhanjun Wang , Kyriaki Daskalopoulou , Maoliang Zhang , Yaoqiang Huo , Yingnan Cao , Jucai Yang , Wei Liu , Jianguo Liu , Xu Sheng
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102123
Hydrochemical characteristics, driving factors and health risk of fluoride in groundwater from the northwestern Ordos Basin, China
Groundwater is essential for maintaining public health, promoting economic development, and ensuring ecosystem stability in arid and semi-arid regions. The northwestern Ordos Basin (China) primarily relies on groundwater from multilayered aquifer systems; however, our knowledge of the hydrochemical characteristics and water quality of groundwater in this region is limited. Here, we employed a newly collected dataset of 94 groundwater samples from different aquifers to constrain the source, controlling processes of fluoride in groundwater, and its potential health risk in the area. Groundwater is characterized by Na-Cl and Na-SO4 types with a minor Na-HCO3 type, which is primarily controlled by ion exchange, silicate weathering, and the dissolution of carbonate and evaporite minerals. Of the groundwater samples, 42% exceeded the fluoride limit of 1.5 mg/L established by the World Health Organization (WHO). This is mainly attributed to geogenic sources, including fluorine-bearing mineral dissolution, cation exchange, evaporation, and competitive adsorption. The water quality index suggests that most samples are unsuitable for drinking. Health risk assessment results based on the Monte Carlo simulation indicate that children face significantly higher non-carcinogenic health risks from fluoride exposure than adults (both males and females). These findings provide new insights into the complex hydrogeochemical evolution of fluoride in groundwater and the groundwater quality status in multi-aquifer systems, contributing to the sustainable development and management of groundwater resources in the Ordos Basin.
Northwestern Ordos Basin / Groundwater / Fluoride / Hydrogeochemistry / Water quality / Health risk assessment
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
USEPA, 1989. Risk assessment guidance for superfund volume I:human health evaluation manual (Part A). Office of Emergency and Remedial Response, Washington DC, USA. |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
WHO, 2017. Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. p. 116. |
| [69] |
WHO, 2022. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda, p. 614. |
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
/
| 〈 |
|
〉 |