Hydrochemical characteristics, driving factors and health risk of fluoride in groundwater from the northwestern Ordos Basin, China

Jiacong Tian , Zhanjun Wang , Kyriaki Daskalopoulou , Maoliang Zhang , Yaoqiang Huo , Yingnan Cao , Jucai Yang , Wei Liu , Jianguo Liu , Xu Sheng

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102123

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102123 DOI: 10.1016/j.gsf.2025.102123

Hydrochemical characteristics, driving factors and health risk of fluoride in groundwater from the northwestern Ordos Basin, China

Author information +
History +
PDF

Abstract

Groundwater is essential for maintaining public health, promoting economic development, and ensuring ecosystem stability in arid and semi-arid regions. The northwestern Ordos Basin (China) primarily relies on groundwater from multilayered aquifer systems; however, our knowledge of the hydrochemical characteristics and water quality of groundwater in this region is limited. Here, we employed a newly collected dataset of 94 groundwater samples from different aquifers to constrain the source, controlling processes of fluoride in groundwater, and its potential health risk in the area. Groundwater is characterized by Na-Cl and Na-SO4 types with a minor Na-HCO3 type, which is primarily controlled by ion exchange, silicate weathering, and the dissolution of carbonate and evaporite minerals. Of the groundwater samples, 42% exceeded the fluoride limit of 1.5 mg/L established by the World Health Organization (WHO). This is mainly attributed to geogenic sources, including fluorine-bearing mineral dissolution, cation exchange, evaporation, and competitive adsorption. The water quality index suggests that most samples are unsuitable for drinking. Health risk assessment results based on the Monte Carlo simulation indicate that children face significantly higher non-carcinogenic health risks from fluoride exposure than adults (both males and females). These findings provide new insights into the complex hydrogeochemical evolution of fluoride in groundwater and the groundwater quality status in multi-aquifer systems, contributing to the sustainable development and management of groundwater resources in the Ordos Basin.

Keywords

Northwestern Ordos Basin / Groundwater / Fluoride / Hydrogeochemistry / Water quality / Health risk assessment

Cite this article

Download citation ▾
Jiacong Tian, Zhanjun Wang, Kyriaki Daskalopoulou, Maoliang Zhang, Yaoqiang Huo, Yingnan Cao, Jucai Yang, Wei Liu, Jianguo Liu, Xu Sheng. Hydrochemical characteristics, driving factors and health risk of fluoride in groundwater from the northwestern Ordos Basin, China. Geoscience Frontiers, 2025, 16(5): 102123 DOI:10.1016/j.gsf.2025.102123

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jiacong Tian: Writing - original draft, Visualization, Methodol-ogy, Investigation, Conceptualization. Zhanjun Wang: Writing - review & editing, Resources, Investigation. Kyriaki Daskalopou-lou: Writing - review & editing, Conceptualization. Maoliang Zhang: Writing - review & editing. Yaoqiang Huo: Writing - review & editing, Resources. Yingnan Cao: Writing - review & editing, Investigation. Jucai Yang: Writing - review & editing. Wei Liu: Writing - review & editing, Supervision, Project adminis-tration, Conceptualization. Jianguo Liu: Writing - review & editing, Supervision, Investigation. Sheng Xu: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (2024QN04014), the Open Research Fund of Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research (Grant No. YSS202401), Sci-entific Research Support Program for Introducing Talents at the Inner Mongolia Autonomous Region of China (DC2400002177 and DC2400003177), Major Projects of Erdos Science and Technol-ogy (Project No. 2022EEDSKJZDZX015), and Applied technology research and development project in Jungar Banner of Inner Mon-golia Autonomous Region of China (2023YY-13). We thank Huaiz-hong Chang and Yuan Fan for the water chemical analysis.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102123.

References

[1]

Abbasnia A., Alimohammadi M., Mahvi A.H., Nabizadeh R., Yousefi M., Mohammadi A.A., Pasalari H., Mirzabeigi M., 2018. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief 16, 182-192. https://doi.org/10.1016/j.dib.2017.11.003.

[2]

Abdelsatar M.M., EL-Shenawy M.I., Wahed M.S.A., 2024. Investigation of groundwater based on stable isotopes and major ion geochemistry in the Eocene carbonate aquifer, East Beni-Suef area, Eastern Desert, Egypt. Groundw. Sustain. Dev. 24, 101064. https://doi.org/10.1016/j.gsd.2023.101064.

[3]

Ahmed A.A., Shabana A.R., Saleh A.A., 2019. Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in arid region from Eastern Desert, Egypt. J. Afr. Earth. Sci. 151, 36-46. https://doi.org/10.1016/j.jafrearsci.2018.11.024.

[4]

Aktar S., Islam A.R.M.T., Moniruzzaman M., Siddique M.A.B., Al Masud M.A., Islam A., Pal S.C., Subba Rao N., Maallick J., 2025. Fluoride enrichment and hydrogeochemical characteristics in coastal multi-aquifers: implications for public health and nutrition. Phys. Chem. Earth 139, 103924. https://doi.org/10.1016/j.pce.2025.103924.

[5]

Ayub M., Javed H., Rashid A., Khan W.H., Javed A., Sardar T., Shah G.M., Ahmad A., Rinklebe J., Ahmad P., 2024. Hydrogeochemical properties, source provenance, distribution, and health risk of high fluoride groundwater: geochemical control, and source apportionment. Environ. Pollut. 362, 125000. https://doi.org/10.1016/j.envpol.2024.125000.

[6]

Bakshe P., Chandran M., Viju B.J., Narikkatan A.K., Jugade R.M., 2024. Hydrogeochemical factors influencing the dynamics of groundwater characteristics in eco-sensitive areas of the Southern Western Ghats, India. Sci. Rep. 14 (1), 19143. https://doi.org/10.1038/s41598-024-67988-6.

[7]

Ball J.W., Nordstrom D.K., 1991. WATEQ4F-User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. USGS Open-File Report, 90-129. https://doi.org/10.3133/ofr90129.

[8]

Bazeli J., Ghalehaskar S., Morovati M., Soleimani H., Masoumi S., Sani A.R., Saghi M.H., Rastegar A., 2022. Health risk assessment techniques to evaluate non-carcinogenic human health risk due to fluoride, nitrite and nitrate using Monte Carlo simulation and sensitivity analysis in Groundwater of Khaf County, Iran. Int. J. Environ. Anal. Chem. 102 (8), 1793-1813. https://doi.org/10.1080/03067319.2020.1743280.

[9]

Ben Moussa A., Salem S.B.H., Zouari K., Jelassi F., 2017. Hydrochemical and stable isotopic investigation of groundwater quality and its sustainability for irrigation in the Hammamet-Nabeul basin, northeastern Tunisia. Arab. J. Geosci. 10 (20), 446. https://doi.org/10.1007/s12517-017-3233-4.

[10]

Brhane G.K., 2018. Characterization of hydrochemistry and groundwater quality evaluation for drinking purpose in Adigrat area, Tigray, northern Ethiopia. Water Sci. 32 (2), 213-229. https://doi.org/10.1016/j.wsj.2018.09.003.

[11]

Cao H.L., Xie X.J., Wang Y.X., Liu H.X., 2022. Predicting geogenic groundwater fluoride contamination throughout China. J. Environ. Sci. 115, 140-148. https://doi.org/10.1016/j.jes.2021.07.005.

[12]

Chaudhuri R., Sahoo S., Debsarkar A., Hazra S., 2024. Fluoride contamination in groundwater—A review. In: ShitP.K., DuttaD., DasT.K., DasS., BhuniaG.S., DasP., SahooS. (Geospatial Practices in Natural Resources Management.Eds.), Springer, Cham, pp. 331-354.

[13]

Chen W.K., Liu F.Y., Wu L., Zhang C.Y., Zhang H.W., Wang Y.J., Zhang Q., Xiao A.C., 2022. Early cretaceous extensional allochthons in the Taihang Shan associated with destruction of the North China Craton. J. Asian. Earth. Sci. 232, 104933. https://doi.org/10.1016/j.jseaes.2021.104933.

[14]

Cherukumilli K., Delaire C., Amrose S., Gadgil A.J., 2017. Factors governing the performance of bauxite for fluoride remediation of groundwater. Environ. Sci. Technol. 51 (4), 2321-2328. https://doi.org/10.1021/acs.est.6b04601.

[15]

Cui H., Duan L.M., Pan H., Liu T.X., 2025. Geochemical pattern, quality and driving forces of multi-layer groundwater in a high-capacity mining area basin: a comprehensive analysis based on the interweaving of multiple factors. J. Hydrol. 660, 133376. https://doi.org/10.1016/j.jhydrol.2025.133376.

[16]

De A., Das A., Joardar M., Mridha D., Majumdar A., Das J., Roychowdhury T., 2023. Investigating spatial distribution of fluoride in groundwater with respect to hydro-geochemical characteristics and associated probabilistic health risk in Baruipur block of West Bengal, India. Sci. Total. Environ. 886, 163877. https://doi.org/10.1016/j.scitotenv.2023.163877.

[17]

Deng X.Q., Chu M.J., Wang L., Chen X., Wang Y.X., 2024. Two stages of subsidence and its formation mechanisms in Mid-late Triassic Ordos Basin, NW China. Petrol. Explor. Dev. 51 (3), 576-588. https://doi.org/10.1016/S1876-3804(24)60489-1.

[18]

Dong F.Y., Yin H.Y., Cheng W.J., Li Y.J., Qiu M., Zhang C.W., Tang R.Q., Xu G.L., Zhang L.F., 2022. Study on water inrush pattern of Ordovician limestone in North China Coalfield based on hydrochemical characteristics and evolution processes: a case study in Binhu and Wangchao Coal Mine of Shandong Province, China. J. Clean. Prod. 380, 134954. https://doi.org/10.1016/j.jclepro.2022.134954.

[19]

Feng F., Jia Y.F., Yang Y., Huan H., Lian X.Y., Xu X.J., Xia F., Han X., Jiang Y.H., 2020. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environ. Sci. Pollut. Res. 27 (28), 34840-34861. https://doi.org/10.1007/s11356-020-09784-z.

[20]

Fuentes-Rivas R.M., Santacruz-De Leon G., Ramos-Leal J.A., Alvarez-Bastida C., Moran-Ramirez J., 2024. Hydrogeochemical processes, and health risk assessment of groundwater, in Santa María del rio aquifer: a case study of San Luis Potosí valley, Mexico. Groundw. Sustain. Dev. 26, 101268. https://doi.org/10.1016/j.gsd.2024.101268.

[21]

Gaillardet J., Dupré B., Louvat P., Allègre C.J., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159 (1-4), 3-30. https://doi.org/10.1016/s0009-2541(99)00031-5.

[22]

Gomes L.A., Barbosa N.S., Debruyne D., Barbosa N., Moitinho D.E.R., Peixoto R., Santos C.B., Peixinho M.A.L., 2023. Hydrogeochemical processes and groundwater evolution of the Sao Sebastiao-Marizal aquifer system in the Tucano Central Basin, Bahia, Brazil. J. South. Am. Earth. Sci. 127, 104413. https://doi.org/10.1016/j.jsames.2023.104413.

[23]

Gonzalez Dan J.R., Guix A., Marti V., Arnaldos J., Darbra R.M., 2016. Monte Carlo simulation as a tool to show the influence of the human factor into the quantitative risk assessment. Process. Saf. Environ. Prot. 102, 441-449. https://doi.org/10.1016/j.psep.2016.04.024.

[24]

Guo Q.H., Wang Y.X., Guo Q.S., 2010. Hydrogeochemical genesis of groundwaters with abnormal fluoride concentrations from Zhongxiang City, Hubei Province, central China. Environ. Earth. Sci. 60 (3), 633-642 http://10.1007/s12665-009-0203-5.

[25]

Hamzaoui-Azaza F., Tlili-Zrelli B., Bouhlila R., Gueddari M., 2013. An integrated statistical methods and modelling mineral-water interaction to identifying hydrogeochemical processes in groundwater in Southern Tunisia. Chem. Spec. Bioavailab. 25(3),165-178.https://doi.org/10.3184/095422913x13785679075430.

[26]

Hari Raj M.R., Karunanidhi D., Roy P.D., Subramani T., 2025. Fluoride enrichment in groundwater and its association with other chemical ingredients using GIS in the Arjunanadi River basin, Southern India: implications from improved water quality index and health risk assessment. Phys. Chem. Earth. 137, 103765. https://doi.org/10.1016/j.pce.2024.103765.

[27]

He J., An Y.H., Zhang F.C., 2013. Geochemical characteristics and fluoride distribution in the groundwater of the Zhangye Basin in Northwestern China. J. Geochem. Explor. 135, 22-30. https://doi.org/10.1016/j.gexplo.2012.12.012.

[28]

Hossain M., Patra P.K., 2020. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. Ecotoxicol. Environ. Saf. 189, 110038. https://doi.org/10.1016/j.ecoenv.2019.110038.

[29]

Hou G.C., Liang Y.P., Yin L.H., Tao Z.P., Zhao Z.H., Yang Y.C., Wang X.Y., 2009. Groundwater systems and water resources potential in the Ordos Basin. Hydrogeol. Eng. Geol. 36 (1), 18-23 (in Chinese with English abstract)

[30]

Hu Y.H., Xia C.L., Dong Z.B., Liu G.J., 2017. Geochemical characterization of fluoride in the groundwater of the Huaibei Plain, China. Anal. Lett. 50 (5), 889-903. https://doi.org/10.1080/00032719.2016.1199027.

[31]

Islam R., Sinha A., Hussain A., Usama M., Ali S., Ahmed S., Gani A., Hassan N.E., Mohammadi A.A., Deshmukh K., 2024. Application of Monte Carlo simulation and artificial neural network model to probabilistic health risk assessment in fluoride-endemic areas. Heliyon 10 (24), e40887. https://doi.org/10.1016/j.heliyon.2024.e40887.

[32]

Ji D., Ma J., Xue J.Z., Wu X.H., Wang Z.Y., Wei S., 2024. Identifying groundwater characteristics and controlling factors in Jiaozhou Bay's northern coastal region, China: a combined approach of multivariate statistics, isotope analysis, and field empirical investigations. Sci. Rep. 14 (1), 23856. https://doi.org/10.1038/s41598-024-75425-x

[33]

Jiang C.L., Zhao Q., Zheng L.G., Chen X., Li C., Ren M.X., 2021. Distribution, source and health risk assessment based on the Monte Carlo method of heavy metals in shallow groundwater in an area affected by mining activities, China. Ecotoxicol. Environ. Saf. 224, 112679. https://doi.org/10.1016/j.ecoenv.2021.112679.

[34]

Kamtchueng B.T., Fantong W.Y., Ueda A., Tiodjio E.R., Anazawa K., Wirmvem M.J., Mvondo J.O., Nkamdjou L.S., Kusakabe M., Ohba T., Tanyileke G., Hell J.V., 2014. Assessment of shallow groundwater in Lake Nyos catchment (Cameroon, Central-Africa): implications for hydrogeochemical controls and uses. Environ. Earth. Sci. 72 (9), 3663-3678. https://doi.org/10.1007/s12665-014-3278-6.

[35]

Kumar P., Kumar M., Barnawi A.B., Maurya P., Singh S., Shah D., Yadav V.K., Kumar A., Kumar R., Yadav K.K., Gacem A., Ahmad A., Patel A., Alreshidi M.A., Singh V., Yaseen Z.M., Cabral-Pinto M.M.S., Vinayak V., Wanale S.G., 2024. A review on fluoride contamination in groundwater and human health implications and its remediation: a sustainable approaches. Environ. Toxicol. Pharmacol. 106, 104356. https://doi.org/10.1016/j.etap.2023.104356.

[36]

Li R., Yan Y.T., Xu J.Q., Yang C., Chen S., Wang Y.S., Zhang Y.H., 2024a. Evaluate the groundwater quality and human health risks for sustainable drinking and irrigation purposes in mountainous region of Chongqing, Southwest China. J. Contam. Hydrol. 264, 104344. https://doi.org/10.1016/j.jconhyd.2024.104344.

[37]

Li Y.F., Zhang C.L., Liang F., Tan X., Gong F.H., Sun C.L., Li T., Na Y.L., 2024b. New material of coniopteris simplex from the middle jurassic of the Ordos Basin, Inner Mongolia, China and implications on its spatio-temporal distribution and paleogeography. J. Palaeogeog. 13 (2), 199-211. https://doi.org/10.1016/j.jop.2024.03.001.

[38]

Liang H., Li P.Y., Elumalai V., Tian Y., Kou X.M., 2025. Hydrochemical characteristics, groundwater nitrate sources and potential health risks in a typical alluvial plain of northwest China. Phys. Chem. Earth. 139, 103903. https://doi.org/10.1016/j.pce.2025.103903.

[39]

Liu H., Song X.Y., Jia Q., Zhu D.M., 2022. Quantification on driving forces for spatiotemporal evolution of precipitation-use efficiency of grassland across recent two decades in Otog Banner, Inner Mongolia, China. J. Appl. Ecol. 33 (12), 3253-3262. in Chinese with English abstract.

[40]

Liu J.T., Peng Y.M., Li C.S., Gao Z.J., Chen S.J., 2021. An investigation into the hydrochemistry, quality and risk to human health of groundwater in the central region of Shandong Province, North China. J. Clean. Prod. 282, 125416. https://doi.org/10.1016/j.jclepro.2020.125416.

[41]

Lu H.J., 2014. Analysis of hydrogeological characters and water inflow calculation in Qipanjing coal mine. Saf. Coal. Mines. 45 (07), 155-158 (in Chinese with English abstract)

[42]

Mukherjee I., Singh U.K., 2018. Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environ. Geochem. Health. 40 (6), 2259-2301. https://doi.org/10.1007/s10653-018-0096-x.

[43]

Mukherjee I., Singh U.K., 2020. Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchem. J. 152, 104304. https://doi.org/10.1016/j.microc.2019.104304.

[44]

Mukherjee I., Singh U.K., 2022. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India. Environ. Res. 203, 111697. https://doi.org/10.1016/j.envres.2021.111697.

[45]

Mukherjee I., Singh U.K., Patra P.K., 2019. Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India. Chemosphere 233, 164-173. https://doi.org/10.1016/j.chemosphere.2019.05.278.

[46]

Owen D.D., Cox M.E., 2015. Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. Sci. Total. Environ. 523, 233-252. https://doi.org/10.1016/j.scitotenv.2015.03.115.

[47]

Piper A., 1944. A graphic procedure in the geochemical interpretation of water-analyses. Eos, Trans. Am. Geophys. Union 25 (6), 914-928. https://doi.org/10.1029/TR025i006p00914.

[48]

Purushothaman P., Rao M.S., Rawat Y.S., Kumar C.P., Krishan G., Parveen T., 2014. Evaluation of hydrogeochemistry and water quality in Bist-Doab region, Punjab, India. Environ. Earth. Sci. 72 (3), 693-706. https://doi.org/10.1007/s12665-013-2992-9.

[49]

Qiu H.L., Gui H.R., Xu H.F., Cui L., Li Z.C., Yu H., 2023. Quantifying nitrate pollution sources of shallow groundwater and related health risks based on deterministic and Monte Carlo models: a study in Huaibei mining area, Huaibei coalfield, China. Ecotoxicol. Environ. Saf. 249, 114434. https://doi.org/10.1016/j.ecoenv.2022.114434.

[50]

Qu S., Duan L.M., Shi Z.M., Mao H.R., Wang G.C., Liu T.X., Yu R.H., Peng X.H., 2022. Identifying the spatial pattern, driving factors and potential human health risks of nitrate and fluoride enriched groundwater of Ordos Basin, Northwest China. J. Clean. Prod. 376, 134289. https://doi.org/10.1016/j.jclepro.2022.134289.

[51]

Rashid A., Ayub M., Bundschuh J., Gao X., Ullah Z., Ali L., Li C., Ahmad A., Khan S., Rinklebe J., Ahmad P., 2023. Geochemical control, water quality indexing, source distribution, and potential health risk of fluoride and arsenic in groundwater: occurrence, sources apportionment, and positive matrix factorization model. J. Hazard. Mater. 460, 132443. https://doi.org/10.1016/j.jhazmat.2023.132443.

[52]

Rasool A., Farooqi A., Xiao T., Ali W., Noor S., Abiola O., Ali S., Nasim W., 2018. A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ. Geochem. Health. 40 (4), 1265-1281. https://doi.org/10.1007/s10653-017-0054-z.

[53]

Ribinu S.K., Prakash P., Khan F., Bhaskar N., 2022. Hydrogeochemical characteristics of groundwater in Thoothapuzha River Basin, Kerala, South India. Total Environ. Res. Themes. 5, 100021. https://doi.org/10.1016/j.totert.2022.100021.

[54]

Saxena V.K., Ahmed S., 2003. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 43 (6), 731-736. https://doi.org/10.1007/s00254-002-0672-2.

[55]

Schoeller H., 1965. Qualitative evaluation of groundwater resources. In: Methods and Techniques of Groundwater Investigations and Development, pp. 54-83.

[56]

Shaji E., Sarath K.V., Santosh M., Krishna Prasad P.K., Arya B.K., Babu M.S., 2024. Fluoride contamination in groundwater: a global review of the status, processes, challenges, and remedial measures. Geosci. Front. 15 (2), 101734. https://doi.org/10.1016/j.gsf.2023.101734.

[57]

Snousy M.G., Elshafie H.M., Abouelmagd A.R., Hassan N.E., Abd-Elmaboud M.E., Mohammadi A.A., Elewa A.M.T., El-Sayed E., Saqr A.M., 2025. Enhancing the prediction of groundwater quality index in semi-arid regions using a novel ANN-based hybrid arctic puffin-hippopotamus optimization model. J. Hydrol. Reg. Stud. 59, 102424. https://doi.org/10.1016/j.ejrh.2025.102424.

[58]

Su H., Li H., Chen H., Li Z., Zhang S.Z., 2023. Source identification and potential health risks of fluoride and nitrate in groundwater of a typical alluvial plain. Sci. Total. Environ. 904, 166920. https://doi.org/10.1016/j.scitotenv.2023.166920.

[59]

Su H., Wang J.D., Liu J.T., 2019. Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China. Environ. Pollut. 252, 1154-1162. https://doi.org/10.1016/j.envpol.2019.06.046.

[60]

Sun B., Shao Y.W., Gao Z.H., Li J., Sun B.L., Yang M.F., Zhou J.M., Yao H.P., Sun F.J., Shao L.Y., 2022. Coalbed methane enrichment characteristics and exploration target selection in the Zhuozishan Coalfield of the Western Ordos Basin, China. ACS Omega 7 (48), 43531-43547. https://doi.org/10.1021/acsomega.2c04141.

[61]

Sunkari E.D., Iddrisu R., Turkson J., Okyere M.B., Ambushe A.A., 2025. Hydrogeochemical evaluation of groundwater evolution and quality in some Voltaian aquifers of Kintampo South District, Bono East Region, Ghana: implications from chemometric analysis, geochemical modeling and geospatial mapping techniques. HydroRes. 8, 13-27. https://doi.org/10.1016/j.hydres.2024.09.001.

[62]

Teshome F.B., 2020. Seasonal water quality index and suitability of the water body to designated uses at the eastern catchment of Lake Hawassa. Environ. Sci. Pollut. Res. 27 (1), 279-290. https://doi.org/10.1007/s11356-019-06794-4.

[63]

USEPA, 1989. Risk assessment guidance for superfund volume I:human health evaluation manual (Part A). Office of Emergency and Remedial Response, Washington DC, USA.

[64]

Wang D.Q., Liu Z.Z., Yin L.H., 2005. Hydrogeological characteristics and groundwater systems of the Ordos Basin. Quat. Sci. 25 (1), 6-14 (in Chinese with English abstract)

[65]

Wang P., Zhang W., Zhu Y.C., Liu Y.C., Li Y.S., Cao S.W., Hao Q.C., Liu S.H., Kong X. K., Han Z.T., Li B.H., 2024. Evolution of groundwater hydrochemical characteristics and formation mechanism during groundwater recharge: a case study in the Hutuo River alluvial-pluvial fan, North China Plain. Sci. Total. Environ. 915, 170159. https://doi.org/10.1016/j.scitotenv.2024.170159.

[66]

Wang S.D., 2022. Hydrogeochemical characteristics and cause analysis of Ordovician limestone groundwater in Zhuozishan Coalfield. Coal. Sci. Technol. 50 (8), 180-188 (in Chinese with English abstract)

[67]

Wang S.D., Zhu K.P., Tang H.W., 2017. Evolution mechanism and circulation characteristics of Ordovician limestone water in Zhuozishan coalfield. Min. Safety Environ. Protect. 44 (2), 116-120 (in Chinese with English abstract)

[68]

WHO, 2017. Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. p. 116.

[69]

WHO, 2022. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda, p. 614.

[70]

Wu J.H., Zhou H., He S., Zhang Y.X., 2019. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environ. Earth. Sci. 78 (15), 446. https://doi.org/10.1007/s12665-019-8471-1.

[71]

Xiao Y., Hao Q.C., Zhang Y.H., Zhu Y.C., Yin S.Y., Qin L.M., Li X.H., 2022. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total. Environ. 802, 149909. https://doi.org/10.1016/j.scitotenv.2021.149909.

[72]

Yadav K.K., Kumar S., Quoc Bao P., Gupta N., Rezania S., Kamyab H., Yadav S., Vymazal J., Kumar V., Doan Quang T., Talaiekhozani A., Prasad S., Reece L.M., Singh N., Maurya P.K., Cho J., 2019. Fluoride contamination, health problems and remediation methods in Asian groundwater: a comprehensive review. Ecotoxicol. Environ. Saf. 182, 109362. https://doi.org/10.1016/j.ecoenv.2019.06.045.

[73]

Zhang H.T., Xu G.Q., Zhan H.B., Chen X.Q., Liu M.C., Wang M.H., 2020. Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions. J. Hydrol. 589, 125344. https://doi.org/10.1016/j.jhydrol.2020.125344.

[74]

Zhao L.Y., Zhang Y.J., Kong Q.H., Lai Y.W., 2022. Sedimentary environment and sedimentary evolution analysis of coal-bearing strata in Qipanjing mine field. Coal Geol. China 34 (S2), 7-10 (in Chinese with English abstract)

AI Summary AI Mindmap
PDF

386

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/