Observed talik development triggers a tipping point in marginal permafrost of the Qinghai-Xizang Plateau

Dongliang Luo , Jia Liu , Fangfang Chen , Shizhen Li

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102122

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102122 DOI: 10.1016/j.gsf.2025.102122

Observed talik development triggers a tipping point in marginal permafrost of the Qinghai-Xizang Plateau

Author information +
History +
PDF

Abstract

Permafrost, a critical component of Earth's climate system, is increasingly subject to abrupt thaw events, which jeopardize infrastructure, reshape landforms, alter hydrological regimes, and disrupt ecosystems, thereby posing substantial threats to global sustainability. However, the underlying mechanisms that trigger these abrupt transitions remain incompletely understood. Here, we present decade-long in-situ observations from HRQ1, a marginal permafrost site in the Headwater Area of the Yellow River, northeastern Qinghai-Xizang Plateau. These data reveal the formation and growth of a talik, indicative of a permafrost tipping point. Absent before 2017, the talik subsequently formed and progressively deepened, extending to the maximum observation depth of 300 cm by 2024. The transition from perennially frozen to thawed conditions was accompanied by a substantial increase in mean annual soil temperature (MAST) throughout the entire soil profile. From 2015 to 2023, MAST in the upper 200 cm rose from sub-zero (-0.30 to -0.49 ℃) to consistently above 0 ℃ (0.07 to 1.08 ℃). Concurrently, maximum daily soil temperatures in deeper layers (200-300 cm) became positive, indicating thaw propagation into the relict permafrost. This warming coincided with a marked increase in unfrozen soil moisture, particularly within the expanding talik. The rapid, non-linear deepening of the talik, far exceeding rates attributable to conductive heat transfer alone, was driven by a strong convective mechanism (Rayleigh-Darcy instability). This advective process was triggered when the soil profile became fully saturated, a condition resulting from the convergence of intensified rainfall and enhanced water retention linked to decadal vegetation greening. Intriguingly, despite the accelerated subsurface warming, the annual amplitude of ground surface temperature decreased from 29.0 ± 2.8 ℃ to 24.5 ± 3.6 ℃ following talik formation, likely due to the buffering effect of increased vegetation cover, which modified the surface energy balance. Our results demonstrate that climatic warming and wetting can initiate a cascade of internal feedbacks, propelling marginal permafrost beyond an abrupt tipping point. These findings emphasize the acute vulnerability of marginal permafrost and highlight the urgent necessity for sustained monitoring to assess ecosystem stability and quantify associated greenhouse gas emissions.

Keywords

Warm permafrost / Climate tipping point / Talik formation and expansion / Permafrost degradation / Headwater Area of the Yellow River / Qinghai-Xizang Plateau

Cite this article

Download citation ▾
Dongliang Luo, Jia Liu, Fangfang Chen, Shizhen Li. Observed talik development triggers a tipping point in marginal permafrost of the Qinghai-Xizang Plateau. Geoscience Frontiers, 2025, 16(5): 102122 DOI:10.1016/j.gsf.2025.102122

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Dongliang Luo: Writing - review & editing, Writing - original draft, Visualization, Methodology, Funding acquisition, Formal analysis, Conceptualization. Jia Liu: Data curation. Fangfang Chen: Investigation. Shizhen Li: Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is jointly funded by the Science and Technology program of Gansu Province (Grant No. 23ZDFA017) and Longyuan Young Talents (D. Luo), Western Young Scholars Project of the Chinese Academy of Sciences (D. Luo), and National Natural Science Foundation of China (U2243214).

References

[1]

Armstrong McKay D.I., Staal A., Abrams J.F., Winkelmann R., Sakschewski B., Loriani S., Fetzer I., Cornell S.E., Rockstrom J., Lenton T.M., 2022. Exceeding 1.5 ℃ global warming could trigger multiple climate tipping points. Science 377 (6611), eabn7950. https://doi.org/10.1126/science.abn7950.

[2]

Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D.A., Schoeneich P., Romanovsky V.E., Lewkowicz A.G., Abramov A., Allard M., Boike J., Cable W.L., Christiansen H.H., Delaloye R., Diekmann B., Drozdov D., Etzelmuller B., Grosse G., Guglielmin M., Ingeman-Nielsen T., Isaksen K., Ishikawa M., Johansson M., Johannsson H., Joo A., Kaverin D., Kholodov A., Konstantinov P., Kroger T., Lambiel C., Lanckman J.P., Luo D., Malkova G., Meiklejohn I., Moskalenko N., Oliva M., Phillips M., Ramos M., Sannel A.B.K., Sergeev D., Seybold C., Skryabin P., Vasiliev A., Wu Q., Yoshikawa K., Zheleznyak M., Lantuit H., 2019. Permafrost is warming at a global scale. Nat. Commun. 10 (1), 264. https://doi.org/10.1038/s41467-018-08240-4.

[3]

Brierley G.J., Han M., Li X., Li Z., Huang H.Q., 2022. Geo-eco-hydrology of the Upper Yellow River. Wires Water 9 (3), e1587.

[4]

Chen L., Fortier D., McKenzie J.M., Voss C.I., Lamontagne-Hallé P., 2023. Subsurface porewater flow accelerates talik development under the Alaska highway, Yukon: a prelude to road collapse and final permafrost thaw? Water Resour. Res. 59 (4), e2022WR032578. https://doi.org/10.1029/2022WR032578.

[5]

Chen L., Voss C.I., Fortier D., McKenzie J.M., 2021a. Surface energy balance of sub-Arctic roads with varying snow regimes and properties in permafrost regions. Permafrost Periglac. Process. 32 (4), 681-701. https://doi.org/10.1002/ppp.2129.

[6]

Chen Y., Lara M.J., Jones B.M., Frost G.V., Hu F.S., 2021b. Thermokarst acceleration in Arctic tundra driven by climate change and fire disturbance. One Earth 4 (12), 1718-1729. https://doi.org/10.1016/j.oneear.2021.11.011.

[7]

Connon R.F., Devoie É., Hayashi M., Veness T., Quinton W.L., 2018. The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada. J. Geophys. Res. Earth Surf. 123 (2), 281-297. https://doi.org/10.1002/2017JF004469.

[8]

Devoie É.G., Craig J.R., Connon R.F., Quinton W.L., 2019. Taliks: a tipping point in discontinuous permafrost degradation in peatlands. Water Resour. Res. 55 (11), 9838-9857. https://doi.org/10.1029/2018WR024488.

[9]

Dobinski W., 2011. Permafrost. Earth-Sci. Rev. 108 (3-4), 158-169. https://doi.org/10.1016/j.earscirev.2011.06.007.

[10]

Farquharson L.M., Romanovsky V.E., Kholodov A.L., Nicolsky D.J., 2022. Sub-aerial talik formation observed across the discontinuous permafrost zone of Alaska. Nat. Geosci. 15, 475-481. https://doi.org/10.1038/s41561-022-00952-z.

[11]

Gagnon S., Roy-Léveillée P., Turner K.W., 2024. Contemporary formation of icewedge pseudomorphs during the expansion of a thermokarst lake in Old Crow Flats, Yukon, Canada. Geomorphology 457, 109223. https://doi.org/10.1016/j.geomorph.2024.109223.

[12]

Guo D., Wang A., Li D., Hua W., 2018. Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing data sets. J. Geophys. Res. Atmos. 123 (5), 2509-2523. https://doi.org/10.1002/2017JD028097.

[13]

Guo D., Wang H., Romanovsky V.E., Haywood A.M., Pepin N., Salzmann U., Sun J., Yan Q., Zhang Z., Li X., Otto-Bliesner B.L., Feng R., Lohmann G., Stepanek C., Abe-Ouchi A., Chan W.L., Peltier W.R., Chandan D., von der Heydt A.S., Contoux C., Chandler M.A., Tan N., Zhang Q., Hunter S.J., Kamae Y., 2023. Highly restricted near-surface permafrost extent during the mid-Pliocene warm period. Proc. Natl. Acad. Sci. U.S.A. 120 (36), e2301954120. https://doi.org/10.1073/pnas.2301954120.

[14]

Guo D., Yang M., Wang H., 2011. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrol. Process. 25 (16), 2531-2541. https://doi.org/10.1002/hyp.8025.

[15]

Guo R., Sun H., Zhao Q., Li Z., Liu Y., Chen C., 2021. A novel experimental study on density-driven instability and convective dissolution in porous media. Geophys. Res. Lett. 48 (23), e2021GL095619. https://doi.org/10.1029/2021GL095619.

[16]

Heslop J.K., Walter Anthony K.M., Sepulveda-Jauregui A., Martinez-Cruz K., Bondurant A., Grosse G., Jones M.C., 2015. Thermokarst lake methanogenesis along a complete talik profile. Biogeosciences 12 (14), 4317-4331. https://doi.org/10.5194/bg-12-4317-2015.

[17]

Hu G., Zhao L., Zou D., Wu X., Li R., Zhu X., Su Y., Wu T., Wu Y., Ni J., 2024. Large variability in permafrost degradation over the Northern Hemisphere. Catena 246, 108440. https://doi.org/10.1016/j.catena.2024.108440.

[18]

Jafarov E.E., Coon E.T., Harp D.R., Wilson C.J., Painter S.L., Atchley A.L., Romanovsky V.E., 2018. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 13 (10), 105006. https://doi.org/10.1088/1748-9326/aadd30.

[19]

Jones B.M., Kanevskiy M.Z., Parsekian A.D., Bergstedt H., Ward Jones M.K., Rangel R.C., Hinkel K.M., Shur Y., 2023. Rapid saline permafrost thaw below a shallow thermokarst lake in Arctic Alaska. Geophys. Res. Lett. 50 (22), e2023GL105552. https://doi.org/10.1029/2023GL105552.

[20]

Kurylyk B.L., Hayashi M., Quinton W.L., McKenzie J.M., Voss C.I., 2016. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 52 (2), 1286-1305. https://doi.org/10.1002/2015WR018057.

[21]

Lenton T.M., Held H., Kriegler E., Hall J.W., Lucht W., Rahmstorf S., Schellnhuber H.J., 2008. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 105 (6), 1786-1793. https://doi.org/10.1073/pnas.0705414105.

[22]

Lenton T.M., Rockström J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., Schellnhuber H.J., 2019. Climate tipping points—too risky to bet against. Nature 575, 592-596. https://doi.org/10.1038/d41586-019-03595-0.

[23]

Li J., Sheng Y., Wu J., Feng Z., Ning Z., Hu X., Zhang X., 2016. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau. Geomorphology 269, 104-111. https://doi.org/10.1016/j.geomorph.2016.06.024.

[24]

Ling F., Zhang T., 2003. Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the alaskan Arctic Coastal Plain. J. Geophys. Res. Atmos. 108 (D16), 4511. https://doi.org/10.1029/2002JD003014.

[25]

Ling F., Wu Q., Zhang T., Niu F., 2012. Modelling open-talik formation and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau. Permafrost Periglac. Process. 23 (4), 312-321. https://doi.org/10.1002/ppp.1754.

[26]

Luo D.L., Li S.Z., Zhang Y.L., Jin H.J., Wang Q.F., Chen F.F., Liu J., Peng C.Y., Zao Y.J.,2025. Declining autumn zero-curtain duration in the Headwater Area of the Yellow River (2011-2024). Adv. Clim. Chang. Res. 16, 538-551. https://doi.org/10.1016/j.accre.2025.03.004.

[27]

Luo D., Jin H., Bense V.F., Jin X., Li X., 2020. Hydrothermal processes of nearsurface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma 376, 114531. https://doi.org/10.1016/j.geoderma.2020.114531.

[28]

Luo D., Jin H., Jin X., He R., Li X., Muskett R.R., Marchenko S.S., Romanovsky V.E., 2018a. Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau. SW China. Permafrost Periglac. Process. 29 (4), 257-270. https://doi.org/10.1002/ppp.1988.

[29]

Luo D., Jin H., Marchenko S.S., Romanovsky V.E., 2018b. Difference between nearsurface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma 312, 74-85. https://doi.org/10.1016/j.geoderma.2017.09.037.

[30]

Luo D., Jin H., Wu Q., Makarieva O., Tian S., Kang J., Wang J., Peng X., Dobin´ ski W., Chen F., 2023. Active layer thickness (ALT) in permafrost regions under natural/undisturbed state: a review. J. Glaciol. Geocryol. 45 (2), 558-574.

[31]

Luo J., Niu F., Lin Z., Liu M., Yin G., Gao Z., 2022. Inventory and frequency of retrogressive thaw slumps in permafrost region of the Qinghai-Tibet Plateau. Geophys. Res. Lett. 49 (23), e2022GL099829. https://doi.org/10.1029/2022GL099829.

[32]

Mei Q., Liu Y., Zhang S., Zhao J., Dong T., Wang J., Zhao Y., 2024. Degradation of warm permafrost and talik formation on the Qinghai-Tibet Plateau in 2006-2021. Adv. Clim. Chang. Res. 15 (2), 275-284. https://doi.org/10.1016/j.accre.2024.03.009.

[33]

Mod H.K., Luoto M., 2016. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation. Environ. Res. Lett. 11 (12), 124028. https://doi.org/10.1088/1748-9326/11/12/124028.

[34]

Mollaret C., Hilbich C., Pellet C., Flores-Orozco A., Delaloye R., Hauck C., 2019. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 13 (10), 2557-2578. https://doi.org/10.5194/tc-13-2557-2019.

[35]

Nesterova N., Leibman M., Kizyakov A., Lantuit H., Tarasevich I., Nitze I., Veremeeva A., Grosse G., 2024. Review article: Retrogressive thaw slump characteristics and terminology. Cryosphere 18 (10), 4787-4810. https://doi.org/10.5194/tc-18-4787-2024.

[36]

Nield D.A., Bejan A., 2017. Convection in Porous Media. Springer International Publishing, Cham, p. 1005.

[37]

Noetzli J., Isaksen K., Barnett J., Christiansen H.H., Delaloye R., Etzelmüller B., Farinotti D., Gallemann T., Guglielmin M., Hauck C., Hilbich C., Hoelzle M., Lambiel C., Magnin F., Oliva M., Paro L., Pogliotti P., Riedl C., Schoeneich P., Valt M., Vieli A., Phillips M., 2024. Enhanced warming of European mountain permafrost in the early 21st century. Nat. Commun. 15 (1), 10508. https://doi.org/10.1038/s41467-024-54831-9.

[38]

O’Neill, H.B., Burn, C.R., 2017. Talik formation at a snow fence in continuous permafrost, western Arctic Canada. Permafrost Periglac. Process. 28 (3), 558-565. https://doi.org/10.1002/ppp.1905.

[39]

O’Neill, H.B., Roy-Leveillee, P., Lebedeva, L., Ling, F.,2020. Recent advances (2010-2019) in the study of taliks. Permafrost Periglac. Process. 31 (3), 346-357. https://doi.org/10.1002/ppp.2050.

[40]

Peng X., Zhang T., Frauenfeld O.W., Wang K., Luo D., Cao B., Su H., Jin H., Wu Q., 2018. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere. J. Clim. 31 (1), 251-266. https://doi.org/10.1175/JCLI-D-16-0721.1.

[41]

Qiu F., Yao Y., Li Y., Yu R., Fan J., Zhang X., Kan Y., Liu L., Xie Z., Ning J., Zhang L., Xie X., 2025. Satellite-derived spatiotemporal dynamics of vegetation cover and its driving factors in the Three-River Headwaters Region from 2001 to 2022. Remote Sens. 17 (7), 1187. https://doi.org/10.3390/rs17071187.

[42]

Robinson C., Roy-Léveillée P., Turner K.W., Basiliko N., 2021. Impacts of shrubification on ground temperatures and carbon cycling in a sub-Arctic fen near Churchill, MB. Permafrost 2021, 60-70.

[43]

Roux N., Costard F., Grenier C., 2017. Laboratory and numerical simulation of the evolution of a river’s talik. Permafrost Periglac. Process. 28 (2), 460-469. https://doi.org/10.1002/ppp.1929.

[44]

Schneider von Deimling, T., Lee, H., Ingeman-Nielsen, T., Westermann, S., Romanovsky, V., Lamoureux, S., Walker, D.A., Chadburn, S., Trochim, E., Cai, L., Nitzbon, J., Jacobi, S., Langer, M., 2021. Consequences of permafrost degradation for Arctic infrastructure - bridging the model gap between regional and engineering scales. Cryosphere 15 (5), 2451-2471. https://doi.org/10.5194/tc-15-2451-2021.

[45]

Seemann F., Sannel A.B.K., 2024. Morphology and dynamics of thermokarst ponds in a subarctic permafrost peatland, northern Sweden. Earth Surf. Process. Landforms 49 (2), 537-549. https://doi.org/10.1002/esp.6021.

[46]

Sjöberg Y., Marklund P., Pettersson R., Lyon S.W., 2015. Geophysical mapping of palsa peatland permafrost. Cryosphere 9 (2), 465-478. https://doi.org/10.5194/tc-9-465-2015.

[47]

Steffen W., Rockstrom J., Richardson K., Lenton T.M., Folke C., Liverman D., Summerhayes C.P., Barnosky A.D., Cornell S.E., Crucifix M., Donges J.F., Fetzer I., Lade S.J., Scheffer M., Winkelmann R., Schellnhuber H.J., 2018. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 115 (33), 8252-8259. https://doi.org/10.1073/pnas.1810141115.

[48]

Stephani E., Drage J., Miller D., Jones B.M., Kanevskiy M., 2020. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafrost Periglac. Process. 31 (2), 239-254. https://doi.org/10.1002/ppp.2046.

[49]

Strozzi T., Caduff R., Jones N., Barboux C., Delaloye R., Bodin X., Kääb A., Mätzler E., Schrott L., 2020. Monitoring rock glacier kinematics with satellite Synthetic Aperture Radar. Remote Sens. 12 (3), 559. https://doi.org/10.3390/rs12030559.

[50]

Sun Z., Zhang S., Li G., Wu G., Liu Y., 2021. A 10-yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau, China. Permafrost Periglac. Process. 32 (4), 618-626. https://doi.org/10.1002/ppp.2107.

[51]

van Everdingen R.O., 1998. Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center, Boulder.

[52]

Walter Anthony K.M., Anthony P., Hasson N., Edgar C., Sivan O., Eliani-Russak E., Bergman O., Minsley B.J., James S.R., Pastick N.J., Kholodov A., Zimov S., Euskirchen E., Bret-Harte M.S., Grosse G., Langer M., Nitzbon J., 2024. Upland Yedoma taliks are an unpredicted source of atmospheric methane. Nat. Commun. 15 (1), 6056. https://doi.org/10.1038/s41467-024-50346-5.

[53]

Wang H., Sun Z., Liu M., Liu Y., 2021. Improvement of the thermomechanical stability of an embankment with suprapermafrost taliks by engineering remedial countermeasures. J. Cold Reg. Eng. 35 (4), 05021002. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000269.

[54]

Wang Y., Xie J.-H., Yang W., Li X., Abulaiti Z., Zheng S., Zhu J., Xu K., 2025. Permafrost thawing under overlaying salt water. Sci. Adv. 11, eadp2808. https://doi.org/10.1126/sciadv.adp2808.

[55]

Wang K., Zhang T., Clow G.D., 2023. Permafrost thermal responses to asymmetrical climate changes: an integrated perspective. Geophys. Res. Lett. 50 (5), e2022GL100327. https://doi.org/10.1029/2022GL100327.

[56]

Wu Q., Ma W., Lai Y., Cheng G., 2025. Permafrost degradation threatening the Qinghai-Xizang Railway 49, 177-189. https://doi.org/10.1016/j.eng.2024.01.023.

[57]

Wu Q., Zhang T., 2010. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos. 115 (D9), D09107. https://doi.org/10.1029/2009JD012974.

[58]

Wunderling N., von der Heydt A.S., Aksenov Y., Barker S., Bastiaansen R., Brovkin V., Brunetti M., Couplet V., Kleinen T., Lear C.H., Lohmann J., Roman-Cuesta R. M., Sinet S., Swingedouw D., Winkelmann R., Anand P., Barichivich J., Bathiany S., Baudena M., Bruun J.T., Chiessi C.M., Coxall H.K., Docquier D., Donges J.F., Falkena S.K.J., Klose A.K., Obura D., Rocha J., Rynders S., Steinert N.J., Willeit M., 2024. Climate tipping point interactions and cascades: a review. Earth Syst. Dyn. 15 (1), 41-74. https://doi.org/10.5194/esd-15-41-2024.

[59]

Xia Z., Liu L., Mu C., Peng X., Zhao Z., Huang L., Luo J., Fan C., 2024. Widespread and rapid activities of retrogressive thaw slumps on the Qinghai-Tibet Plateau from 2016 to 2022. Geophys. Res. Lett. 51 (17), e2024GL109616. doi: 10.1029/2024GL109616.

[60]

Yang D., Qiu H., Ye B., Liu Y., Zhang J., Zhu Y., 2023. Distribution and recurrence of warming-induced retrogressive thaw slumps on the central Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 128 (8), e2022JF007047. https://doi.org/10.1029/2022JF007047.

[61]

Yang G., Qiu H., Wang N., Yang D., Liu Y., 2025. Tracking 35-year dynamics of retrogressive thaw slumps across permafrost regions of the Tibetan Plateau. Remote Sens. Environ. 325, 114786. https://doi.org/10.1016/j.rse.2025.114786.

[62]

You Y., Yu Q., Pan X., Wang X., Guo L., 2017. Geophysical imaging of permafrost and talik configuration beneath a thermokarst lake. Permafrost Periglac. Process. 28 (2), 470-476. https://doi.org/10.1002/ppp.1938.

[63]

Zhao F., Ma S., Wu Y., Qiu L., Wang W., Lian Y., Chen J., Sivakumar B., 2022. The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China. Agric. For. Meteorol. 316, 108842. https://doi.org/10.1016/j.agrformet.2022.108842.

[64]

Zhao L., Hu G., Liu G., Zou D., Wang Y., Xiao Y., Du E., Wang C., Xing Z., Sun Z., Zhao Y., Liu S., Zhang Y., Wang L., Zhou H., Zhao J., 2024. Investigation, monitoring, and simulation of permafrost on the Qinghai-Tibet Plateau: a review. Permafrost Periglac. Process. 35 (3), 412-422. https://doi.org/10.1002/ppp.2227.

[65]

Zwieback S., Iwahana G., Sakhalkar S., Biessel R., Taylor S., Meyer F.J., 2024. Excess ground ice profiles in continuous permafrost mapped from InSAR subsidence. Water Resour. Res. 60 (2), e2023WR035331. https://doi.org/10.1029/2023WR035331.

AI Summary AI Mindmap
PDF

623

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/