Late Paleozoic architecture, deformation, and geodynamics of the Xing’an-Mongolia intracontinental orogenic belt

Shiyu Song , Yanlei Zhang , Xinyu Li , Qiwei Lu , Dadi Cao , Bei Xu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102120

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102120 DOI: 10.1016/j.gsf.2025.102120
research-article

Late Paleozoic architecture, deformation, and geodynamics of the Xing’an-Mongolia intracontinental orogenic belt

Author information +
History +
PDF

Abstract

The architecture and geodynamics of intracontinental orogens remain a fundamental geological challenge. The Xing’an-Mongolia intracontinental orogenic belt (XMIOB), superimposed on the eastern Central Asian Orogenic Belt (CAOB), provides key insights into intracontinental orogenic belt dynamics. However, its architecture, deformation patterns, and geodynamic processes are poorly understood. This study integrates geological mapping, structural analysis, EBSD quartz c-axis fabrics, seismic reflection interpretation, and zircon U-Pb geochronology to unravel the XMIOB’s tectonic evolution and compare it with global intracontinental orogenic belts. Our findings reveal that the XMIOB is shaped by alternating fold-thrust belts and metamorphic zones, dominantly controlled by the inversion of pre-existing extensional structures. EBSD analysis indicates mid-temperature (400 °C - 500 °C) ductile deformation in the deep crust, while seismic profiles highlight structural decoupling driven by a décollement zone. Integrated crustal thickness reconstructions from zircon Eu/Eu* ratios delineate three tectonic stages: Late Carboniferous-Permian asthenospheric upwelling induced crustal thinning from ∼50 km to ∼35 km, forming lithospheric weak zones with Buchan-type metamorphism and bimodal magmatism; Late Permian-Middle Triassic mantle subduction triggered compressional thickening (∼55 km), fold-thrust belt formation, and tectonic inversion of early extensional faults, exposing metamorphic zones; from the Middle Triassic continued mantle subduction and deep-crustal decoupling drove large-scale lateral extrusion and dextral shear, reshaping the XMIOB architecture. Comparisons with global intracontinental orogenic belts highlight two key traits of intracontinental orogenic belt evolution: pre-orogenic lithospheric thinning generates inherited weak zones that localize subsequent deformation; inherited extensional features dictate the final architecture, producing the systematic alternation of metamorphic zones and fold-thrust belts.

Keywords

Intracontinental orogenic belt / XMIOB / Tectonic inversion

Cite this article

Download citation ▾
Shiyu Song, Yanlei Zhang, Xinyu Li, Qiwei Lu, Dadi Cao, Bei Xu. Late Paleozoic architecture, deformation, and geodynamics of the Xing’an-Mongolia intracontinental orogenic belt. Geoscience Frontiers, 2025, 16(5): 102120 DOI:10.1016/j.gsf.2025.102120

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shiyu Song: Writing - original draft, Methodology, Investiga-tion, Data curation, Conceptualization. Yanlei Zhang: Methodol-ogy, Investigation. Xinyu Li: Investigation, Resources, Methodology. Qiwei Lu: Methodology, Investigation, Conceptual-ization. Dadi Cao: Methodology, Investigation. Bei Xu: Supervision, Project administration, Investigation, Funding acquisition, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We acknowledge supports from National Natural Science Foun-dation of China, China (Grant Nos. 42042029, 42172248); the Department of Education of Hebei Province, China (Grant No. QN2024174); the Opening Foundation of Hebei Key Laboratory of Strategic Critical Mineral Resources, China (Grant Nos. HGU-SCMR2439, HGU-SCMR2440).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102120.

References

[1]

Airaghi, L., Janots, E., Lanari, P., de Sigoyer, J., Magnin, V., 2018. Allanite petrochronology in fresh and retrogressed garnet-biotite metapelites from the Longmen Shan (Eastern Tibet). J. Petrol. 60, 151-176. https://doi.org/10.1093/petrology/egy109.

[2]

Allen, J., Brandt, U., Brauer, A., Hubberten, H., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S., Zolitschka, B., 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740-743. https://doi.org/10.1038/23432.

[3]

BGMRNMAR (Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region), 1991. Regional Geology of Nei Mongol (Inner Mongolia) Autonomous Region. Geological Publishing House, Beijing (in Chinese with English abstract).

[4]

Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., Cloetingh, S., 2015. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth Planet. Sci. Lett. 424, 38-50. https://doi.org/10.1016/j.epsl.2015.05.022.

[5]

Charvet, J., Liangshu, S., Laurent-Charvet, S., 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes 30, 162-186.

[6]

Chu., Y., Faure, M., Lin, W., Wang, Q., Ji, W., 2012. Tectonics of the Middle Triassic intracontinental Xuefengshan Belt, South China: New insights from structural and chronological constraints on the basal décollement zone. Int. J. Earth Sci. 101, 2125-2150. https://doi.org/10.1007/s00531-012-0780-5.

[7]

Clerc, C., Abdeltif, L., Monié P., Lagabrielle, Y., Chopin, C., Poujol, M., Boulvais, P., Ringenbach, J.C., Masini, E., de St Blanquat, M., 2015. High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin. Solid Earth 6, 643-668. https://doi.org/10.5194/se-6-643-2015.

[8]

Clerc, C., Lagabrielle, Y., 2014. Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the cretaceous Pyrenean hot paleomargins. Tectonics 7, 1340-1359. https://doi.org/10.1002/2013TC003471.

[9]

Cao, D.D., Wang, Y.C., Yin, L., Xu, B., 2022. Metamorphic patterns and zircon U-Pb dating of the Xilingol complex in Inner Mongolia, China: Implications for rifting metamorphism and tectonic evolution in eastern Central Asian Orogenic Belt. Lithos 428-429, 106826. https://doi.org/10.1016/j.lithos.2022.106826.

[10]

Capitanio, F.A., Morra, G., Goes, S., Weinberg, R.F., Moresi, L., 2010. India-Asia convergence driven by the subduction of the Greater Indian continent. Nat. Geosci. 3, 136-139. https://doi.org/10.1038/ngeo725.

[11]

Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history. In: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. Geological Society of London, p. 318. https://doi.org/10.1144/SP318.1.

[12]

De Grave, J., Buslov, M.M., Van den haute, P., 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J. Asian Earth Sci. 29, 188-204. https://doi.org/10.1016/j.jseaes.2006.03.001.

[13]

Dong, S.W., Zhang, Y.Q., Gao, R., Su, J.B., Liu, M., Li, J.H., 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China: evidence from seismic-reflection profiling. Precambrian Res. 264, 1-10. https://doi.org/10.1016/j.precamres.2015.04.003.

[14]

ECORS Pyrenees team, 1988. The ECORS deep reflection seismic survey across the Pyrenees. Nature 331 (6156), 508-511.

[15]

Fu, W., Hou, H., Gao, R., Zhou, J., Zhang, X., Guo, L., Guo, R., Pan, Z., 2021. Lithospheric structures of the central Solonker-Xar Moron-Changchun-Yanji Suture (Inner Mongolia) revealed by a deep seismic reflection profile. Tectonophysics 817, 229043. https://doi.org/10.1016/j.tecto.2021.229043.

[16]

Gomar, F., Ruh, J.B., Najafi, M., Sobouti, F., 2024. Importance of basement faulting and salt decoupling for the structural evolution of the Fars Arc (Zagros fold-and-thrust belt): a numerical modeling approach. Solid Earth 15, 1479-1507. https://doi.org/10.5194/se-15-1479-2024.

[17]

Hand, M., Sandiford, M., 1999. Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics 305, 121-140.

[18]

Huangfu, P., Li, Z.H., Gerya, T., Fan, W., Zhang, K.J., Zhang, H., Shi, Y., 2018. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan plateau. Nat. Commun. 9, 3780. https://doi.org/10.1038/s41467-018-06233-x

[19]

Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., Reichow, M., 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos 113, 521-539. https://doi.org/10.1016/j.lithos.2009.06.015.

[20]

Jamieson, R.A., Beaumont, C., 2013. On the origin of orogens. Geol. Soc. Am. Bull. 125, 1671-1702. https://doi.org/10.1130/B30855.1.

[21]

Jia, D., Wei, G.Q., Chen, Z.X., Li, B.L., Zeng, Q., Yang, G., 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration. AAPG Bull. 90, 1425-1447. https://doi.org/10.1306/03230605076.

[22]

Jian, P., Liu, D., Kröner, A., Windley, B.F., Shi, Y., Zhang, F., Shi, G., Miao, L., Zhang, W., Zhang, Q., Zhang, L., Ren, J., 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos 101, 233-259. https://doi.org/10.1016/j.lithos.2007.07.005.

[23]

Lawton, T.F., 2019. Laramide sedimentary basins and sediment-dispersal systems. In: Miall, A.D. (Ed.), The Sedimentary Basins of the United States and Canada. Second Edition. Elsevier, pp. 529-557. https://doi.org/10.1016/B978-0-444-63895-3.00013-9

[24]

Lagabrielle, Y., Labaume, P., de Saint Blanquat, M., 2010. Mantle exhumation, crustal denudation, and gravity tectonics during cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 29, TC4012. https://doi.org/10.1029/2009TC002588.

[25]

Li, J., Xu, B., Tian, Y., Yao, Z., 2018. Sedimentary and geochronology study on the Zhesi Formation from Hexigten Banner, Inner Mongolia and paleogeographic significances. Acta Petrol. Sin. 34, 3034-3050.

[26]

Li, J., Zhang, J., Zhao, X., Jiang, M., Li, Y., Zhu, Z., Feng, Q., Wang, L., Sun, G., Liu, J., Yang, T., 2016. Mantle subduction and uplift of intracontinental mountains: a case study from the Chinese Tianshan Mountains within Eurasia. Sci. Rep. 6 (1), 28831. https://doi.org/10.1038/srep28831.

[27]

Liu, R., Yang, Z., Xu, Q.D., Zhang, X.J., Yao, C.L., 2016a. Zircon U-Pb ages, elemental and Sr-Nd-Pb isotopic geochemistry of the Hercynian granitoids from the southern segment of the Da Hinggan Mts. Petrogenesis and tectonic implications. Acta Petrol. Sin. 32 (5), 1505-1528 https://doi.org/10.1080/00206814.2014.1003105.in Chinese with English abstract).

[28]

Liang, C.Y., Liu, Y.J., Zheng, C.Q., Li, W.M., Neubauer, F., Zhang, Q., 2019. Macro-and microstructural, textural fabrics and deformation mechanism of calcite mylonites from Xar Moron-Changchun dextral shear zone, Northeast China. Acta Geol. Sin. 93 (5), 1477-1499. https://doi.org/10.1111/1755-6724.14357.

[29]

Liu, J.F., Li, J.Y., Chi, X.G., Qu, J.F., Chen, J.Q., Hu, Z.C., Feng, Q.W., 2016b. The tectonic setting of Early Permian bimodal volcanism in central Inner Mongolia: Continental rift, post-collisional extension, or active continental margin? Int. Geol. Rev. 58 (6), 737-755. https://doi.org/10.1080/00206814.2015.1108249.

[30]

Lei, H., Zhang, G.B., Xu, B., 2021. The Late Paleozoic extending and thinning processes of the Xing’an-Mongolia orogenic belt: Geochemical evidence from the plutons in Linxi area, Inner Mongolia. Acta Petrol. Sin. 37 (7), 2029-2050 https://doi.org/10.18654/1000-0569/ 2021.07.05.in Chinese with English abstract).

[31]

Liu, M., Zhao, H.T., Zhang, D., Xiong, G.Q., Di, Y.J., 2017. Chronology, geochemistry and tectonic implications of late Paleozoic intrusions from south of Xiwuqi, Inner Mongolia. Earth Sci. 42 (4), 527-548 https://doi.org/10.3799/dqkx.2017.42.in Chinese with English abstract).

[32]

McClay, K.R., Whitehouse, P.S., McClay, K.R., 2004. Analog modeling of doubly vergent thrust wedges. In: McClay, K.R. (Ed.), Thrust Tectonics and Hydrocarbon Systems. AAPG. https://doi.org/10.1306/M82813C10.

[33]

Muñoz, J.A., 1992. Evolution of a continental collision belt:ECORS-Pyrenees crustal balanced cross-section. In: McClay, K.R. (Ed.), Thrust Tectonics. Springer, Dordrecht, pp. 235-246. https://doi.org/10.1007/978-94-011-3066-0_21.

[34]

Pang, C.J., Wang, X.C., Xu, B., Luo, Z.W., Liu, Y.Z., 2017. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt. J. Asian Earth Sci. 144, 184-204. https://doi.org/10.1016/j.jseaes.2017.03.012.

[35]

Passchier, C.W., Trouw, R.A.J., 2005. Deformation mechanisms. In: Passchier, C.W., Trouw, R.A.J. (Eds.), Microtectonics. 2nd Ed. Springer, Berlin, pp. 25-66.

[36]

Plummer, P., 2018. Seismic shift in regional Neoproterozoic correlation, Amadeus Basin, central Australia. Springs, Northern Territory, Australia.

[37]

Qi, L., Zhang, N., Xu, B., Wang, Z., 2021. Geodynamic modeling on the formation mechanism of Linxi Basin: New constraints on the closure time of the Paleo-Asian Ocean. Tectonophysics 810, 228866. https://doi.org/10.1016/j.tecto.2021.228866.

[38]

Raimondo, T., Hand, M., Collins, W.J., 2014. Compressional intracontinental orogens: Ancient and modern perspectives. Earth Sci. Rev. 130, 128-153. https://doi.org/10.1016/j.earscirev.2013.11.009.

[39]

Ren, J., Zhao, L., Xu, Q., Zhu, J., 2016. Global tectonic position and geodynamic system of China. Acta Geol. Sin-Engl. 90 (9), 2100-2108 (in Chinese with English abstract).

[40]

Song, S., Wang, M.M., Xu, X., Wang, C., Niu, Y., Allen, M.B., Su, L., 2015. Ophiolites in the Xing’an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics 34, 2221-2248. https://doi.org/10.1002/2015TC003948.

[41]

Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M., 2002. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J. Struct. Geol. 24, 1861-1884. https://doi.org/10.1016/S0191-8141(02)00035-4

[42]

Sun, C., Li, Z., Zuza, A.V., Zheng, W., Jia, D., He, Z., Hui, G., Yang, S., 2022. Controls of mantle subduction on crustal-level architecture of intraplate orogens: Insights from sandbox modeling. Earth Planet. Sci. Lett. 584, 117476. https://doi.org/10.1016/j.epsl.2022.117476.

[43]

Santimano, T., Pysklywec, R.N., 2020. The influence of lithospheric mantle scars and rheology on intraplate deformation and orogenesis: Insights from tectonic analog models. Tectonics 39, e2019TC005841. https://doi.org/10.1029/2019TC005841.

[44]

Seguret, M., Labaume, P., Madariaga, R., 1984. Eocene seismicity in the Pyrenees from megaturbidites of the South Pyrenean Basin (Spain). Mar. Geol. 55 (1), 117-131.

[45]

Tang, M., Chu, X., Hao, J., Shen, B., 2021. Orogenic quiescence in Earth’s middle age. Science 371, 728-731. https://doi.org/10.1126/science.abf1876.

[46]

Tang, M., Ji, W.Q., Chu, X., Wu, A., Chen, C., 2020. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76-80. https://doi.org/10.1130/G47745.1.

[47]

van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Mat¸enco, L.C., Maffione, M., Vissers, R.L.M., Gürer, D., Spakman, W., 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79-229. https://doi.org/10.1016/j.gr.2019.07.009.

[48]

Varga, J., Raimondo, T., Morrissey, L., Kelsey, D.E., Hand, M., 2021. Pressure- temperature-time constraints on gneiss dome formation in an intracontinental orogen. J. Metamorph. Geol. 39, 911-933. https://doi.org/10.1111/jmg.12635.

[49]

Wang, Y., Xu, B., Song, S., Zhao, P., Zhang, J., Yan, L., 2021. A late Paleozoic extension basin constrained by sedimentology and geochronology in eastern Central Asian Orogenic Belt. Gondwana Res. 89, 265-286. https://doi.org/10.1016/j.gr.2020.10.00.

[50]

Wang, Z.W., Pei, F.P., Xu, W.L., Cao, H.H., Wang, Z.J., Zhang, Y., 2016. Tectonic evolution of the eastern Central Asian Orogenic Belt: evidence from zircon U-Pb-Hf isotopes and geochemistry of early Paleozoic rocks in Yanbian region, NE China. Gondwana Res. 38, 334-350. https://doi.org/10.1016/j.gr.2016.01.004.

[51]

Weller, O.M., St-Onge, M.R., Waters, D.J., Rayner, N.M., Searle, M., Sun-Lin, C., Palin, R.M., Lee, Y.H., Xu, X., 2013. Quantifying Barrovian metamorphism in the Danba Structural Culmination of eastern Tibet. J. Metamorph. Geol. 31, 909-935. https://doi.org/10.1111/jmg.12050.

[52]

Wang, Q., Li, S., Du, Z., 2009. Differential uplift of the Chinese Tianshan since the cretaceous: constraints from sedimentary petrography and apatite fission-track dating. Int. J. Earth Sci. 98, 1341-1363. https://doi.org/10.1007/s00531-009-0436-2.

[53]

Wang, Y., Xu, B., Cheng, S., Liao, W., Shao, J., Wang, Y., 2014. Zircon U-Pb dating of the mafic lava from Wudaoshimen, Hexigten, Inner Mongolia and its geological significance. Acta Petrol. Sin. 30, 2055-2062.

[54]

Willingshofer, E., Sokoutis, D., Luth, S.W., Beekman, F., Cloetingh, S., 2013. Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology 41, 1239-1242. https://doi.org/10.1130/G34815.1.

[55]

Windley, B.F., Alexeiev, D., Xiao, W., Kröner, A., Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London 164, 31-47. https://doi.org/10.1144/0016-76492006-022.

[56]

Xiao, W., Windley, B.F., Hao, J., Zhai, M., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics. 22, 1069. https://doi.org/10.1029/2002TC001484.

[57]

Xu, J.J., Lai, Y., Cui, D., Lu, B., 2012. Petrology and LA-ICP-MS zircon U-Pb geochronology of the Qianjinchang pluton, southeastern Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis 48 (4), 617-628 in Chinese with English abstract).

[58]

Xu, B., Wang, Z., Zhang, L., Yang, Z., He, Y., 2018. The Xing-Meng intracontinent orogenic belt. Acta Petrol. Sin. 34, 2819-2844 (in Chinese with English abstract).

[59]

Xu, B., Charvet, J., Chen, Y., Zhao, P., Shi, G., 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Res. 23, 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015.

[60]

Xue, Z., Lin, W., Faure, M., Chen, Y., Ji, W., Qiu, H.N., 2021. An intracontinental orogen exhumed by basement-slice imbrication in the Longmenshan Thrust Belt of the Eastern Tibetan Plateau. GSA Bull. 134 (1-2), 15-38. https://doi.org/10.1130/B35826.1.

[61]

Yarmolyuk, V.V., Kovalenko, V.I., Sal’nikova, E.B., Kovach, V.P., Kozlovsky, A.M., Kotov, A.B., Lebedev, V.I., 2008. Geochronology of igneous rocks and formation of the late Paleozoic south Mongolian active margin of the Siberian continent. Stratigr.Geol.Correl. 16,162-181.https://doi.org/10.1134/ S0869593808020056.

[62]

Yu, S., Zhang, J., Li, H., Hou, K., Mattinson, C.G., Gong, J., 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane: New evidence for deep continental subduction. Gondwana Res. 23, 901-919. https://doi.org/10.1016/j.gr.2012.07.018.

[63]

Zhang, H., Xu, B., Song, S., Yin, L., Zhang, L., Shi, J., 2024. Late Paleozoic sedimentary and tectonic evolution of the Linxi Basin in the eastern Inner Mongolia, eastern Central Asian Orogenic Belt. Gondwana Res. 126, 112-128. https://doi.org/10.1016/j.gr.2023.10.002.

[64]

Zhang, J., Wei, C., Chu, H., 2018. Multiple metamorphic events recorded in the metamorphic terranes in central Inner Mongolia, Northern China: Implication for the tectonic evolution of the Xing’an-Inner Mongolia Orogenic Belt. J. Asian Earth Sci. 167, 52-67. https://doi.org/10.1016/j.jseaes.2018.04.007.

[65]

Zhang, J., Wei, C., Chu, H., Chen, Y., 2016. Mesozoic metamorphism and its tectonic implication along the Solonker suture zone in central Inner Mongolia, China. Lithos 261, 262-277. https://doi.org/10.1016/j.lithos.2016.03.014.

[66]

Zhang, X., Zhao, G., Sun, M., Eizenhöfer, P.R., Han, Y., Hou, W., Liu, D., Wang, B., 2015. Paleozoic magmatism and metamorphism in the Central Tianshan block revealed by U-Pb and Lu-Hf isotope studies of detrital zircons from the south Tianshan belt, NW China. Lithos 220-221, 167-180. https://doi.org/10.1016/j.lithos.2015.06.002.

[67]

Zhang, Y.Q., Zhang, C.H., Hou, L.Y., Zhang, Y.P., Huang, Y.Z., Chen, H.L., Chang, L.Z., 2019. Superposed folding since the Permian on both sides of the Xar Moron Suture, southeastern Inner Mongolia: Implications for syn-and post-collision geodynamic processes. Earth Sci. Front. 26(2), 264-280 doi: 10.13745/j.esf.sf 26.2.264. (in Chinese with English abstract).

[68]

Zhang, S., Gao, R., Li, H., Hou, H., Wu, H., Li, Q., Yang, K., Li, C., Li, W., Zhang, J., Yang, T., Keller, G.R., Liu, M., 2014. Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: an integrated interpretation. Tectonophysics 612-613, 26-39. https://doi.org/10.1016/j.tecto.2013.11.035.

[69]

Zhao, P., Faure, M., Chen, Y., Shi, G., Xu, B., 2015. A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China). Earth Planet. Sci. Lett. 426, 46-57. https://doi.org/10.1016/j.epsl.2015.06.011.

[70]

Zhao, P., Xu, B., Zhang, C., 2017. A rift system in southeastern Central Asian Orogenic Belt: Constraint from sedimentological, geochronological and geochemical investigations of the late Carboniferous-Early Permian strata in northern Inner Mongolia (China). Gondwana Res. 47, 342-357. https://doi.org/10.1016/j.gr.2016.06.013.

[71]

Zuza, A.V., Wu, C., Wang, Z., Levy, D.A., Li, B., Xiong, X., Chen, X., 2018. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan orogen. Lithosphere 11, 209-231. https://doi.org/10.1130/l1042.1.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/