The catalytic effect of silver on acidic ferric-sulfate leaching of chalcopyrite: A microscopic cyclic reaction

Barbara Etschmann , Luis Verdugo , Alexander Kalintsev , Maryam Olamide Abdus-Salam , Rahul Ram , Luke Vollert , John O'Callaghan , Yang Liu , Timothy Williams , Paul Guagliardo , Joël Brugger

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102119

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102119 DOI: 10.1016/j.gsf.2025.102119

The catalytic effect of silver on acidic ferric-sulfate leaching of chalcopyrite: A microscopic cyclic reaction

Author information +
History +
PDF

Abstract

Copper extraction from chalcopyrite is challenging, because acid dissolution is slow, occurring incongruently via a complex three-step reaction mechanism. Silver has been known to catalyse copper extraction from chalcopyrite since the 1970's; yet the mechanism remains controversial. Microcharacterisation of experimental products obtained under optimal leaching conditions (50-150μm chalcopyrite grains in ferric/ferrous-sulfate solution with a redox potential around 500 mV vs. Ag/AgCl, approximately 1ppm Ag; [Ag] 6.4×10-6 mol/L; 70℃; 4 days) highlights the heterogeneity of the reaction: μm-thick layers of a porous copper-sulfide with variable composition formed both in cracks within, and on the surface of the chalcopyrite grains. There is no evidence for formation of Ag-rich phases (Ag2S(s), Ag0(s)). The fundamental three-step reaction mechanism remains the same with or without added silver; silver merely accelerates the initial dissolution step.

An integrated model for the catalytic effect of silver is proposed that incorporates recent advances in the reactivity of sulfide minerals. The initial reaction follows a 'Fluid-Induced Solid State Diffusion Mechanism', where diffusion of Fe in the chalcopyrite lattice is driven towards the surface by its rapid removal into solution, resulting in a Fe-deficient surface layer. The large Ag+ ion, relative to Cu+/Fe3+, diffuses into this Fe-deficient surface layer and accelerates chalcopyrite dissolution in the subsequent step, whereby chalcopyrite is replaced by copper sulfides via an interface coupled dissolution reprecipitation reaction as a consequence of the sulfide-rich micro-environment at the mineral surface. Effective Ag+ recycling is key to the catalytic effect of silver, and occurs as a result of the strong affinity of Ag+ for bisulfide ligands accumulating at the surface of dissolving chalcopyrite.

Keywords

Chalcopyrite / Ferric-sulfate leach / Silver / FIB-SEM / Catalytic mechanism

Cite this article

Download citation ▾
Barbara Etschmann, Luis Verdugo, Alexander Kalintsev, Maryam Olamide Abdus-Salam, Rahul Ram, Luke Vollert, John O'Callaghan, Yang Liu, Timothy Williams, Paul Guagliardo, Joël Brugger. The catalytic effect of silver on acidic ferric-sulfate leaching of chalcopyrite: A microscopic cyclic reaction. Geoscience Frontiers, 2025, 16(5): 102119 DOI:10.1016/j.gsf.2025.102119

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Barbara Etschmann: Writing - review & editing, Writing - original draft, Visualization, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Luis Verdugo: Writing - review & editing, Writing - original draft, Visualization, Methodology, Investigation, Formal analysis. Alexander Kalintsev: Writing - review & editing, Investigation. Maryam Olamide Abdus-Salam: Writing - review & editing, Investigation. Rahul Ram: Writing - review & editing, Funding acquisition, Conceptualization. Luke Vollert: Writing - review & editing, Funding acquisition. John O’-Callaghan: Writing - review & editing, Funding acquisition. Yang Liu: Writing - review & edit-ing, Investigation. Tim-othy Williams: Writing - review & editing, Investigation. Paul Guagliardo: Writing - review & editing, Inves-tigation. Joël Brugger: Writing - review & editing, Writing - orig-inal draft, Visualization, Supervision, Project administration, Methodology,Investigation,Fundingacquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Newcrest (now Newmont corp.) for supporting this work through an ARC linkage grant (LP190101230). Part of this work was funded by ARC DP220100500. The authors acknowledge the use of the instru-ments and scientific and technical assistance at the Monash Centre for Electron Microscopy, Monash University, a Microscopy Aus-tralia (ROR: 042mm0k03) facility supported by NCRIS. This research used equipment funded by Australian Research Council grant(s) (LE200100132, LE110100223). We would like to thank Rachelle Pierson for her assistance with OES data collection and the anonymous reviewers for their helpful comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102119.

References

[1]

Adegoke I.A., Xia F., Deditius A.P., Pearce M.A., Roberts M.P., Brugger J., 2022. A new mode of mineral replacement reactions involving the synergy between fluid-induced solid-state diffusion and dissolution-reprecipitation: a case study of the replacement of bornite by copper sulfides. Geochim. Cosmochim. Acta 330, 165-190. https://doi.org/10.1016/j.gca.2021.04.017.

[2]

Akinfiev N.N., Zotov A.V., 2010. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0-600 ℃ and pressures of 1-3000 bar. Geochem. Intl. 48 (7), 714-720. https://doi.org/10.1134/s0016702910070074.

[3]

Altree-Williams A., Pring A., Ngothai Y., Brugger J., 2015. Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials. Earth-Sci. Rev. 150, 628-651. https://doi.org/10.1016/j.earscirev.2015.08.013.

[4]

Ansah E.O., Jyoti A., Black J.R., Haese R.R., 2023. The importance of reaction mechanisms and coupled dissolution with reprecipitation (CDR) reactions when modelling copper leaching in heap systems. Miner. Eng. 203, 108357. https://doi.org/10.1016/j.mineng.2023.108357.

[5]

Ballester A., Blázquez M.L., González F., Muñoz J.A., 2007. Influence of various ions in the bioleaching of metal sulfides. In: DonatiE.R., SandW. (MicrobialProcessing of Metal Sulfides.Eds.), Springer, pp. 77-101.

[6]

Barton I.F., Hiskey J.B., 2022. Chemical, crystallographic, and electromagnetic variability in natural chalcopyrite and implications for leaching. Miner. Eng. 189, 107867. https://doi.org/10.1016/j.mineng.2022.107867.

[7]

Bell R.A., Kramer J.R., 1999. Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ. Toxicol. Chem. 18 (1), 9-22. https://doi.org/10.1002/etc.5620180103.

[8]

Berger R., Bucur R.V., 1996. Diffusion in Copper Sulphides: An experimental study of chalcoite, chalcopyrite and bornite. Swedish Nuclear Power Inspectorate, Stockholm. Sweden 96 (3), 1-36.

[9]

Berkenbosch H., de Ronde C., Gemmell J., McNeill A., Goemann K., 2012. Mineralogy and formation of black smoker chimneys from Brothers submarine volcano. Kermadec Arc. Econ. Geol. 107 (8), 1613-1633.

[10]

Biegler T., Swift D.A., 1979. Anodic electrochemistry of chalcopyrite. J. Appl. Electrochem. 9 (5), 545-554.

[11]

Bindi L., Spry P., Pratesi G., 2006. Lenaite from the Gies gold-silver telluride deposit, Judith Mountains, Montana, USA: Occurrence, composition, and crystal structure. Can. Mineral. 44, 207-212.

[12]

Birss V.I., Wright G.A., 1981. The kinetics of the anodic formation and reduction of phase silver sulfide films on silver in aqueous sulfide solutions. Electrochim. Acta. 26 (12), 1809-1817.

[13]

Brown G.E., Calas G., 2012. Mineral-aqueous solution interfaces and their impact on the environment. Geochem. Perspect. 1 (4-5), 483-742. https://doi.org/10.7185/geochempersp.1.4.

[14]

Brugger J., Etschmann B., Liu W., Testemale D., Hazemann J.L., Emerich H., van Beek W., Proux O., 2007. An XAS study of the structure and thermodynamics of Cu(I) chloride complexes in brines up to high temperature (400 ℃, 600 bar). Geochim. Cosmochim. Acta 71 (20), 4920-4941. https://doi.org/10.1016/j.gca.2007.08.003.

[15]

Brugger J., Liu W.H., Etschmann B., Mei Y., Sherman D.M., Testemale D., 2016. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem. Geol. 447, 219-253. https://doi.org/10.1016/j.chemgeo.2016.10.021.

[16]

Burkin A.R., 1982. Composition and phase changes during oxidative acid leaching reactions. In: BautistaR.G. (Ed.), Hydrometallurgical Process Fundamentals. Plenum Press, New York, pp. 113-123.

[17]

Chaudhari A., Brugger J., Ram R., Chowdhury P., Etschmann B., Guagliardo P., Xia F., Pring A., Gervinskas G., Liu A., Frierdich A., 2022. Synchronous solid-state diffusion, dissolution-reprecipitation, and recrystallization leading to isotopic resetting: insights from chalcopyrite replacement by copper sulfides. Geochim. Cosmochim. Acta 331, 48-68. https://doi.org/10.1016/j.gca.2022.06.005.

[18]

Chaudhari A., Webster N.A.S., Xia F., Frierdich A., Ram R., Etschmann B., Liu W.H., Wykes J., Brand H.E.A., Brugger J., 2021. Anatomy of a complex mineral replacement reaction: Role of aqueous redox, mineral nucleation, and ion transport properties revealed by an in-situ study of the replacement of chalcopyrite by copper sulfides. Chem. Geol. 581, 120390. https://doi.org/10.1016/j.chemgeo.2021.120390.120390.

[19]

Chen J.H., Harvey W.W., 1975. Cation self-diffusion in chalcopyrite and pyrite. Metall. Trans. B 6, 331-339.

[20]

Cherniak D.J., 2010. Diffusion in carbonates, fluorite, sulfide minerals, and diamond. Rev. Mineral. Geochem. 72 (1), 871-897. https://doi.org/10.2138/ rmg.2010.72.19.

[21]

Chudnovsky B.H., Swindler D.L., Thompson J.R., 2001. Silver corrosion and whiskers growth on power contacts in industrial atmosphere of pulp and paper plants. Conference Record of 2001 Annual Pulp and Paper Industry Technical Conference. IEEE. Portland, USA, pp. 155-162.

[22]

Coelho A.A., Evans J.S.O., Evans I.R., Kern A., Parsons S., 2011. The TOPAS symbolic computation system. Powder Diffr. 26, S22-S25. https://doi.org/10.1154/1.3661087.

[23]

Conejeros S., Moreira Ide P., Alemany P., Canadell E., 2014. Nature of holes, oxidation states, and hypervalency in covellite (CuS). Inorg. Chem. 53 (23), 12402-12406. https://doi.org/10.1021/ic502436a.

[24]

Cook N.J., Ciobanu C.L., Brugger J., Etschmann B., Howard D.L., de Jonge M.D., Ryan C., Paterson D., 2012. Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via mu-XANES spectroscopy. Amer. Mineral. 97 (2-3), 476-479. https://doi.org/10.2138/am.2012.4042.

[25]

Córdoba E.M., Muñoz J.A., Blázquez M.L., González F., Ballester A., 2008a. Leaching of chalcopyrite with ferric ion. Part I: general aspects. Hydrometallurgy 93 (3- 4), 81-87. https://doi.org/10.1016/j.hydromet.2008.04.015.

[26]

Córdoba E.M., Muñoz J.A., Blázquez M.L., González F., Ballester A., 2008b. Leaching of chalcopyrite with ferric ion. Part II: effect of redox potential. Hydrometallurgy93(3-4),88-96.https://doi.org/10.1016/j.hydromet.2008.04.016.

[27]

Córdoba E.M., Muñoz J.A., Blázquez M.L., González F., Ballester A., 2008c. Leaching of chalcopyrite with ferric ion. Part III: effect of redox potential on the silver-catalyzed process. Hydrometallurgy 93 (3-4), 97-105. https://doi.org/10.1016/j.hydromet.2007.11.006.

[28]

Dreisinger D., 2006. Copper leaching from primary sulfides: options for biological and chemical extraction of copper. Hydrometallurgy 83 (1-4), 10-20. https://doi.org/10.1016/j.hydromet.2006.03.032.

[29]

Elshkaki A., Graedel T., Ciacci L., Reck B., 2018. Resource demand scenarios for the major metals. Environ. Sci. Technol. 52 (5), 2491-2497. https://doi.org/10.1021/acs.est.7b05154.

[30]

Emerson D., 2022. Bornite conductivity: the conductivity of bornite, peacock ore, a copper-iron sulphide. Preview 2022 (220), 41-43. https://doi.org/10.1080/14432471.2022.2127673.

[31]

Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A., 2014. Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble. Contrib. Mineral. Petrol. 168, 1045. https://doi.org/10.1007/s00410-014-1045-z.

[32]

Etschmann B.E., Black J.R., Grundler P.V., Borg S., Brewe D., McPhail D.C., Spiccia L., Brugger J., 2011. Copper(I) speciation in mixed thiosulfate-chloride and ammonia-chloride solutions: XAS and UV-Visible spectroscopic studies. RSC Adv. 1 (8), 1554-1566. https://doi.org/10.1039/c1ra00708d.

[33]

Etschmann B.E., Liu W., Testemale D., Muller H., Rae N.A., Proux O., Hazemann J. L., Brugger J., 2010. An in situ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25- 592 ℃, 180-600 bar): speciation and solubility in vapor and liquid phases. Geochim. Cosmochim. Acta 74 (16), 4723-4739. https://doi.org/10.1016/j.gca.2010.05.013.

[34]

Evans H.T., 1971. Crystal structure of low chalcocite. Nat. Phys. Sci. 232 (29), 69-70.

[35]

Evans H.T., Konnert J.A., 1976. Crystal-structure refinement of covellite. Am. Mineral. 61 (9-10), 996-1000.

[36]

Faris N., Ram R., Chen M., Tardio J., Pownceby M.I., Jones L.A., McMaster S., Webster N.A.S., Bhargava S., 2017. The effect of thermal pre-treatment on the dissolution of chalcopyrite (CuFeS2) in sulfuric acid media. Hydrometallurgy 169, 68-78. https://doi.org/10.1016/j.hydromet.2016.12.006.

[37]

Galway A.K., Michael E. Brown M.E., 1999. Chapter 3 Kinetic models for solid state reactions. Stud. Phys. Theor. Chem. 86, 75-115.

[38]

Ghahremaninezhad A., Radzinski R., Gheorghiu T., Dixon D.G., Asselin E., 2015. A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution. Hydrometallurgy155,95-104.https://doi.org/10.1016/j.hydromet.2015.04.011

[39]

Graedel T.E., 1992. Corrosion mechanisms for silver exposed to the atmosphere. J. Electrochem. Soc. 139 (7), 1963-1970.

[40]

Guo Y., Wu Q., Li Y., Lu N., Mao K., Bai Y., Zhao J., Wang J., Zeng X.C., 2019. Copper(i) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Nanoscale Horiz. 4 (1), 223-230. https://doi.org/10.1039/c8nh00216a.

[41]

Hackl R., Dreisinger D., Peters E., King J., 1995. Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 39 (1-3), 25-48.

[42]

Hall S.R., Stewart J.M., 1973. Crystal-structure refinement of chalcopyrite, CuFeS2. Acta Cryst. B29, 579-585. https://doi.org/10.1107/s0567740873002943.

[43]

Harmer S.L., Pratt A.R., Nesbitt W.H., Fleet M.E., 2004. Sulfur species at chalcopyrite (CuFeS2) fracture surfaces. Am. Mineral. 89 (7), 1026-1032. https://doi.org/10.2138/am-2004-0713.

[44]

He Y., Bi S., Jiang C., Song J., 2022. Recent progress of sulfur cathodes and other components for flexible lithium-sulfur batteries. Mater. Today Sustain. 19, 100181. https://doi.org/10.1016/j.mtsust.2022.100181.

[45]

Helgeson H.C., Delany J.M., Nesbitt H.W., Bird D.K., 1978. Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278, 1-229.

[46]

Hellmann R., Cotte S., Cadel E., Malladi S., Karlsson L.S., Lozano-Perez S., Cabie M., Seyeux A., 2015. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. Nat. Mater. 14 (3), 307-311. https://doi.org/10.1038/nmat4172.

[47]

Henckel J.F., 1725. Pyritologia, Oder Kieß Historie. Verlegts Johann Christian Martini, Leipzig.

[48]

Hidalgo T., Kuhar L., Beinlich A., Putnis A., 2019. Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy 188, 140-156.

[49]

Hidalgo T., Kuhar L., Beinlich A., Putnis A., 2020a. Effect of multistage solution- mineral contact in in-situ recovery for low-grade natural copper samples: extraction, acid consumption, gangue-mineral changes and precipitation. Miner. Eng. 159, 106616.

[50]

Hidalgo T., Verrall M., Beinlich A., Kuhar L., Putnis A., 2020b. Replacement reactions of copper sulphides at moderate temperature in acidic solutions. Ore Geol. Rev. 123, 103569. https://doi.org/10.1016/j.oregeorev.2020.103569.

[51]

Hiroyoshi N., Arai M., Miki H., Tsunekawa M., Hirajima T., 2002. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 63 (3), 257-267. https://doi.org/10.1016/S0304-386X(01)00228-6.

[52]

Hiroyoshi N., Kuroiwa S., Miki H., Tsunekawa M., Hirajima T., 2007. Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 87, 1-10. https://doi.org/10.1016/j.hydromet.2006.07.006.

[53]

Hulbert S.F., 1969. Models for solid-state reactions in powdered compacts—a review. J. Br. Ceram. Soc. 6, 11-20.

[54]

Klekovkina V.V., Gainov R.R., Vagizov F.G., Dooglav A.V., Golovanevskiy V.A., Pen’kov I.N., 2014. Oxidation and magnetic states of chalcopyrite CuFeS2: a first principles calculation. Opt. Spectrosc. 116, 885-888.

[55]

Lazaro I., Nicol M.J., 2003. The mechanism of the dissolution and passivation of chalcopyrite: an electrochemical study. In 5th International Symposium Honoring Professor Ian M. Ritchie, Vancouver, Canada, pp. 40-417.

[56]

Li J., Kawashima N., Kaplun K., Absolon V.J., Gerson A.R., 2010. Chalcopyrite leaching: the rate controlling factors. Geochim. Cosmochim. Acta 74 (10), 2881-2893. https://doi.org/10.1016/j.gca.2010.02.029.

[57]

Li J., Tan Q., Li J., 2013a. Synthesis and property evaluation of CuFeS2-x as earth-abundant and environmentally-friendly thermoelectric materials. J. Alloys Compounds 551, 143-149. https://doi.org/10.1016/j.jallcom.2012.09.067.

[58]

Li K., Brugger J., Pring A., 2018. Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineral. Deposita 53 (7), 903-908. https://doi.org/10.1007/s00126-018-0820-6.

[59]

Li L., Soleymani M., Ghahreman A., 2021. New insights on the role of lattice-substituted silver in catalytic oxidation of chalcopyrite. Electrochim. Acta 369. https://doi.org/10.1016/j.electacta.2020.137652.

[60]

Li Y., Kawashima N., Li J., Chandra A.P., Gerson A.R., 2013b. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv. Colloid Interface Sci. 197, 1-32. https://doi.org/10.1016/j.cis.2013.03.004.

[61]

Li Y.B., Qian G.J., Brown P.L., Gerson A.R., 2017. Chalcopyrite dissolution: scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite. Geochim. Cosmochim. Acta 212, 33-47. https://doi.org/10.1016/j.gca.2017.05.016.

[62]

Lindsay S.S., Baedecker M.J., 1988. Determination of aqueous sulfide in contaminated and natural water using the methylene blue method. In: CollinsA.G., JohnsonA.I. (Ground-Water Contamination: American Society for Testing and Materials, Philadelphia USA,Eds.), Field Methods. pp. 349-357.

[63]

Liu Y., Zhao S., Wang G., Yang H., 2025. Copper leaching from complex chalcopyrite-rich ores: utilizing mechanical activation and wastewater-based sulfuric acid system. Sep. Purif. Technol. 354, 128631. https://doi.org/10.1016/j.seppur.2024.128631.

[64]

Makovicky E., 2006. Crystal structures of sulfides and other chalcogenides. Rev. Mineral. Geochem. 61, 7-125.

[65]

Matula R.A., 1979. Electrical-resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8 (4), 1147-1298.

[66]

Miller J.D., McDonough P.J., Portillo H.Q., 1981. Electrochemistry in silver catalyzed ferric sulfate leaching of chalcopyrite. In: KuhnM.C. (Ed.), Process and Fundamental Considerations of Selected Hydrometallurgical Systems. Society of Mining Engineers of American Institute of Mining, New York, pp. 327-338.

[67]

Mokmeli M., Parizi M.T., 2022. Low-grade chalcopyrite ore, heap leaching or smelting recovery route? Hydrometallurgy 211, 105885. https://doi.org/10.1016/j.hydromet.2022.105885.

[68]

Mudd G., Weng Z., Jowitt S., 2013. A detailed assessment of global Cu resource trends and endowments. Econ. Geol. 108 (5), 1163-1183.

[69]

Mukherjee S., Ramakrishnan A., Chen K.-H., Chattopadhyay K., Suwas S., Mallik R. C., 2019. Tuning the thermoelectric properties of chalcopyrite by Co and Se double substitution. AIP Conference Proceeding, Hisar, India 2115 (1), 030574.

[70]

Mussel W.N., Murad E., Fabris J.D., Moreira W.S., Barbosa J.B.S., Murta C.C., Abrahão W.P., De Mello J.W.V., Garg V.K., 2007. Characterization of a chalcopyrite from Brazil by Mössbauer spectroscopy and other physicochemical techniques. Phys. Chem. Miner. 34, 383-387.

[71]

Nazari G., Dixon D.G., Dreisinger D.B., 2012a. The mechanism of chalcopyrite leaching in the presence of silver-enhanced pyrite in the GalvanoxTM process. Hydrometallurgy113- 114,122-130.https://doi.org/10.1016/j.hydromet.2011.12.011.

[72]

Nazari G., Dixon D.G., Dreisinger D.B., 2012b. The role of silver-enhanced pyrite in enhancing the electrical conductivity of sulfur product layer during chalcopyrite leaching in the GalvanoxTM process. Hydrometallurgy 113-114, 177-184. https://doi.org/10.1016/j.hydromet.2011.12.024.

[73]

Nikoloski A.N., O’Malley G.P., Bagas S.J., 2017. The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1: Kinetics and reaction mechanisms. Hydrometallurgy 173, 258-270. https://doi.org/10.1016/j.hydromet.2017.08.020.

[74]

Nozaki H., Shibata K., Ohhashi N., 1991. Metallic hole conduction in CuS. J. Sol. State Chem. 91 (2), 306-311.

[75]

Ortega-Tong P., Jamieson J., Kuhar L., Faulkner L., Prommer H., 2023. In situ recovery of copper: Identifying mineralogical controls via model-based analysis of multistage column leach experiments. ACS ES&T Eng. 3 (6), 773-786.

[76]

Owen N., Ram R., Vollert L., Seaman B., Etschmann B., Xing Y., Rosemann M., Verdugo L., O’Callaghan J., Brugger J., 2024. The deleterious role of gangue mineralogy in copper extraction: a case study of poor recovery in leaching low-grade Cu ores. Appl. Geochem. 166, 105984. https://doi.org/10.1016/j.apgeochem.2024.105984.105984.

[77]

Palmer D.C., 2014. CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.

[78]

Parker A., Klauber C., Kougianos A., Watling H.R., van Bronswijk W., 2003. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy 71 (1-2), 265-276. https://doi.org/10.1016/s0304-386x(03)00165-8.

[79]

Pauporté T., Lincot D., 1995. Electrical, optical and photoelectrochemical properties of natural enargite, Cu3AsS4. Adv. Mater. Opt. Electron. 5 (6), 289-298. https://doi.org/10.1002/amo.860050602.

[80]

Pawlek F.E., 1976. The influence of grain size and mineralogical composition on the leachability of copper concentrates. Ext. Met. Cu 2, 690-705.

[81]

Pearson R.G., 1988. Absolute electronegativity and hardness - application to inorganic-chemistry. Inorg. Chem. 27 (4), 734-740.

[82]

Pejjai B., Reddivari M., Kotte T.R.R., 2020. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS. Mater. Chem. Phys. 239, 122030. https://doi.org/10.1016/j.matchemphys.2019.122030.

[83]

Petersen J., 2016. Heap leaching as a key technology for recovery of values from low-grade ores - a brief overview. Hydrometallurgy 165, 206-212. https://doi.org/10.1016/j.hydromet.2015.09.001.

[84]

Pinget M., Dold B., Zentilli M., Fontboté L., 2015. Reported supergene sphalerite rims at the Chuquicamata porphyry deposit (northern Chile) revisited: evidence for a hypogene origin. Econ. Geol. 110 (1), 253-262.

[85]

Pokrovski G.S., Roux J., Ferlat G., Jonchiere R., Seitsonen A.P., Vuilleumier R., Hazemann J.-L., 2013. Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics. Geochim. Cosmochim. Acta 106, 501-523. https://doi.org/10.1016/j.gca.2012.12.012.

[86]

Price D.W., Warren G.W., 1986. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric-acid. Hydrometallurgy 15 (3), 303-324.

[87]

Putnis A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag. 66, 689-708.

[88]

Putnis A., 2009. Mineral replacement reactions. In: OelkersE.H., SchottJ. (Thermodynamics and Kinetics of Water-Rock Interaction.Eds.), Rev. Miner. Geochem. pp. 87-124. https://doi.org/10.2138/rmg.2009.70.3.

[89]

Putnis A., 2015. Transient porosity resulting from fluid-mineral interaction and its consequences. In: SteefelC.I., EmmanuelS., AnovitzL.M. (Pore-ScaleGeochemical Processes.Eds.), Rev. Miner. Geochem. pp. 1-23. 10.2138/rmg.2015.80.01.

[90]

Putnis A., Austrheim H., 2010. Fluid-induced processes: metasomatism and metamorphism. Geofluids 10 (1-2), 254-269. https://doi.org/10.1111/j.1468-8123.2010.00285.x.

[91]

Putnis C.V., Tsukamoto K., Nishimura Y., 2005. Direct observations of pseudomorphism: compositional and textural evolution at a fluid-solid interface. Am. Mineral. 90 (11-12), 1909-1912. https://doi.org/10.2138/am.2005.1990.

[92]

Ram R., Kalnins C., Pownceby M.I., Etschmann B., Fu W., Brugger J., 2021a. Selective radionuclide co-sorption onto natural minerals in environmental and anthropogenic conditions. J. Hazard. Mater. 409, 124989. https://doi.org/10.1016/j.jhazmat.2020.124989.

[93]

Ram R., Morrisroe L., Etschmann B., Vaughan J., Brugger J., 2021b. Lead (Pb) sorption and co-precipitation on natural sulfide, sulfate and oxide minerals under environmental conditions. Miner. Eng. 163, 106801. https://doi.org/10.1016/j.mineng.2021.106801.106801.

[94]

Reese B.K., Finneran D.W., Mills H.J., Zhu M.X., Morse J.W., 2011. Examination and refinement of the determination of aqueous hydrogen sulfide by the methylene blue method. Aquat. Geochem. 17, 567-582. https://doi.org/10.1007/s10498-011-9128-1.

[95]

Rötzer N., Schmidt M., 2020. Historical, current, and future energy demand from global copper production and its impact on climate change. Resources 9 (4), 44. https://doi.org/10.3390/resources9040044.44.

[96]

Ruiz-Agudo E., Putnis C.V., Putnis A., 2014. Coupled dissolution and precipitation at mineral-fluid interfaces. Chem. Geol. 383, 132-146. https://doi.org/10.1016/j.chemgeo.2014.06.007.

[97]

Santhosha A.L., Nazer N., Koerver R., Randau S., Richter F.H., Weber D.A., Kulisch J., Adermann T., Janek J., Adelhelm P., 2020. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries. Adv. Energy Mater. 10, 2002394. https://doi.org/10.1002/aenm.202002394.

[98]

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 (7), 676-682. https://doi.org/10.1038/nmeth.2019.

[99]

Schumer B.N., Stegen R.J., Barton M.D., Hiskey J.B., Downs R.T., 2019. Mineralogical profile of supergene sulfide ore in the Western Copper area, Morenci mine, Arizona. Can. Mineral. 57 (3), 391-401. https://doi.org/10.3749/canmin.1800020.

[100]

Shannon R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751-767.

[101]

Shock E.L., Sassani D.C., Willis M., Sverjensky D.A., 1997. Inorganic species in geologic fluids - correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907-950.

[102]

Tenailleau C., Pring A., Etschmann B., Brugger J., Grguric B., Putnis A., 2006. Transformation of pentlandite to violarite under mild hydrothermal conditions. Amer. Mineral. 91 (4), 706-709.

[103]

Todd E.C., Sherman D.M., Purton J.A., 2003. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions: Cu, Fe L-and OK-edge X-ray spectroscopy. Geochim. Cosmochim. Acta 67, 2137-2146. https://doi.org/10.1016/s0016-7037(02)01371-6.

[104]

Velásquez-Yévenes L., Ram R., 2022. The aqueous chemistry of the copper-ammonia system and its implications for the sustainable recovery of copper. Clean. Eng. Technol. 9, 100515. https://doi.org/10.1016/j.clet.2022.100515.

[105]

Xia F., Brugger J., Chen G., Ngothai Y., O’Neill B., Putnis A., Pring A., 2009. Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite. Geochim. Cosmochim. Acta 73, 1945-1969. https://doi.org/10.1016/j.gca.2009.01.007.

[106]

Xia F., Zhou J., Brugger J., Ngothai Y., Brian O., Chen G., Pring A., 2008. Novel route to synthesize complex metal sulfides: Hydrothermal coupled dissolution-reprecipitation replacement reactions. Chem. Mat. 20, 2809-2817.

[107]

Xing Y.L., Brugger J., Etschmann B., Tomkins A.G., Frierdich A.J., Fang X.Y., 2021. Trace element catalyses mineral replacement reactions and facilitates ore formation. Nat. Commun. 12. https://doi.org/10.1038/s41467-021-21684-5.1388.

[108]

Yao X.Z., Xia F., Deditius A.P., Brugger J., Etschmann B.E., Pearce M.A., Pring A., 2020. The mechanism and kinetics of the transformation from marcasite to pyrite: in situ and ex situ experiments and geological implications. Contrib. Mineral. Petrol. 175, 27. https://doi.org/10.1007/s00410-020-1665-4.27

[109]

Zhao H., Zhang Y., Sun M., Ou P., Zhang Y., Liao R., Qiu G., 2019. Catalytic mechanism of silver in the oxidative dissolution process of chalcopyrite: experiment and DFT calculation. Hydrometallurgy 187, 18-29. https://doi.org/10.1016/j.hydromet.2019.05.002.

[110]

Zhao J., Brugger J., Chen G.R., Ngothai Y., Pring A., 2014a. Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: mineral replacements with a large volume increase. Amer. Mineral. 99, 343-354. https://doi.org/10.2138/am.2014.4628.

[111]

Zhao J., Brugger J., Grguric B.A., Ngothai Y., Pring A., 2017. Fluid-enhanced coarsening of mineral microstructures in hydrothermally synthesized bornite-digenite solid solution. ACS Earth Space Chem. 1, 465-474. https://doi.org/10.1021/acsearthspacechem.7b00034.

[112]

Zhao J., Brugger J., Ngothai Y., Pring A., 2014b. The replacement of chalcopyrite by bornite under hydrothermal conditions. Am. Mineral. 99, 2389-2397. https://doi.org/10.2138/am-2014-4825.

[113]

Zhao J., Brugger J., Xia F., Ngothai Y., Chen G.R., Pring A., 2013. Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. Am. Mineral. 98, 19-32. https://doi.org/10.2138/am.2013.4209.

AI Summary AI Mindmap
PDF

811

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/