A dynamic DRASTIC-based approach for multi-hazard groundwater vulnerability mapping

Muhammad Umar Akbar , Ali Mirchi , Arfan Arshad , Abubakarr Mansaray , Ahsan Saif Ullah , Kaveh Madani

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102117

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102117 DOI: 10.1016/j.gsf.2025.102117

A dynamic DRASTIC-based approach for multi-hazard groundwater vulnerability mapping

Author information +
History +
PDF

Abstract

This study advances the DRASTIC groundwater vulnerability assessment framework by integrating a multi-hazard groundwater index (MHGI) to account for the dynamic impacts of diverse anthropogenic activities and natural factors on both groundwater quality and quantity. Incorporating factors such as population growth, agricultural practices, and groundwater extraction enhances the framework's ability to capture multi-dimensional, spatiotemporal changes in groundwater vulnerability. Additional improvements include refined weighting and rating scales for thematic layers based on available observational data, and the inclusion of distributed recharge. We demonstrate the practical utility of this dynamic DRASTIC-based framework through its application to the agro-urban regions of the Irrigated Indus Basin, a major groundwater-dependent agricultural area in South Asia. Results indicate that between 2005 and 2020, 54% of the study area became highly vulnerable to pollution. The MHGI revealed a 13% decline in potential groundwater storage and a 25% increase in groundwater-stressed zones, driven primarily by population growth and intensive agriculture. Groundwater vulnerability based on both groundwater quality and quantity dimensions showed a 19% decline in areas of low to very low vulnerability and a 6% reduction in medium vulnerability zones by 2020. Sensitivity analyses indicated that groundwater vulnerability in the region is most influenced by groundwater recharge (42%) and renewable groundwater stress (38%). Validation with in-situ data yielded area under the curve values of 0.71 for groundwater quality vulnerability and 0.63 for MHGI. The framework provides valuable insights to guide sustainable groundwater management, safeguarding both environmental integrity and human well-being.

Keywords

Groundwater / DRASTIC / Multi-hazard index / Groundwater quality and quantity / Vulnerability mapping / Sustainability

Cite this article

Download citation ▾
Muhammad Umar Akbar, Ali Mirchi, Arfan Arshad, Abubakarr Mansaray, Ahsan Saif Ullah, Kaveh Madani. A dynamic DRASTIC-based approach for multi-hazard groundwater vulnerability mapping. Geoscience Frontiers, 2025, 16(5): 102117 DOI:10.1016/j.gsf.2025.102117

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Muhammad Umar Akbar: Writing - original draft, Validation, Methodology, Investigation, Formal analysis, Data curation, Con-ceptualization. Ali Mirchi: Writing - review & editing, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition. Arfan Arshad: Writing - review & editing, Methodology, Investigation. Abubakarr Mansaray: Writing - review & editing, Methodology, Investigation. Ahsan Saif Ullah: Writing - review & editing, Methodology, Investigation. Kaveh Madani: Writing - review & editing, Methodology, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The first author acknowledges the US-PAK Knowledge Corridor Funding provided by Higher Education Commission (HEC), Pak-istan. The second and fourth authors acknowledge funding from the National Science Foundation (NSF Award 2114701) of the Uni-ted States. We appreciate two anonymous reviewers whose com-ments helped improve this work. Any opinions, findings, conclusions, or recommendations expressed in this publication are solely those of the authors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102117.

References

[1]

Abunada Z., Kishawi Y., Alslaibi T.M., Kaheil N., Mittelstet A., 2021. The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: Case study. J. Hydr. 592, 125613. https://doi.org/10.1016/j.jhydrol.2020.125613.

[2]

Ahada C.P.S., Suthar S., 2018. A GIS based DRASTIC model for assessing aquifer vulnerability in Southern Punjab, India. Model Earth Syst. Environ. 4, 635-645. https://doi.org/10.1007/s40808-018-0449-6.

[3]

Ali S., Liu D., Fu Q., Cheema M.J.M., Pal S.C., Arshad A., Pham Q.B., Zhang L., 2022. Constructing high-resolution groundwater drought at spatio-temporal scale using GRACE satellite data based on machine learning in the Indus Basin. J. Hydr. 612, 128295. https://doi.org/10.1016/j.jhydrol.2022.128295.

[4]

Aller L., Bennett T., Lehr Jh., Petty R.J., Hackett G., 1987. DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency, Washington, DC, p. 455.

[5]

Aneesh T.D, Nair A.M., Prasad K.R., Arun T.J., Srinivas R., 2022. Groundwater vulnerability assessment of an urban coastal phreatic aquifer in India using GIS-based DRASTIC model. Groundwater Sust. Develop. 19, 100810. https://doi.org/10.1016/j.gsd.2022.100810.

[6]

Arshad A., Mirchi A., Samimi M., Ahmad B., 2022. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Sci. Total Environ. 838, 156044. https://doi.org/10.1016/j.scitotenv.2022.156044.

[7]

Arshad A., Mirchi A., Taghvaeian S., AghaKouchak A., 2024a. Downscaled-GRACE data reveal anthropogenic and climate-induced water storage decline across the Indus Basin. Water Resour. Res. 60, e2023WR035882. https://doi.org/10.1029/2023WR035882.

[8]

Arshad A., Mirchi A., Vilcaez J., Akbar M.U., Madani K., 2024b. Reconstructing high-resolution groundwater level data using a hybrid random forest model to quantify distributed groundwater changes in the Indus Basin. J. Hydr. 628, 130535. https://doi.org/10.1016/j.jhydrol.2023.130535.

[9]

Arshad A., Zhang Z., Zhang W., Dilawar A., 2020. Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci. Front. 11, 1805-1819. https://doi.org/10.1016/j.gsf.2019.12.013.

[10]

Arshad A., Mirchi A., Vilcaez J., Umar Akbar M.,Madani K., 2023. High-Resolution (1km) Data of Groundwater Level Changes from 2003-2020 for Indus Basin. https://doi.org/10.6084/m9.figshare.24224674.v2.

[11]

Aslam R.A., Shrestha S., Usman M.N., Khan S.N., Ali S., Sharif M.S., Sarwar M.W., Saddique N., Sarwar A., Ali M.U., 2022. Integrated SWAT-MODFLOW modeling-based groundwater adaptation policy guidelines for Lahore, Pakistan under projected climate change, and human development scenarios. Atmosphere 13, 2001. https://doi.org/10.3390/atmos13122001.

[12]

Badar M.S., Ali S., Daniyal, Akram M.W., Faheem K., Khan S.U., Farooqi I.H., 2024. GIS-based assessment of groundwater vulnerability to heavy metal contamination via water quality pollution indices in urban Aligarh, India. Water Prac. Tech. 19, 419-434. https://doi.org/10.2166/wpt.2024.019.

[13]

Banerjee A., Creedon L., Jones N., Gill L., Gharbia S., 2023. Dynamic groundwater contamination vulnerability assessment techniques: a systematic review. Hydrology 10, 182. https://doi.org/10.3390/hydrology10090182.

[14]

Barbulescu A., 2020. Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: a review. Water 12, 1356. https://doi.org/10.3390/w12051356.

[15]

Basharat M., 2019. Water management in the Indus Basin in Pakistan:Challenges and opportunities. In: SadiqI.K., ThomasE.A. (Eds.), Indus River Basin:Water Security and Sustainability. Elsevier, pp. 375-388. https://doi.org/10.1016/b978-0-12-812782-7.00017-5.

[16]

Batool K., Khan I., Farah N., Safdar M., Hussain N., 2023. Population growth and climate change: Implications for human development in Pakistan. Qlantic J. Soc. Sci. Humanit. 4, 123-136 https://doi.org/10.55737/qjssh.122337966.

[17]

Bera A., Mukhopadhyay B.P., Das S., 2022. Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Chemosphere 307, 135831. https://doi.org/10.1016/j.chemosphere.2022.135831.

[18]

Bhutta M.N., Smedema L.K., 2007. One hundred years of waterlogging and salinity control in the Indus valley, Pakistan: a historical review. Irrig. Drain. 56, S81- S90. https://doi.org/10.1002/ird.333.

[19]

Buchhorn M., Lesiv M., Tsendbazar N.-E., Herold M., Bertels L., Smets B., 2020. Copernicus global land cover layers—collection 2. Remote Sensing 12, 1044. https://doi.org/10.3390/rs12061044.

[20]

Center For International Earth Science Information Network, 2017. Gridded Population of the World, Version 4 (GPWv4): Population Density. Columbia University, Revision 11. https://doi.org/10.7927/H49C6VHW.

[21]

Civita M., De Maio M., 2004. Assessing and mapping groundwater vulnerability to contamination: the Italian combined approach. Geofísica Int. 43, 513-532. https://doi.org/10.22201/igeof.00167169p.2004.43.4.776.

[22]

Djémin J.É., Kouamé J.K., Deh K.S., Abinan A.T., Jourda J.P., 2016. Contribution of the sensitivity analysis in groundwater vulnerability assessing using the Drastic method: application to groundwater in Dabou region (Southern of Côte d’Ivoire). J. Environ. Prot. 7, 129-143. https://doi.org/10.4236/jep.2016.71012.

[23]

Doeffinger T., Hall J.W., 2020. Water stress and productivity: an empirical analysis of trends and drivers. Water Resour. Res. 56, e2019WR025925. https://doi.org/10.1029/2019WR025925.

[24]

Doerfliger N., Jeannin P.-Y., Zwahlen F., 1999. Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geology 39, 165-176. https://doi.org/10.1007/s002540050446.

[25]

Döll P., 2009. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ. Res. Lett. 4, 035006. https://doi.org/10.1088/1748-9326/4/3/035006.

[26]

Falkenmark M., 1989. The massive water scarcity now threatening Africa: why isn’t it being addressed? Ambio, 112-118.

[27]

Foster S.S.D., 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In:International Conference on Vulnerability of Soil and Groundwater to Pollutants. Netherlands Organization for Applied Scientific Research, the Hague, pp. 69-86.

[28]

Gharekhani M., Nadiri A.A., Khatibi R., Sadeghfam S., Moghaddam A.A., 2022. A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA). J. Environ. Manag. 303, 114168. https://doi.org/10.1016/j.jenvman.2021.114168.

[29]

Goyal D., Haritash A.K., Singh S.K., 2021. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. J. Environ. Manag. 296, 113161. https://doi.org/10.1016/j.jenvman.2021.113161.

[30]

Hamza M.H., Added A., Rodriguez R., Abdeljaoued S., Mammou A.B., 2007. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). J. Environ. Manag. 84, 12-19. https://doi.org/10.1016/j.jenvman.2006.04.004.

[31]

Hargrove W.L., Heyman J.M., Mayer A., Mirchi A., Granados-Olivas A., Ganjegunte G., Gutzler D., Pennington D.D., Ward F.A., Chavira L.G., 2023. The future of water in a desert river basin facing climate change and competing demands: a holistic approach to water sustainability in arid and semi-arid regions. J. Hydrol. Regional Study 46, 101336. https://doi.org/10.1016/j.ejrh.2023.101336.

[32]

Hasan E., Tarhule A., Hong Y., Moore III B., 2019. Assessment of physical water scarcity in Africa using GRACE and TRMM satellite data. Remote Sensing 11, 904. https://doi.org/10.3390/rs11080904.

[33]

Hasan E., Tarhule A., Hong Y., Moore III B., 2016. Potential Water Availability Index (PWAI): A new water vulnerability index for Africa based on GRACE data. AGU Fall Meeting Abstracts, p. GC41B-1099.

[34]

Humphrey V., Gudmundsson L., Seneviratne S.I., 2016. Assessing global water storage variability from GRACE: Trends, seasonal cycle. Subseasonal Anomalies and Extremes. Surv. Geophys 37, 357-395. https://doi.org/10.1007/s10712-016-9367-1.

[35]

Hyndman D.W., Xu T., Deines J.M., Cao G., Nagelkirk R., Viña A., McConnell W., Basso B., Kendall A.D., Li S., Luo L., Lupi F., Ma D., Winkler J.A., Yang W., Zheng C., Liu J., 2017. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling. Geophys. Res. Lett. 44, 8359-8368. https://doi.org/10.1002/2017GL074429.

[36]

Jang W.S., Engel B., Harbor J., Theller L., 2017. Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water 9, 792. https://doi.org/10.3390/w9100792.

[37]

Janjua S., Hassan I., Muhammad S., Ahmed S., Ahmed A., 2021. Water management in Pakistan’s Indus Basin: challenges and opportunities. Water Policy 23, 1329-1343. https://doi.org/10.2166/wp.2021.068.

[38]

Javadi S., Kavehkar N., Mohammadi K., Khodadadi A., Kahawita R., 2011. Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Int. 36, 719-732. https://doi.org/10.1080/02508060.2011.610921.

[39]

Jenks G.F., 1967. The data model concept in statistical mapping. Int. Yearbook Cartograp. 7, 186-190.

[40]

Jia X., O’Connor D., Hou D., Jin Y., Li G., Zheng C., Ok Y.S., Tsang D.C.W., Luo J., 2019. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 672, 551-562. https://doi.org/10.1016/j.scitotenv.2019.03.457.

[41]

Khosravi K., Sartaj M., Tsai F.-T.-C., Singh V.P., Kazakis N., Melesse A.M., Prakash I., Bui D.T., Pham B.T., 2018. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total Environ. 642, 1032-1049. https://doi.org/10.1016/j.scitotenv.2018.06.130.

[42]

Kirby M., Mainuddin M., Khaliq T., Cheema M.J.M., 2017. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agricul. Water Manag. 179, 34-46. https://doi.org/10.1016/j.agwat.2016.06.001.

[43]

Kumar A., Pramod Krishna A., 2020. Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int. 35, 1149-1178. https://doi.org/10.1080/10106049.2018.1557259.

[44]

Lapworth D.J., Boving T.B., Kreamer D.K., Kebede S., Smedley P.L., 2022. Groundwater quality: Global threats, opportunities and realising the potential of groundwater. Sci. Total Environ. 811, 152471. https://doi.org/10.1016/j.scitotenv.2021.152471.

[45]

Lobo-Ferreira J.P., Chachadi A.G., Diamantino C., Henriques M.J., 2005. Assessing aquifer vulnerability to seawater intrusion using GALDIT Method. Part 1: application to the Portuguese aquifer of Monte Gordo. http://irgu.unigoa.ac.in/drs/handle/unigoa/1733.

[46]

Lodwick W.A., Monson W., Svoboda L., 1990. Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. Int. J. Geograph. Inform. Syst. 4, 413-428. https://doi.org/10.1080/02693799008941556.

[47]

Magesh N.S., Chandrasekar N., Soundranayagam J.P., 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 3, 189-196. https://doi.org/10.1016/j.gsf.2011.10.007.

[48]

Majidipour F., Najafi S.M.B., Taheri K., Fathollahi J., Missimer T.M., 2021. Index-based groundwater sustainability assessment in the socio-economic context: a case study in the Western Iran. Environ. Manag. 67, 648-666. https://doi.org/10.1007/s00267-021-01424-7.

[49]

Metwally M.I., Armanuos A.M., Zeidan B.A., 2023. Comparative study for assessment of groundwater vulnerability to pollution using DRASTIC methods applied to central Nile Delta, Egypt. Int. J. Energ. Water Res. 7, 175-190. https://doi.org/10.1007/s42108-022-00198-w.

[50]

Mohammaddost A., Mohammadi Z., Rezaei M., Pourghasemi H.R., Farahmand A., 2022. Assessment of groundwater vulnerability in an urban area: a comparative study based on DRASTIC, EBF, and LR models. Environ. Sci. Pollut. Res. 29, 72908-72928. https://doi.org/10.1007/s11356-022-20767-0.

[51]

Molden D., Sakthivadivel R., Habib Z., 2001. Basin-level use and productivity of water: examples from South Asia. IWMI.

[52]

Mondal B., Bhomia R.K., Saha A.K., MacKenzie R.A., 2024. Assessment of coastal and mangrove vulnerability in the Andaman Island, Indian Ocean. Geosci. Front. 15, 101820. https://doi.org/10.1016/j.gsf.2024.101820.

[53]

Muhammad A.M., Tang Z.H., Dawood A.S., Earl B., 2015. Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofísica Int. 54, 67-81. https://doi.org/10.1016/j.gi.2015.04.003.

[54]

Nadiri A.A., Sadeghfam S., Gharekhani M., Khatibi R., Akbari E., 2018. Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using ‘risk cells’. J. Environ. Manag. 217, 654-667. https://doi.org/10.1016/j.jenvman.2018.04.011.

[55]

Napolitano P., Fabbri A., 1996. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS-AISH Publication 235, 559-566.

[56]

Neshat A., Pradhan B., 2015. An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat. Hazards 76, 543-563. https://doi.org/10.1007/s11069-014-1503-y.

[57]

Padowski J.C., Jawitz J.W., 2012. Water availability and vulnerability of 225 large cities in the United States. Water Resour. Res. 48, 2012WR012335. https://doi.org/10.1029/2012WR012335.

[58]

Parry J.-E., Osman H., Terton A., Asad S.A., Ahmed T., 2017. The Vulnerability of Pakistan’s Water Sector to the Impacts of Climate Change: Identification of Gaps and Recommendations for Action. International Institute for Sustainable Development.

[59]

Patel P., Mehta D., Sharma N., 2022. A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Supply 22, 5190-5205. https://doi.org/10.2166/ws.2022.126.

[60]

Peng Y., Welden N., Renaud F.G., 2023. A framework for integrating ecosystem services indicators into vulnerability and risk assessments of deltaic social-ecological systems. J. Environ. Manag. 326, 116682. https://doi.org/10.1016/j.jenvman.2022.116682.

[61]

Piscopo G., 2001. Groundwater vulnerability map, explanatory notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Australia.

[62]

Podgorski J., Wu R., Chakravorty B., Polya D.A., 2020. Groundwater arsenic distribution in India by Machine Learning Geospatial Modeling. Int. J. Environ. Res. Public Health 17, 7119. https://doi.org/10.3390/ijerph17197119.

[63]

Qureshi A.S., Gill M.A., Sarwar A., 2010a. Sustainable groundwater management in Pakistan: challenges and opportunities. Irrigat. Drainage 59, 107-116. https://doi.org/10.1002/ird.455.

[64]

Qureshi A.S., McCornick P.G., Sarwar A., Sharma B.R., 2010b. Challenges and prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan. Water Resou. Manag. 24, 1551-1569. https://doi.org/10.1007/s11269-009-9513-3.

[65]

Qureshi A.S., Perry C., 2021. Managing water and salt for sustainable agriculture in the Indus Basin of Pakistan. Sustainability 13, 5303. https://doi.org/10.3390/su13095303.

[66]

Rashid A., Ayub M., Javed A., Khan S., Gao X., Li C., Ullah Z., Sardar T., Muhammad J., Nazneen S., 2021. Potentially harmful metals, and health risk evaluation in groundwater of Mardan, Pakistan: Application of geostatistical approach and geographic information system. Geosci. Front. 12, 101128. https://doi.org/10.1016/j.gsf.2020.12.009.

[67]

Rasyid A.R., Bhandary N.P., Yatabe R., 2016. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron. Disasters 3, 19. https://doi.org/10.1186/s40677-016-0053-x.

[68]

Richey A.S., Thomas B.F., Lo M.-H., Reager J.T., Famiglietti J.S., Voss K., Swenson S., Rodell M., 2015. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217-5238. https://doi.org/10.1002/2015WR017349.

[69]

Roy A., Chatterjee S., Kumar Sinha U., Kumar Jain A., Mohokar H., Jaryal A., Keesari T., Jagat Pant H., 2024. Recharge and vulnerability assessment of groundwater resources in Northwest India: Insights from isotope-geospatial modelling approach. Geosci. Front. 15, 101721. https://doi.org/10.1016/j.gsf.2023.101721.

[70]

Saaty T.L., 2008. Decision making with the analytic hierarchy process. Int. J. Services Sci. 1, 83-98. https://doi.org/10.1504/IJSSCI.2008.017590.

[71]

Saidi S., Bouri S., Ben Dhia H., 2011. Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrol. Sci. J. 56, 288-304. https://doi.org/10.1080/02626667.2011.552886.

[72]

Saravanan S., Pitchaikani S., Thambiraja M., Sathiyamurthi S., Sivakumar V., Velusamy S., Shanmugamoorthy M., 2022. Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Environ. Monit. Assess 195, 57. https://doi.org/10.1007/s10661-022-10601-y.

[73]

Saaty T.L., 1980. The analytic hierarchy process (AHP). J. Operat. Res. Soc. 41 (11), 1073-1076.

[74]

Scanlon B.R., Fakhreddine S., Rateb A., de Graaf I., Famiglietti J., Gleeson T., Grafton R.Q., Jobbagy E., Kebede S., Kolusu S.R., Konikow L.F., Long D., Mekonnen M., Schmied H.M., Mukherjee A., MacDonald A., Reedy R.C., Shamsudduha M., Simmons C.T., Sun A., Taylor R.G., Villholth K.G., Vörösmarty C.J., Zheng C., 2023. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87-101. https://doi.org/10.1038/s43017-022-00378-6.

[75]

Senanayake I.P., Dissanayake D.M.D.O.K., Mayadunna B.B., Weerasekera W.L., 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 7, 115-124. https://doi.org/10.1016/j.gsf.2015.03.002.

[76]

Senay G., 2018. Satellite psychrometric formulation of the Operational Simplified Surface Energy Balance (SSEBop) Model for quantifying and mapping evapotranspiration. Appl. Engineer. Agricul. 34, 555-566 https://doi.org/10.13031/aea.12614.

[77]

Senay G.B., Kagone S., Velpuri N.M., 2020. Operational global actual evapotranspiration: Development, evaluation, and dissemination. Sensors 20, 1915. https://doi.org/10.3390/s20071915.

[78]

Sepehrara A., Javadi S., Hosseini A., Karimi N., 2023. Prediction of vulnerability map regarding to the dynamic parameters and land use changes. Environ. Earth Sci. 82, 503. https://doi.org/10.1007/s12665-023-11120-w.

[79]

Shahab A., Shihua Q., Rad S., Keita S., Khan M., Adnan S., 2019. Groundwater vulnerability assessment using GIS-based DRASTIC method in the irrigated and coastal region of Sindh province, Pakistan. Hydrol. Res. 50, 319-338. https://doi.org/10.2166/nh.2018.001.

[80]

Shaji E., Santosh M., Sarath K.V., Prakash P., Deepchand V., Divya B.V., 2021. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci. Front. 12, 101079. https://doi.org/10.1016/j.gsf.2020.08.015.

[81]

Singh A., Srivastav S.K., Kumar S., Chakrapani G.J., 2015. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth Sci. 74, 5475-5490. https://doi.org/10.1007/s12665-015-4558-5.

[82]

Singh S.K., Zeddies M., Shankar U., Griffiths G.A., 2019. Potential groundwater recharge zones within New Zealand. Geosci. Front. 10, 1065-1072. https://doi.org/10.1016/j.gsf.2018.05.018.

[83]

Sullivan C.A., Meigh J.R., Giacomello A.M., Fediw T., Lawrence P., Samad M., Mlote S., Hutton C., Allan J.A., Schulze R.E., 2003. The Water Poverty Index: Development and application at the community scale. Natural Resour. Forum 27, 189-199. https://doi.org/10.1111/1477-8947.00054.

[84]

Swets J.A., Pickett R.M., Whitehead S.F., Getty D.J., Schnur J.A., Swets J.B., Freeman B.A., 1979. Assessment of diagnostic technologies. Science 205, 753-759. https://doi.org/10.1126/science.462188.

[85]

Thapa R., Gupta S., Guin S., Kaur H., 2018. Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: a comparative approach between vulnerability models. Water Science 32, 44-66. https://doi.org/10.1016/j.wsj.2018.02.003.

[86]

Thirumurthy S., Jayanthi M., Samynathan M., Duraisamy M., Kabiraj S., Anbazhahan N., 2022. Multi-criteria coastal environmental vulnerability assessment using analytic hierarchy process based uncertainty analysis integrated into GIS. J. Environ. Manage. 313, 114941. https://doi.org/10.1016/j.jenvman.2022.114941.

[87]

Tomer T., Katyal D., Joshi V., 2019. Sensitivity analysis of groundwater vulnerability using DRASTIC method: a case study of National Capital Territory, Delhi, India. Groundwater Sust. Dev. 9, 100271. https://doi.org/10.1016/j.gsd.2019.100271.

[88]

Ullah A.S., Rashid H., Khan S.N., Akbar M.U., Arshad A., Rahman M.M., Mustafa S., 2022a. A localized assessment of groundwater quality status using GIS-based Water Quality Index in industrial zone of Faisalabad, Pakistan. Water 14, 3342. https://doi.org/10.3390/w14203342.

[89]

Ullah Z., Rashid A., Ghani J., Nawab J., Zeng X.-C., Shah M., Alrefaei A.F., Kamel M., Aleya L., Abdel-Daim M.M., Iqbal J., 2022b. Groundwater contamination through potentially harmful metals and its implications in groundwater management. Front. Environ. Sci. 10, 1021596. https://doi.org/10.3389/ fenvs.2022.1021596.

[90]

Umar M., Khan S.N., Arshad A., Aslam R.A., Khan H.M.S., Rashid H., Pham Q.B., Nasir A., Noor R., Khedher K.M., Anh D.T., 2022. A modified approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in Irrigated Indus Basin. Environ Sci. Pollut. Res. 29, 27257-27278. https://doi.org/10.1007/s11356-021-17882-9.

[91]

Undp, 2019. Population Growth: Implications for Human Development

[92]

[ WWW Document] accessed 2.20.25 UNDP.

[93]

Vaezihir A., Tabarmayeh M., 2015. Total vulnerability estimation for the Tabriz aquifer (Iran) by combining a new model with DRASTIC. Environ. Earth Sci. 74, 2949-2965. https://doi.org/10.1007/s12665-015-4327-5.

[94]

van Stempvoort D.R., Fritz P., Reardon E.J., 1992. Sulfate dynamics in upland forest soils, central and southern Ontario, Canada: stable isotope evidence. Appl. Geochem. 7, 159-175. https://doi.org/10.1016/0883-2927(92)90034-Z.

[95]

Voutchkova D.D., Schullehner J., Rasmussen P., Hansen B., 2021. A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). J. Environ. Man. 277, 111330. https://doi.org/10.1016/j.jenvman.2020.111330.

[96]

Wada Y., Wisser D., Bierkens M.F.P., 2014. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyna. 5, 15-40. https://doi.org/10.5194/esd-5-15-2014

[97]

Xu H., Yang X., Wang D., Hu Y., Cheng Z., Shi Y., Zheng P., Shi L., 2023. Multivariate and spatio-temporal groundwater pollution risk assessment: a new long-time serial groundwater environmental impact assessment system. Environ. Poll. 317, 120621. https://doi.org/10.1016/j.envpol.2022.120621.

[98]

Yaqoob H., Teoh Y.H., Sher F., Ashraf M.U., Amjad S., Jamil M.A., Jamil M.M., Mujtaba M.A., 2021. Jatropha Curcas biodiesel: a Lucrative Recipe for Pakistan’s Energy Sector. Processes 9, 1129. https://doi.org/10.3390/pr9071129.

[99]

Yen H.P.H., Pham B.T., Phong T.V., Ha D.H., Costache R., Le H.V., Nguyen H.D., Amiri M., Tao N.V., Prakash I., 2021. Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: a case study at Gia Lai province, Vietnam. Geosci. Front. 12, 101154. https://doi.org/10.1016/j.gsf.2021.101154.

[100]

Yilmaz O.S., 2022. Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): a case study for Kastamonu, Vietnam. Acta Geophys. 70, 2747-2769. https://doi.org/10.1007/s11600-022-00882-9.

[101]

Yu H., Wu Q., Zeng Y., Zheng L., Xu L., Liu S., Wang D., 2022. Integrated variable weight model and improved DRASTIC model for groundwater vulnerability assessment in a shallow porous aquifer. J. Hyd. 608, 127538. https://doi.org/10.1016/j.jhydrol.2022.127538.

AI Summary AI Mindmap
PDF

704

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/