A study of PM2.5 transport pathways in China from 2000 to 2021 with a novel spatiotemporal correlation method

Yiming Liu , Huadong Guo , Lu Zhang , Dong Liang , Qi Zhu , Zhuoran Lv , Xinyu Dou , Xiaobing Du

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102116

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102116 DOI: 10.1016/j.gsf.2025.102116

A study of PM2.5 transport pathways in China from 2000 to 2021 with a novel spatiotemporal correlation method

Author information +
History +
PDF

Abstract

In the context of urbanization, air pollution has emerged as a significant environmental challenge. A thorough understanding of their transport pathways, especially at a national scale, is essential for environmental protection and policy-making. However, it remains partially elusive due to the constraints of available data and analytical methods. This study proposed a data-driven spatiotemporal correlation analysis method employing the Dynamic Time Warping (DTW). We represented the first comprehensive attempt to chart the long-term and nationwide transport pathways of PM2.5 utilizing an extensive dataset spanning from 2000 to 2021 across China, which is crucial for understanding long-term air pollution trends. Compared with traditional chemical transport models (CTMs), this data-driven method can generate transport pathways of PM2.5 without requiring extensive meteorological or emission data, and suggesting fundamentally consistent spatial distribution and trends. Our analysis reveals that China's transport pathways are notably pronounced in the Northwest (34% of the total pathways in China), Southwest (22%), and North (21%) regions, with less significant pathways in the Northeast (10%) region and isolated occurrences elsewhere. Additionally, a notable decrease in the number of China's PM2.5 transport pathways, similar to annual average concentrations, was observed after 2013, aligning with stricter environmental regulations. Furthermore, we have demonstrated the feasibility of applying our method to the transport pathways of other gaseous pollutants. The approach is effective in detecting and quantifying air pollutants' transport pathways, even in regions like the Northwest with limited monitoring infrastructure, which may aid in environmental decision-making. The study will notably improve the current understanding of air pollutants' transport process, providing a new perspective for studying the large-scale spatiotemporal correlations.

Keywords

Air pollutants / Spatiotemporal correlation / Big Earth Data / Transport pathways / PM2.5 / Sustainable development goals

Cite this article

Download citation ▾
Yiming Liu, Huadong Guo, Lu Zhang, Dong Liang, Qi Zhu, Zhuoran Lv, Xinyu Dou, Xiaobing Du. A study of PM2.5 transport pathways in China from 2000 to 2021 with a novel spatiotemporal correlation method. Geoscience Frontiers, 2025, 16(5): 102116 DOI:10.1016/j.gsf.2025.102116

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yiming Liu: Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization, Software, Writing - review & editing, Writing - original draft, Visualization, Validation. Huadong Guo: Supervision, Project administration, Investigation, Writing - review & editing, Conceptualization. Lu Zhang: Writing - review & editing, Visualization, Supervision, Project administra-tion, Methodology, Investigation, Funding acquisition, Formal anal-ysis. Dong Liang: Writing - review & editing, Visualization, Supervision, Software, Resources, Investigation, Formal analysis. Qi Zhu: Methodology, Investigation, Formal analysis, Writing - review & editing, Visualization, Software. Zhuoran Lv: Writing - review & editing, Visualization, Software, Investigation. Xinyu Dou: Writing - review & editing, Visualization, Software, Method-ology, Formal analysis. Xiaobing Du: Writing - review & editing, Visualization, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was funded by the National Natural Science Founda-tion of China (grant No. 42376246), the Key Research and Develop-ment Project of Guangxi (grant No. GuikeAB24010046), and the Joint Funds of the National Natural Science Foundation of China (grant No. U2268217). The authors acknowledgement Dr. Jing Wei for his high-quality PM2.5 and other datasets like gaseous pol-lutants. They also thank Binhao Wang for his help and suggestions on the improvement of the paper.

Supplementary Data

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102116.

References

[1]

Ali M.A., Huang Z., Bilal M., Assiri M.E., Mhawish A., Nichol J.E., De Leeuw G., Almazroui M., Wang Y., Alsubhi Y., 2023. Long-term PM2.5 pollution over China: identification of PM2.5 pollution hotspots and source contributions. Sci. Tot. Environ. 893, 164871. https://doi.org/10.1016/j.scitotenv.2023.164871.

[2]

Amornbunchornvej C., Zheleva E., Berger-Wolf T., 2021. Variable lag granger causality and transfer entropy for time series analysis. ACM Trans. Knowl. Discov. Data 15, 1-30. https://doi.org/10.1145/3441452.

[3]

Bera B., Bhattacharjee S., Sengupta N., Saha S., 2022. Variation and dispersal of PM10 and PM2.5 during COVID-19 lockdown over Kolkata metropolitan city, India investigated through HYSPLIT model. Geosci. Front. 13, 101291. https://doi.org/10.1016/j.gsf.2021.101291.

[4]

Cha Y., Song C.K., Jeon K.H., Yi S.M., 2016. Factors affecting recent PM2.5 concentrations in China and South Korea from 2016 to 2020. Sci. Tot. Environ. 881. https://doi.org/10.1016/j.scitotenv.2023.163524.

[5]

Cooper M.J., Martin R.V., Hammer M.S., Levelt P.F., Veefkind P., Lamsal L.N., Krotkov N.A., Brook J.R., McLinden C.A., 2022. Global fine-scale changes in ambient NO 2 during COVID-19 lockdowns. Nature 601, 380-387. https://doi.org/10.1038/s41586-021-04229-0.

[6]

Dai S., Chen X., Liang J., Li X., Li S., Chen G., Chen Z., Bin J., Tang Y., Li X., 2023. Response of PM2.5 pollution to meteorological and anthropogenic emissions changes during COVID-19 lockdown in Hunan Province based on WRF-Chem model. Environ. Pollut. 331, 121886. https://doi.org/10.1016/j.envpol.2023.121886.

[7]

Ding Y., Li S., Xing J., Li X., Ma X., Song G., Teng M., Yang J., Dong J., Meng S., 2024. Retrieving hourly seamless PM2.5 concentration across China with physically informed spatiotemporal connection. Remote Sens. Environ. 301, 113901. https://doi.org/10.1016/j.rse.2023.113901.

[8]

Ding H., Trajcevski G., Scheuermann P., Wang X., Keogh E., 2008. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1, 1542-1552. https://doi.org/10.14778/1454159.1454226.

[9]

Dong J., Wang Y., Wang L., Zhao W., Huang C., 2022. Assessment of PM2.5 exposure risk towards SDG indicator 11.6.2 - a case study in Beijing. Sustain. Cities Soc. 82, 103864. https://doi.org/10.1016/j.scs.2022.103864.

[10]

Dou X., Guo H., Zhang L., Liang D., Zhu Q., Liu X., Zhou H., Lv Z., Liu Y., Gou Y., Wang Z., 2023. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region. Sci. Tot. Environ. 899, 166239. https://doi.org/10.1016/j.scitotenv.2023.166239.

[11]

Getis A., Ord J.K., 1992. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.

[12]

Guo H., 2017a. Big Earth data: a new frontier in Earth and information sciences. Big Earth Data 1, 4-20. https://doi.org/10.1080/20964471.2017.1403062.

[13]

Guo R., 2017b. Spatial and administrative divisions. Springer International Publishing, Cham., 19-51 https://doi.org/10.1007/978-3-319-32306-02.

[14]

Guo H., 2020. Big Earth data facilitates sustainable development goals. Big Earth Data 4, 1-2. https://doi.org/10.1080/20964471.2020.1730568.

[15]

Guo H., Liu Z., Jiang H., Wang C., Liu J., Liang D., 2017. Big Earth Data: a new challenge and opportunity for Digital Earth’s development. Int. J. Digit. Earth 10, 1-12. https://doi.org/10.1080/17538947.2016.1264490.

[16]

Guo H., Chen F., Sun Z., Liu J., Liang D., 2021a. Big Earth Data: a practice of sustainability science to achieve the sustainable development goals. Sci. Bull. 66, 1050-1053. https://doi.org/10.1016/j.scib.2021.01.012.

[17]

Guo H., Liang D., Chen F., Shirazi Z., 2021b. Innovative approaches to the sustainable development goals using Big Earth Data. Big Earth Data 5, 263-276. https://doi.org/10.1080/20964471.2021.1939989.

[18]

Guo H., Liang D., Sun Z., Chen F., Wang X., Li J., Zhu L., Bian J., Wei Y., Huang L., Chen Y., Peng D., Li X., Lu S., Liu J., Shirazi Z., 2022. Measuring and evaluating SDG indicators with Big Earth Data. Sci. Bull. 67, 1792-1801. https://doi.org/10.1016/j.scib.2022.07.015.

[19]

Guo H., Huang L., Luo L., Liu J., Li X., 2023. Progress on achieving environmental SDGs assessed from Big Earth Data in China. Sci. Bull. 68, 3129-3132. https://doi.org/10.1016/j.scib.2023.09.017.

[20]

Han L., Zhou W., Li W., 2015. City as a major source area of fine particulate (PM2.5) in China. Environ. Pollut. 206, 183-187. https://doi.org/10.1016/j.envpol.2015.06.038.

[21]

He Z., Deng M., Cai J., Xie Z., Guan Q., Yang C., 2020. Mining spatiotemporal association patterns from complex geographic phenomena. Int. J. Geogr. Inf. Sci. 34, 1162-1187. https://doi.org/10.1080/13658816.2019.1566549.

[22]

He R.R., Li D.Q., Zhang S., 2025. A framework for mining intercity relationship of PM2.5 based on Granger causality test: application to cities in China. Environ. Model. Assess. https://doi.org/10.1007/s10666-025-10033-1.

[23]

Istiana T., Kurniawan B., Soekirno S., Nahas A., Wihono A., Nuryanto D.E., Adi S.P., Hakim M.L., 2023. Causality analysis of air quality and meteorological parameters for PM2.5 characteristics determination: evidence from Jakarta. Aerosol Air. Qual. Res. 23 (9), 230014. https://doi.org/10.4209/aaqr.230014.

[24]

Jin H., Chen X., Zhong R., Liu M., 2022. Influence and prediction of PM2.5 through multiple environmental variables in China. Sci. Tot. Environ. 849, 157910. https://doi.org/10.1016/j.scitotenv.2022.157910.

[25]

Li R., Mei X., Wei L., Han X., Zhang M., Jing Y., 2019. Study on the contribution of transport to PM2.5 in typical regions of China using the regional air quality model RAMS-CMAQ. Atmos. Environ. 214, 116856. https://doi.org/10.1016/j.atmosenv.2019.116856.

[26]

Li K., Sward K., Deng H., Morrison J., Habre R., Franklin M., Chiang Y.Y., Ambite J. L., Wilson J.P., Eckel S.P., 2021. Using dynamic time warping self-organizing maps to characterize diurnal patterns in environmental exposures. Sci. Rep. 11, 24052. https://doi.org/10.1038/s41598-02103515-1.

[27]

Liang D., Guo H., Zhang L., Wang M., Wang L., Liang L., Shirazi Z., 2021. Analyzing Antarctic ice sheet snowmelt with dynamic big Earth Data. Int. J. Digit. Earth 14, 88-105. https://doi.org/10.1080/17538947.2020.1798522.

[28]

Liang X., Liang F., Liu F., Ren Y., Tong J., Feng W., Qu P., Luo S., 2023. The policy implemented by the government and the protection effect of PM2.5 decreasing on blood pressure in adolescents: from a quasi-experimental study. J. Glob. Health 13, 04050. https://doi.org/10.7189/jogh.13.04050.

[29]

Liu Y., Guo H., Zhang L., Liang D., Zhu Q., Liu X., Lv Z., Dou X., Gou Y., 2023. Research on correlation analysis method of time series features based on dynamic time warping algorithm. IEEE Geosci. Remote Sens. Lett. 20, 1-5. https://doi.org/10.1109/LGRS.2023.3285788.

[30]

Lu B., Brunsdon C., Charlton M., Harris P., 2017. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 31, 982-998. https://doi.org/10.1080/13658816.2016.1263731.

[31]

Lv Z., Guo H., Zhang L., Liang D., Zhu Q., Liu X., Zhou H., Liu Y., Gou Y., Dou X., Chen G., 2024. Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data. Appl. Energy 355, 122355. https://doi.org/10.1016/j.apenergy.2023.122355.

[32]

Ma Z., Dey S., Christopher S., Liu R., Bi J., Balyan P., Liu Y., 2022. A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sens. Environ. 269, 112827. https://doi.org/10.1016/j.rse.2021.112827.

[33]

Nizamani M.M., Zhang H.L., Bolan N., Zhang Q., Guo L., Lou Y., Zhang H.Y., Wang Y., Wang H., 2024. Understanding the drivers of PM2.5 concentrations in Chinese cities: a comprehensive study of anthropogenic and environmental factors. Environ. Pollut. 124783 https://doi.org/10.1016/j.envpol.2024.124783.

[34]

Pouyaei A., Choi Y., Jung J., Mousavinezhad S., Momeni M., Song C.H., 2022. Investigating the long-range transport of particulate matter in East Asia: introducing a new Lagrangian diagnostic tool. Atmos. Environ. 278, 119096. https://doi.org/10.1016/j.atmosenv.2022.119096.

[35]

Rani S., Sikka G., 2012. Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52. https://doi.org/10.5120/8282-1278.

[36]

Rohde R.A., Muller R.A., 2015. Air pollution in China: mapping of concentrations and sources. PLoS One 10, e0135749. https://doi.org/10.1371/journal.pone.0135749.

[37]

Shifaz A., Pelletier C., Petitjean F., Webb G.I., 2023. Elastic similarity and distance measures for multivariate time series. Knowl. Inf. Syst. 65, 2665-2698. https://doi.org/10.1007/s10115-023-01835-4.

[38]

Stübinger J., Walter D., 2022. Using multi-dimensional dynamic time warping to identify time-varying lead-lag relationships. Sensors 22, 6884. https://doi.org/10.3390/s22186884.

[39]

Su H., Chen Y., Tan H., Wilson J.P., Bao L., Chen R., Luo J., 2024. An improved geographic pattern based residual neural network model for estimating PM2.5 concentrations. Int. J. Appl. Earth Obs. Geoinf. 134, 104174. https://doi.org/10.1016/j.jag.2024.104174.

[40]

Su L., Gao C., Ren X., Zhang F., Cao S., Zhang S., Chen T., Liu M., Ni B., Liu M., 2022. Understanding the spatial representativeness of air quality monitoring network and its application to PM2.5 in the mainland China. Geosci. Front. 13, 101370. https://doi.org/10.1016/j.gsf.2022.101370.

[41]

Sun Z., Du W., Jiang H., Weng Q., Guo H., Han Y., Xing Q., Ma Y., 2022. Global 10-m impervious surface area mapping: a big earth data based extraction and updating approach. Int. J. Appl. Earth Obs. Geoinf. 109, 102800. https://doi.org/10.1016/j.jag.2022.102800.

[42]

United Nations, 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. New York, NY, USA, United Nations.

[43]

Wang Q., Luo K., Fan J., Gao X., Cen K., 2019. Spatial distribution and multiscale transport characteristics of PM2.5 in China. Aerosol Air Qual. Res. 19, 1993-2007. https://doi.org/10.4209/aaqr.2019.04.0202.

[44]

Wang Y.Q., Zhang X.Y., Sun J.Y., Zhang X.C., Che H.Z., Li Y., 2015. Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. Chem. Phys. 15,13585-13598.https://doi.org/10.5194/acp-15-13585-2015.

[45]

Wei J., Li Z., Cribb M., Huang W., Xue W., Sun L., Guo J., Peng Y., Li J., Lyapustin A., Liu L., Wu H., Song Y., 2020. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos. Chem. Phys. 20, 3273-3289. https://doi.org/10.5194/acp-20-3273-2020.

[46]

Wei J., Li Z., Lyapustin A., Sun L., Peng Y., Xue W., Su T., Cribb M., 2021. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens. Environ. 252, 112136. https://doi.org/10.1016/j.rse.2020.112136.

[47]

Wei J., Liu S., Li Z., Liu C., Qin K., Liu X., Pinker R.T., Dickerson R.R., Lin J., Boersma K.F., Sun L., Li R., Xue W., Cui Y., Zhang C., Wang J., 2022. Ground-level NO 2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environ. Sci. Technol. 56, 9988-9998. https://doi.org/10.1021/acs.est.2c03834.

[48]

Wei J., Li Z., Wang J., Li C., Gupta P., Cribb M., 2023. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Chem. Phys. 23,1511-1532.https://doi.org/ 10.5194/acp-23-1511-2023.

[49]

Xiao B., Tang C., 2024. Particle dispersion in atmospheric modelling: a comprehensive review. ACE 85, 33-43. https://doi.org/10.54254/2755-2721/85/20240751.

[50]

Yan J., Wang L., Song W., Chen Y., Chen X., Deng Z., 2019. A time-series classification approach based on change detection for rapid land cover mapping. ISPRS J. Photogramm. Remote Sens. 158, 249-262. https://doi.org/10.1016/j.isprsjprs.2019.10.003.

[51]

Yang F., Tan J., Zhao Q., Du Z., He K., Ma Y., Duan F., Chen G., Zhao Q., 2011. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 11, 5207-5219. https://doi.org/10.5194/acp-11-5207-2011.

[52]

Yang Q., Yuan Q., Yue L., Li T., 2020. Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression. Environ. Pollut. 262, 114257. https://doi.org/10.1016/j.envpol.2020.114257.

[53]

Yao L., Sun S., Wang Y., Song C., Xu Y., 2022. New insight into the urban PM2.5 pollution island effect enabled by the Gaussian surface fitting model: a case study in a mega urban agglomeration region of China. Int. J. Appl. Earth Obs. Geoinf. 113, 102982. https://doi.org/10.1016/j.jag.2022.102982.

[54]

Zhang L., Yang G., Li X., 2020. Mining sequential patterns of PM2.5 pollution between 338 cities in China. J. Environ. Manage. 262, 110341. https://doi.org/ 10.1016/j.jenvman.2020.110341.

[55]

Zhu Q., Guo H., Zhang L., Liang D., Wu Z., Liu Y., Lv Z., 2023. GLA-STDeeplab: SAR enhancing glacier and ice shelf front detection using Swin-TransDeepLab with global-local attention. IEEE Trans. Geosci. Remote Sens. 61, 1-13. https://doi.org/10.1109/TGRS.2023.3324404.

AI Summary AI Mindmap
PDF

434

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/