Stepwise aridification of the Late Paleozoic North China Craton

Weikai Xu , Yong Li , Thomas J. Algeo , Zhuangsen Wang , Xiaofang He

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102114

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102114 DOI: 10.1016/j.gsf.2025.102114

Stepwise aridification of the Late Paleozoic North China Craton

Author information +
History +
PDF

Abstract

The Late Paleozoic marked Earth’s most recent icehouse-greenhouse transition, providing valuable insights into future climate and environmental changes. Although the aridification of the North China Craton (NCC) during the Late Paleozoic is well established, its pattern and causes remain unclear. Here, we identify four aridification intervals from the late Gzhelian to Lopingian by analyzing continuous records of elemental climate proxies (MgO/CaO, Sr/Cu), a volcanism proxy (Hg/TOC), and spore-pollen assemblages. Interval I (~303-295 Ma), during which the NCC was located at low paleolatitudes, was characterized by humid conditions and a predominance of ferns, associated with weak volcanism. Interval II (~295-286 Ma) was subhumid, with increasing gymnosperm presence, and significant climate fluctuations linked to volcanism. CO2 emissions from the Tarim LIP and Panjal Traps drove aridification from the late Asselian to late Artinskian, contributing to the decline of the Late Paleozoic Ice Age. As a result, aridification in the NCC lagged behind that of Pangea. Interval III (~286-280.98 Ma) marked the transition to subarid conditions and the onset of dominance by gymnosperms, associated with a rapid northward drift of the NCC and an increase in atmospheric ρCO2. Interval IV (~259.51-251.902 Ma), separated from the underlying Interval III by a major regional unconformity (~280.98-259.51), coincided with global aridification and intensified volcanism. These findings highlight the significant influences of both tectonic plate motion and volcanism on the climate evolution of the NCC, with shifts in the dominant controlling factors through time. This study provides new insights into the distinct trajectories of global and regional climate dynamics.

Keywords

Paleoclimate / Tectonic setting / Large Igneous Province / Late Paleozoic Ice Age / Pangea

Cite this article

Download citation ▾
Weikai Xu, Yong Li, Thomas J. Algeo, Zhuangsen Wang, Xiaofang He. Stepwise aridification of the Late Paleozoic North China Craton. Geoscience Frontiers, 2025, 16(5): 102114 DOI:10.1016/j.gsf.2025.102114

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Weikai Xu: Writing - original draft, Visualization, Methodol-ogy, Investigation, Data curation, Conceptualization. Yong Li: Writ-ing - review & editing, Writing - original draft, Visualization, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Data curation, Conceptualiza-tion. Thomas J. Algeo: Writing - review & editing, Supervision. Zhuangsen Wang: Writing - review & editing, Visualization, Investigation. Xiaofang He: Writing - review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was financially supported by CNPC Innovation Found (2021DQ02-1003), the Fundamental Research Funds for the Central Universities (Ph.D. Top Innovative Talents Fund of CUMTB) (BBJ2025043).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102114

References

[1]

Algeo T.J., Hong H., Wang C., 2025. The chemical index of alteration (CIA) and interpretation of ACNK diagrams. Chem. Geol. 671, 122474. https://doi.org/10.1016/j.chemgeo.2024.122474.

[2]

Beerling D.J., Kantzas E.P., Lomas M.R., Wade P., Eufrasio R.M., Renforth P., Sarkar B., Andrews M.G., James R.H., Pearce C.R., Mercure J.F., Pollitt H., Holden P.B., Edwards N.R., Khanna M., Koh L., Quegan S., Pidgeon N.F., Janssens I.A., Hansen J., Banwart S.A., 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242-248. https://doi.org/10.1038/s41586-020-2448-9.

[3]

Boucot A.J., Xu C., Scotese C.R., Morley R.J., 2013. In: Phanerozoic paleoclimate: an atlas of lithologic indicators of climate, (Vol. 11). SEPM (Society for Sedimentary Geology, Tulsa, OK.

[4]

Bufe A., Hovius N., Emberson R., Rugenstein J.K.C., Galy A., Hassenruck-Gudipati H.J., Chang J.M., 2021. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion. Nat. Geosci. 14, 211-216. https://doi.org/10.1038/s41561-021-00714-3.

[5]

Burgess S.D., Muirhead J.D., Bowring S.A., 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164. https://doi.org/10.1038/s41467-017-00083-9.

[6]

Cao Y., Song H., Algeo T.J., Chu D., Du Y., Tian L., Wang Y., Tong J., 2019. Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 166-177. https://doi.org/10.1016/j.palaeo.2018.06.012.

[7]

Cao J., Xia L.W., Wang T.T., Zhi D.M., Tang Y., Li W.W., 2020. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth-Sci. Rev. 202, 103091. https://doi.org/10.1016/j.earscirev.2020.103091.

[8]

Chen J., Guo Y., Wei H., Liu H., Ma R., Xiao Z., Feng Z., 2022. Evaluation of chemical weathering proxies by comparing drilled cores versus outcrops and weathering history during the Permian-Triassic transition. Global. Planet. Change. 214, 103855. https://doi.org/10.1016/j.gloplacha.2022.103855.

[9]

Chu D.L., Grasby S.E., Song H.J., Dal Corso J., Wang Y., Mather T.A., Wu Y.Y., Song H.Y., Shu W.C., Tong J.N., Wignall P.B., 2020. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48 (3), 288-292. https://doi.org/10.1130/G46631.1.

[10]

Cleal C.J., Thomas B.A., 2005. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology 3 (1), 13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x.

[11]

Eizenhöfer P.R., Zhao G.C., Zhang J., Sun M., 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 33 (4), 441-463. https://doi.org/10.1002/2013TC003357.

[12]

Falcon-Lang H. J., Lucas S. G., Kerp H., Krainer K., Montañez I., P., Vachard D., Chaney D. S., Elrick S. D., Contreras D. L., Kurzawe F., DiMichele W. A., Looy C. V., 2015. Early Permian (Asselian) vegetation from a seasonally dry coast in western equatorial Pangea: Paleoecology and evolutionary significance. Palaeogeogr. Palaeoclimatol., Palaeoecol. 433, 158-173. https://doi.org/10.1016/j.palaeo.2015.05.010.

[13]

Falcon-Lang H.J., Nelson W.J., Heckel P.H., DiMichele W.A., Elrick S.D., 2018. New insights on the stepwise collapse of the Carboniferous Coal Forests: evidence from cyclothems and coniferopsid tree-stumps near the Desmoinesian- Missourian boundary in Peoria County, Illinois, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 375-392. https://doi.org/10.1016/j.palaeo.2017.11.015.

[14]

Fedo C.M., Wayne Nesbitt H., Toung G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23 (10),921-924.https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.

[15]

Fielding C.R., Frank T.D., McLoughlin S., Vajda V., Mays C., Tevyaw A.P., Winguth A., Winguth C., Nicoll R.S., Bocking M., Crowley J.L., 2019. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10 (1), 1-12. https://doi.org/10.1038/s41467-018-07934-z.

[16]

Fielding C.R., Frank T.D., Birgenheier L.P., 2023. A revised, late Palaeozoic glacial time-space framework for eastern Australia, and comparisons with other regions and events. Earth-Sci. Rev. 236, 104263. https://doi.org/10.1016/j.earscirev.2022.104263.

[17]

Frank T.D., Fielding C.R., Winguth A.M.E., Savatic K., Tevyaw A., Winguth C., McLoughlin S., Vajda V., Mays C., Nicoll R., Bocking M., Crowley J.L., 2021. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology 49 (9), 1089-1095. https://doi.org/10.1130/G48795.1.

[18]

Fu Y., Shao L., Zhang L., Guo S., Shi B., Hou H., Yan H., Song J., 2018. Geochemical characteristics of mudstones in the Permo-Carboniferous Strata of the Jiaozuo Coalfield and their paleoenvironmental significance. Acta Sedimentol. Sin. 36 (2), 415-426. https://doi.org/10.14027/j.issn.1000-0550

[19]

Gao S., Luo T.C., Zhang B.R., Zhang H.F., Han Y.W., Zhao Z.D., Hu Y.K., 1998. Chemical composition of the continental crust as revealed by studies in east China. Geochim. Cosmochim. Acta 62, 1959-1975. https://doi.org/10.1016/S0016-7037(98)00121-5.

[20]

Girty G.H., Ridge D.L., Knaack C., Johnson D., Al-Riyami R.K., 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J. Sediment. Res. 66 (1), 107-118. https://doi.org/10.1306/D42682CA-2B26-11D7-8648000102C1865D.

[21]

Goddéris Y., Donnadieu Y., Carretier S., Aretz M., Dera G., Macouin M., Regard V., 2017. OnsetandendingofthelatePalaeozoiciceagetriggeredbytectonicallypaced rock weathering. Nat. Geosci. 10 (5), 382-386. https://doi.org/10.1038/ngeo2931.

[22]

Goldberg K., Humayun M., 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: an example from the Permian of the Paraná Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 175-183. https://doi.org/10.1016/j.palaeo.2010.05.015.

[23]

Grasby S.E., Them II T.R., Chen Z., Yin R., Ardakani O.H., 2019. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Sci. Rev. 196, 102880. https://doi.org/10.1016/j.earscirev.2019.102880.

[24]

Henderson C.M., Shen S.Z., Gradstein F.M., Agterberg F.P., 2020. The Permian Period. In: Geologictime scale 2020.Elsevier, Amsterdam, pp.875-902.

[25]

Hilton J., Cleal C.J., 2007. The relationship between Euramerican and Cathaysian tropical floras in the Late Palaeozoic: palaeobiogeographical and palaeogeographical implications. Earth-Sci. Rev. 85 (3-4), 85-116. https://doi.org/10.1016/j.earscirev.2007.07.003.

[26]

Hu F.Z., Fu X.G., Lin L., Song C.Y., Wang Z.W., Tian K.Z., 2020. Marine Late Triassic-Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin, eastern Tethys. Global. Planet. Change. 185, 103093. https://doi.org/10.1016/j.gloplacha.2019.103093.

[27]

Huang B.C., Yan Y.G., Piper J.D.A., Zhang D.H., Yi Z.Y., Yu S., Zhou T.H., 2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Sci. Rev. 186, 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004.

[28]

Joachimski M.M., Lai X., Shen S., Jiang H., Luo G., Chen B., Chen J., Sun Y., 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40 (3), 195-198. https://doi.org/10.1130/G32707.1.

[29]

Judd E.J., Tierney J.E., Lunt D.J., Montañez I.P., Wing S.L., Valdes A.P.J., 2024. A 485-million-year history of Earth’s surface temperature. Science 385, 6715. https://doi.org/10.1126/science.adk3705.

[30]

Kender S., Bogus K., Pedersen G.K., Dybkjær K., Mather T.A., Mariani E., Ridgwell A., Riding J.B., Wagner T., Hesselbo S.P., Leng M.J., 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nat. Commun. 12, 5186. https://doi.org/10.1038/s41467-021-25536-0.

[31]

Koch J.T., Frank T.D., 2012. Imprint of the Late Palaeozoic Ice Age on stratigraphic and carbon isotopic patterns in marine carbonates of the Orogrande Basin, New Mexico, USA. Sedimentology 59, 291-318. https://doi.org/10.1111/j.1365-3091.2011.01258.x.

[32]

Lerman A., 1978. Lakes: Chemistry, Geology, Physics. Springer, Berlin, pp. 179-235.

[33]

Li Y., Yang J. H., Pan Z. J., Meng S. Z., Wang K., Niu X. L., 2019a. Unconventional natural gas accumulations in stacked deposits: A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China. Acta Geol. Sin. (Engl. Ed.) 93(1), 111-129. doi: 10.1111/1755-6724.13767.

[34]

Li Y., Chang X., Zhang J., Xu Y., Gao D., 2019. Genetic mechanism of heavy oil in the Carboniferous volcanic reservoirs of the eastern Chepaizi Uplift, Junggar Basin. Arabian J. Geosci. 12 (21), 1-13. https://doi.org/10.1007/s12517-019-4849-3.

[35]

Li Y.N., Shao L.Y., Fielding C.R., Frank T.D., Wang D.W., Mu G.Y., Lu J., 2023. The chemical index of alteration in Permo-Carboniferous strata in North China as an indicator of environmental and climate change throughout the late Paleozoic Ice Age. Global. Planet. Change. 221, 104035. https://doi.org/10.1016/j.gloplacha.2023.104035.

[36]

Liu C., Jarochowska E., Du Y.S., Vachard D., Munnecke A., 2017. Stratigraphical and d 13 C records of Permo-Carboniferous platform carbonates, South China: Responses to late Paleozoic icehouse climate and icehouse-greenhouse transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 474, 113-129. https://doi.org/10.1016/j.palaeo.2016.07.038.

[37]

Liu F., Zhu H.C., Ouyang S., 2015. Late Pennsylvanian to Wuchiapingian palynostratigraphy of the Baode section in the Ordos Basin, North China. J. Asian. Earth. Sci. 111, 528-552. https://doi.org/10.1016/j.jseaes.2015.06.013.

[38]

Liu F., Zhu H., Ouyang S., 2011. Taxonomy and biostratigraphy of Pennsylvanian to Late Permian megaspores from Shanxi, north China. Rev. Palaeobot. Palyno. 165 (3-4), 135-153. https://doi.org/10.1016/j.revpalbo.2011.03.001.

[39]

Lu J., Zhou K., Yang M.F., Zhang P.X., Shao L.Y., Hilton J., 2021. Records of organic carbon isotopic composition (d13 Corg) and volcanism linked to changes in atmospheric pCO2 and climate during the Late Paleozoic Icehouse. Global. Planet. Change 207, 103654. https://doi.org/10.1016/j.gloplacha.2021.103654.

[40]

W. Xu, Y. Li, T.J. Algeo et al. Geoscience Frontiers 16 (2025) 102114

[41]

Luo A.B., Sun G.Y., Grasby S.E., Yin R.S., 2024. Large igneous provinces played a major role in oceanic oxygenation events during the mid-Proterozoic. Commun. Earth. Environ. 5, 609. https://doi.org/10.1038/s43247-024-01780-2.

[42]

McLennan S.M., 1993. Weathering and global denudation. J. Geol. 101, 295-303. https://doi.org/10.1086/648222.

[43]

Montañez I.P., McElwain J.C., Poulsen C.J., White J.D., DiMichele W.A., Wilson J.P., Griggs G., Hren M.T., 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles. Nat. Geosci. 9, 824-828. https://doi.org/10.1038/ngeo2822.

[44]

Nesbitt H.W., Markovics G., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta 44 (11), 1659-1666 https://doi.org/10.1016/0016-7037(80)90218-5.

[45]

Nesbitt H.W., Young G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (5885), 715-717. https://doi.org/10.1038/299715a0.

[46]

Penman D.E., Rugenstein J.K.C., Ibarra D.E., Winnick M.J., 2020. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth-Sci. Rev. 209, 103298. https://doi.org/10.1016/j.earscirev.2020.103298.

[47]

Peyser C.E., Poulsen C.J., 2008. Controls on Permo-Carboniferous precipitation over tropical Pangaea: a GCM sensitivity study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 181-192. https://doi.org/10.1016/j.palaeo.2008.03.048.

[48]

Rees P.M., Gibbs M.T., Ziegler A.M., Kutzbach J.E., Behling P.J., 1999. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891-894. https://doi.org/10.1130/0091-7613(1999)027%3C0891:PCEMPU%3E2.3.CO;2.

[49]

Ren Q., Zhang S.H., Hou M.C., Zheng D.Y., Wu H.C., Yang T.S., Li H.Y., Chen A.Q., Ogg J. G., 2025. Continental drift triggered the Early Permian aridification of North China. Nat. Commun. 16, 384. https://doi.org/10.1038/s41467-024-55804-8.

[50]

Richey J.D., Montañez I.P., Goddéris Y., Looy C.V., Griffis N.P., DiMichele W.A., 2020. Influence of temporally varying weatherability on CO2-climate coupling and ecosystem change in the late Paleozoic. Clim. Past. 16 (5), 1759-1775. https://doi.org/10.5194/cp-16-1759-2020

[51]

Roy D.K., Roser B.P., 2013. Climatic control on the composition of Carboniferous- Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Res. 23, 1163-1171. https://doi.org/10.1016/j.gr.2012.07.006.

[52]

Santosh M., Liu S., Tsunogae T., Li J.H., 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Res. 222-223, 77-106. https://doi.org/10.1016/j.precamres.2011.05.003.

[53]

Saltzman M.R., Ripperdan R.L., Brasier M.D., Lohmann K.C., Robison R.A., Chang W.T., Peng S., Ergaliev E.K., Runnegar B., 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeogr. Palaeoclimatol., Palaeoecol. 162 (3-4), 211-223. https://doi.org/10.1016/S0031-0182(00)00128-0.

[54]

Saltzman M.R., 2002. Carbon isotope (d13 C) stratigraphy across the Silurian- Devonian transition in North America: evidence for a perturbation of the global carbon cycle. Palaeogeogr., Palaeoclimatol., Palaeoecol. 187 (1-2), 83-100. https://doi.org/10.1016/S0031-0182(02)00510-2.

[55]

Sato A.M., Llambías E.J., Basei M.A.S., Castro C.E., 2015. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. J. South Am. Earth Sci. 63, 48-69. https://doi.org/10.1016/j.jsames.2015.07.005.

[56]

Schubert B.A., Jahren A.H., 2012. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim. Cosmochim. Acta. 96, 29-43. https://doi.org/10.1016/j.gca.2012.08.003.

[57]

Scheffler K., Buehmann D., Schwark L., 2006. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies - response to climate evolution and sedimentary environment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 184-203. https://doi.org/10.1016/j.palaeo.2006.03.059.

[58]

Shellnutt J.G., Bhat G.M., Brookfield M.E., Jahn B.M., 2011. No link between the Panjal Traps (Kashmir) and the Late Permian mass extinctions. Geophys. Res. Lett. 38 (19). https://doi.org/10.1029/2011GL049032.

[59]

Shellnutt J.G., Bhat G.M., Wang K.L., Brookfield M.E., Jahn B.M., Dostal J., 2014. Petrogenesis of the flood basalts from the Early Permian Panjal Traps, Kashmir, India: Geochemical evidence for shallow melting of the mantle. Lithos 204, 159-171. https://doi.org/10.1016/j.lithos.2014.01.008.

[60]

Shen B.H., Hou Z.S., Wang X.D., Wu Q., Zhang H.a., Chen J.T., Yuan D.X., Hu B., Sun B.L., Shen S.Z., 2024. Quantitative palaeogeographical reconstruction of the North China Block during the Carboniferous and Permian transition: Implications for coal accumulation and source rock development. Palaeogeogr. Palaeoclimatol. Palaeoecol. 640, 112102. https://doi.org/10.1016/j.palaeo.2024.112102

[61]

Shen S.Z., Ramezani J., Chen J., Cao C.Q., Erwin D.H., Zhang H., Xiang L., Schoepfer S.D., Henderson C.M., Zheng Q.F., Boweing S.A., Wang Y., Li X.D., Wang X.D., Yuan D.X., Zhang Y.C., Mu L., Wang J., Wu Y.S., 2019. A sudden end-Permian mass extinction in South China. Geol. Soc. Am. Bull. 131 (1-2), 205-223. https://doi.org/10.1130/B31909.1.

[62]

Shen J., Feng Q., Algeo T.J., Liu J., Zhou C., Wei W., Liu J., Them II T., R., Gill B. C., Chen J., 2020. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy. Earth. Planet. Sc. Lett. 543, 116333. https://doi.org/10.1016/j.epsl.2020.116333.

[63]

Shen J., Algeo T.J., Hu Q., Zhang N., Zhou L., Xia W., Xie S., Feng Q., 2012. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology 40 (11), 963-966. https://doi.org/10.1130/G33329.1.

[64]

Shields C.A., Kiehl J.T., 2018. Monsoonal precipitation in the Paleo-Tethys warm pool during the latest Permian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 123-136. https://doi.org/10.1016/j.palaeo.2017.12.001.

[65]

Song D.F., Mitchell R.N., Xiao W.J., Mao Q.G., Ao S.J., 2023. Andean-type orogenic plateau as a trigger for aridification in the arcs of northeast Pangea. Commun. Earth. Environ. 4 (1), 306. https://doi.org/10.1038/s43247-023-00976-2.

[66]

Soreghan G.S., Soreghan M.J., Heavens N.G., 2019. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology 47 (7), 600-604. https://doi.org/10.1130/G46349.1.

[67]

Sun C.X., Nie H.K., Dang W., Chen Q., Zhang G.R., Li W.P., Lu Z.Y., 2021. Shale gas exploration and development in China: Current status, geological challenges, and future directions. Energy Fuels 35 (8), 6359-6379. https://doi.org/10.1021/acs.energyfuels.0c04131.

[68]

Sun Y.D., Farnsworth A., Joachimski M.M., Wignall P.B., Krystyn L., Bond D.P.G., Ravidà D.C.G., Valdes P.J., 2024. Mega El Niño instigated the end-Permian mass extinction. Science 385 (6714), 1189-1195. https://doi.org/10.1126/science.ado2030

[69]

Svensen H., Planke S., Polozov A.G., Schmidbauer N., Corfu F., Podladchikov Y.Y., Jamtveit B., 2009. Siberian gas venting and the end-Permian environmental crisis. Earth. Planet. Sc. Lett. 277 (3-4), 490-500. https://doi.org/10.1016/j.epsl.2008.11.015.

[70]

Tabor N.J., Poulsen C.J., 2008. Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 293-310. https://doi.org/10.1016/j.palaeo.2008.03.052.

[71]

Tan Z., Xiao W.J., Mao Q.G., Wang H., Sang M., Li R., Gao L.M., Guo Y.H., Gan J.M., Liu Y.H., Wan B., 2022. Final closure of the Paleo Asian Ocean basin in the early Triassic. Commun. Earth. Environ. 3, 259. https://doi.org/10.1038/s43247-022-00578-4.

[72]

Tierney K.E., 2010. Carbon and Strontium Isotope Stratigraphy of the Permian from Nevada and China: Implications from an Icehouse to Greenhouse Transition. Ph. D. thesis. The Ohio State University.

[73]

Wang J., 2010. Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. Int. J. Coal Geol. 83, 292-317. https://doi.org/10.1016/j.coal.2009.10.007.

[74]

Wang J., Pfefferkorn H.W., 2013. The Carboniferous-Permian transition on the North China microcontinent — Oceanic climate in the tropics. Int. J. Coal Geol. 119, 106-113. https://doi.org/10.1016/j.coal.2013.07.022.

[75]

Wang T.T., Cao J., Xia L.W., Zhi D.M., Tang Y., He W.J., 2022. Revised age of the Fengcheng Formation, Junggar Basin, China: Global implications for the late Paleozoic ice age. Global. Planet. Change 208, 103725. https://doi.org/10.1016/j.gloplacha.2021.103725.

[76]

West A.J., Galy A., Bickle M., 2005. Tectonic and climatic controls on silicate weathering. Earth. Planet. Sc. Lett. 235 (1-2), 211-228. https://doi.org/10.1016/j.epsl.2005.03.020.

[77]

Wilde S.A., 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-A review of the evidence. Tectonophysics 662, 345-362. https://doi.org/10.1016/j.tecto.2015.05.006.

[78]

Wu Q., Ramezani J., Zhang H., Wang J., Zeng F., Zhang Y., Liu F., Chen J., Cai Y.F., Hou Z.S., Liu C., Yang W., Henderson C.M., Shen S.Z., 2021. High-precision U-Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China block. Geology 49 (6), 677-681. https://doi.org/10.1130/G48051.1.

[79]

Wu Y., Tong J., Algeo T.J., Chu D., Cui Y., Song H., Shu W., Du Y., 2020. Organic carbon isotopes in terrestrial Permian-Triassic boundary sections of North China: Implications for global carbon cycle perturbations. GSA Bulletin 132 (5-6), 1106-1118. https://doi.org/10.1130/B35228.1.

[80]

Xiong C.H., Wang J.S., Huang P., Cascales-Miñana B., Cleal C.J., Benton M.J., Xue J. Z., 2021. Plant resilience and extinctions through the Permian to Middle Triassic on the North China Block: A multilevel diversity analysis of macrofossil records. Earth-Sci. Rev. 223, 103846. https://doi.org/10.1016/j.earscirev.2021.103846.

[81]

Xu Y.G., Wei X., Luo Z.Y., Liu H.Q., Cao J., 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos 204, 20-35. https://doi.org/10.1016/j.lithos.2014.02.015.

[82]

Yan K., Wang C.L., Mischke S., Wang J.Y., Shen L.J., Yu X.C., Meng L.Y., 2021. Major and trace-element geochemistry of Late Cretaceous clastic rocks in the Jitai Basin, southeast China. Sci. Rep. 11, 13846. https://doi.org/10.1038/s41598-021-93125-8.

[83]

Yang J.H., Cawood P.A., Du Y.S., Li W.Q., Yan J.X., 2016. Reconstructing early Permian tropical climates from chemical weathering indices. Geol. Soc. Am. Bull. 128, 739-751. https://doi.org/10.1130/B31371.1.

[84]

Yang J.H., Cawood P.A., Montañez I.P., Condon D.J., Du Y.S., Yan J.X., Yan S.Q., Yuan D.X., 2020. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition. Earth. Planet. Sc. Lett. 534, 116074. https://doi.org/10.1016/j.epsl.2020.116074.

[85]

Yang J.H., Cawood P.A., Du Y.S., Condon D.J., Yan J.X., Liu J.Z., Huang Y., Yuan D.X., 2018. Early Wuchiapingian cooling linked to Emeishan basaltic weathering? Earth. Planet. Sci. Lett. 492, 102-111. https://doi.org/10.1016/j.epsl.2018.04.004.

[86]

Yang K., Wu H., Qin J., Lin C.G., Tang W.J., Chen Y.Y., 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global.Planet. Change112,79-91.https://doi.org/10.1016/j.gloplacha.2013.12.001.

[87]

Yang W., Wan M., Crowley J.L., Wang J., Luo X., Angielczyk K.D., Gastaldo R., Geissman J., Liu F., Roopnarine P., Sidor C.A., 2021. Paleoenvironmental and paleoclimatic evolution and cyclo-and chrono-stratigraphy of upper Permian-Lower Triassic fluvial-lacustrine deposits in Bogda Mountains, NW China— Implications for diachronous plant evolution across the Permian-Triassic boundary. Earth-Sci Rev. 222, 103741. https://doi.org/10.1016/j.earscirev.2021.103741.

[88]

Yu H.C., Qiu K.F., Li M., Santosh M., Zhao Z.G., Huang Y.Q., 2020. Record of the Late Paleozoic Ice Age from Tarim, China. Geochem. Geophys. Geosyst. 21 (11), e2020GC009237. https://doi.org/10.1029/2020GC009237.

[89]

Zeng J., Cao C.Q., Davydov V.I., Shen S.Z., 2012. Carbon isotope chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia. Gondwana Res. 21, 601-610. https://doi.org/10.1016/j.gr.2011.06.002.

[90]

Zhai M.G., Santosh M., 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Res. 20, 6-25. https://doi.org/10.1016/j.gr.2011.02.005.

[91]

Zhang H., Shen G. L., He Z. L., 1999. A carbon isotopic stratigraphic pattern of the Late Palaeozoic coals in the North China Platform and its palaeoclimatic implications. Acta Geol. Sin. (Engl. Ed.) 73, 111-119. doi: 10.1111/j.1755-6724.1999.tb00817.x.

[92]

Zhang H.R., Torsvik T.H., 2022. Circum-Tethyan magmatic provinces, shifting continents and Permian climate change. Earth. Planet. Sci. Lett. 584, 117453. https://doi.org/10.1016/j.epsl.2022.117453.

[93]

Zhang P.X., Yang M.F., Lu J., Jiang Z.F., Vervoot P., Zhou K., Xu X.T., Chen H.J., Wang Y., He Z., Bian X., Shao L.Y., Hilton J., 2024. Four volcanically driven climatic perturbations led to enhanced continental weathering during the Late Triassic Carnian Pluvial Episode. Earth. Planet. Sci. Lett. 626, 118517. https://doi.org/10.1016/j.epsl.2023.118517.

[94]

Zhang S.Y., Hu Y.Y., Yang J., Li X., Kang W.Y., Zhang J., Liu Y.G., Nie J., 2023. The Hadley circulation in the Pangea era. Sci. Bull. 68 (10), 1060-1068. https://doi.org/10.1016/j.scib.2023.04.021.

[95]

Zhang Y.X., Zhang K.J., 2017. Early Permian Qiangtang flood basalts, northern Tibet, China: A mantle plume that disintegrated northern Gondwana? Gondwana Res. 44, 96-108. https://doi.org/10.1016/j.gr.2016.10.019.

[96]

Ziegler A., Eshel G., Rees P.M., Rothfus T., Rowley D., Sunderlin D., 2007. Tracing the tropics across land and sea: Permian to present. Lethaia 36 (3), 227-254. https://doi.org/10.1080/00241160310004657.

[97]

Zou C.N., Li Y., He X.F., Santosh M., Yu K., Mitchell R.N., 2024. Contrasting hydrocarbon reservoirs in the North China Craton in relation to inhomogeneous craton destruction. Earth-Sci. Rev. 225, 104843. https://doi.org/10.1016/j.earscirev.2024.104843.

AI Summary AI Mindmap
PDF

653

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/