Geological, structural, and temporal framework of hematite-rich IOCG mineralization at La Farola deposit in the Candelaria-Punta del Cobre district, Chile

N.M. Seymour , I.del Real , A. Canales , H. Stein , G. Yang , J. Camacho

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102112

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102112 DOI: 10.1016/j.gsf.2025.102112

Geological, structural, and temporal framework of hematite-rich IOCG mineralization at La Farola deposit in the Candelaria-Punta del Cobre district, Chile

Author information +
History +
PDF

Abstract

Iron oxide-copper-gold (IOCG) deposits encompass a diverse set of mineralization styles, leading to outstanding questions about how different alteration facies are related across a single ore-producing system and the overarching mechanisms of ore genesis. This study investigates the age and characteristics of mineralization at the La Farola deposit, a hematite-dominated IOCG deposit located at the southern margin of the Candelaria-Punta del Cobre IOCG district of northern Chile. Two lithologically-controlled ore bodies occur along the WSW-ENE striking, ~18° NNW-dipping contact between the Lower Cretaceous Chañarcillo Group and Punta del Cobre Formation. Syn-mineralization N-S to NNW-SSE striking sinistral strike-slip faults likely acted as fluid pathways. Distinct mineral assemblages include an early Na-Ca assemblage (albite-scapolite) overprinted by skarnoid garnet with minor pyroxene, Ca-Fe (magnetite-actinolite), and K-Fe (magnetite-k-feldspar-biotite and minor sulfides) assemblages. The main sulfide mineralization (chalcopyrite-pyrite with minor bornite) is associated with specular hematite-white mica-K-feldspar-calcite and overprints all previous assemblages. The presence of hematite as the dominant Fe-oxide phase associated with Cu mineralization is characteristic of lower-temperature IOCG deposits, and may be a result of La Farola's stratigraphic position <700 m higher than other deposits in the district. New U-Pb ages of 115.7 ± 1.2 Ma for garnet and Re-Os ages of ~113-114 Ma for sulfides indicate mineralization occurred within a 3-million-year timeframe. These findings confirm hematite-dominant mineralization at La Farola was coeval with IOCG mineralization across the district. This research contributes to understanding IOCG systems and their formation mechanisms, highlighting the control local geological structures and alteration processes has on the diversity of mineralization types associated with a single IOCG system.

Keywords

Iron oxide-copper-gold deposits / IOCG / Hematite-dominant IOCG mineralization / U-Pb dating in garnet / Re-Os dating in sulfides

Cite this article

Download citation ▾
N.M. Seymour, I.del Real, A. Canales, H. Stein, G. Yang, J. Camacho. Geological, structural, and temporal framework of hematite-rich IOCG mineralization at La Farola deposit in the Candelaria-Punta del Cobre district, Chile. Geoscience Frontiers, 2025, 16(5): 102112 DOI:10.1016/j.gsf.2025.102112

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

N.M. Seymour: Resources, Investigation, Formal analysis, Con-ceptualization, Writing - review & editing, Methodology, Funding acquisition, Data curation. I.del Real: Writing - review & editing, Methodology, Formal analysis, Conceptualization, Writing - origi-nal draft, Investigation, Data curation. A. Canales: Investigation, Data curation. H. Stein: Formal analysis, Methodology, Data cura-tion. G. Yang: Data curation, Formal analysis. J. Camacho: Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

National Science Foundation Grant #1822064 to J. Singleton, Fondecyt grant #1230161 to I. del Real, and a Society of Economic Geologists Student Research Grant to N. Seymour supported this work. The authors would like to thank J. Makis and L. Stockli for laboratory assistance at UTChron, J. Singleton, J. Ridley, F. Barra, and G. Heuser for fruitful discussions, and M. Reich and B. Alvarez for providing samples for this study. Colorado State University pro-vides no financial support for AIRIE Program personnel or the Pro-gram's operation. Minera Altair is acknowledged for their support in the field and geology discussions. Finally, we acknowledge two anonymous reviewers and Abu Saeed Baidya for their insights and comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102112.

References

[1]

Amilibia A., McClay K.R., Sàbat F., Muñoz J.A., Roca E., 2005. Analogue modelling of inverted oblique rift systems. Geol. Acta 3, 251-271.

[2]

Amilibia A., Sàbat F., McClay K.R., Muñoz J.A., Roca E., Chong G., 2008. The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko. J. Struct. Geol. 30, 1520-1539. https://doi.org/10.1016/j.jsg.2008.08.005.

[3]

Apukhtina O.B., Kamenetsky V.S., Ehrig K., Kamenetsky M.B., Maas R., Thompson J., McPhie J., Ciobanu C.L., Cook N.J., 2017. Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol. 112, 1531-1542. https://doi.org/10.5382/econgeo.2017.4520.

[4]

Arabasz W., 1971. Geological and Geophysical Studies of the Atacama Fault Zone in northern Chile. California Institute of Technology.

[5]

Arévalo, C.. 1999.The Coastal Cordillera/Precordillera Boundary in the Tierra Amarilla area (27°20'-27° 40'S/70°05'-70°20'W), northern Chile, and the structural setting of the Candelaria Cu-Au ore deposit. Kingst. Univ. Kingstonupon-.Unpubl. PhD.

[6]

Arévalo C., Grocott J., Martin W., Pringle M., Taylor G., 2006. Structural setting of the Candelaria Fe oxide Cu-Au deposit, Chilean Andes (27°30' S). Econ. Geol. 101, 819-841. https://doi.org/10.2113/gsecongeo.101.4.819.

[7]

Atherton M.P., Aguirre L., 1992. Thermal and geotectonic setting of cretaceous volcanic rocks near Ica, Peru, in relation to andean crustal thinning. J. South Am. Earth Sci. 5, 47-69. https://doi.org/10.1016/0895-9811(92)90059-8.

[8]

Banerjee S., Zhang B., Scott C., MacDougall C., Dance A., 2023. Technical Report for the Candelaria copper mining complex, Atacama Region, Region III, Chile. Report Prepared for Lundin Mining Corporation.

[9]

Barra F., Reich M., Selby D., Rojas P., Simon A., Salazar E., Palma G., 2017. Unraveling the origin of the Andean IOCG clan: a Re-Os isotope approach. Ore Geol. Rev. 81, 62-78. https://doi.org/10.1016/j.oregeorev.2016.10.016.

[10]

Barton M.D., 2013. Iron Oxide(-Cu-Au-REE-P-Ag-U-Co) Systems. Treatise on Geochemistry,. Elsevier Ltd.. 10.1016/B978-0-08-095975-7.01123-2.

[11]

Barton M.D., Johnson D.A., 2004. Footprints of Fe-oxide (-Cu-Au) systems. Univ. Western Austral. Spec. Publ. 33, 112-116.

[12]

Benavides J., Kyser T.K., Clark A.H., Oates C.J., Zamora R., Tarnovschi R., Castillo B., 2007. The Mantoverde Iron oxide-copper-gold district, III Región, Chile: the role of regionally derived, nonmagmatic fluids in Chalcopyrite mineralization. Econ. Geol. 102, 415-440. https://doi.org/10.2113/gsecongeo.102.3.415.

[13]

Boric P., Diaz F., Maksaev J., 1990. Geología y yacimiendos metalíferos de la Región de Antofagasta. Servicio Nacional de Geología y Minería Boletín 40, 1-246.

[14]

Camus F., 1980. Posible modelo genético para los yacimientos de cobre del distrito minero punta del cobre. Andean Geol. 11, 51-76. https://doi.org/10.5027/andgeov7n3-a04.

[15]

Cardozo N., Allmendinger R.W., 2013. Spherical projection with OSXStereonet. Comput. Geosci. 51, 193-205.

[16]

Charrier R., Pinto L., Rodriguez M., 2007. Tectonostratigraphic Evolution of the Andean Orogen in Chile. Geological Society of London. The Geology of Chile.

[17]

Chen H., Cooke D.R., Baker M.J., 2013. Mesozoic iron oxide copper-gold mineralization in the Central Andes and the Gondwana supercontinent breakup. Econ. Geol. 108, 37-44. https://doi.org/10.2113/econgeo.108.1.37.

[18]

Chiaradia M., Vallance J., Fontboté L., Stein H., Schaltegger U., Coder J., Richards J., Villeneuve M., Gendall I., 2009. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes. Miner. Depos. 44, 371-387. https://doi.org/10.1007/S00126-008-0210-6.

[19]

Coira B., Davidson J., Mpodozis C., Ramos V., 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Science Rev. 18, 303-332. https://doi.org/10.1016/0012-8252(82)90042-3

[20]

Corriveau L., Montreuil J.F., Potter E.G., 2016. Alteration facies linkages among Iron oxide copper-gold, Iron oxide-apatite, and affiliated deposits in the great bear magmatic zone, Northwest Territories, Canada. Econ. Geol. 111, 2045-2072. https://doi.org/10.2113/econgeo.111.8.2045

[21]

Corriveau L., Mumin H., Potter E.G., 2022. Mineral systems with iron oxide coppergold (IOCG) and affiliated deposits: introduction and overview. Geol. Assoc. Canada Miner. Depos. Div. Spec. Publ. 52, 1-26.

[22]

Couture J.-F., Cole G., Zhang B., Nilsson J., Dance A., Scott C., Vidal M.I., 2017. Technical Report for the Candelaria copper mining complex, Atacama Province, Region III. Chile Report Prepared for Lundin Mining Corporation.

[23]

Dallmeyer R.D., Brown M., Grocott J., Taylor G.K., Treloar P.J., 1996. Mesozoic magmatic and tectonic events within the Andean Plate Boundary Zone, 26°-27°30'S, North Chile: Constraints from 40Ar/39Ar mineral ages. J. Geol. 104, 19-40. https://doi.org/10.1086/629799.

[24]

Dalziel I.W.D., Grunow A.M., Storey B.C., Garrett S.W., Herrod L.D.B., Pankhurst R. J., 1987. Extensional tectonics and the fragmentation of Gondwanaland. Geol. Soc. London. Spec. Publ. 28, 433-441. https://doi.org/10.1144/GSL.SP.1987.028.01.27.

[25]

del Real I., 2019. Lithological, structural and hydrothermal evolution of the Candelaria-Punta del Cobre Iron Oxide Cu-Au district. Cornell University, Northern Chile. 10.7298/qv5z-3j88, PhD thesis.

[26]

del Real I., Allmendinger R.W., Thompson J.F.H., Creixell C., 2023a. Evidence for transpression during formation of the Candelaria Punta del Cobre IOCG -district and regional implications. J. South Am. Earth Sci. 126, 104289. https://doi.org/10.1016/j.jsames.2023.104289.

[27]

del Real I., Arriagada C., 2015. Inversión tectónica positiva en el distrito El Espino: Relaciones entre deformación, magmatismo y mineralizacion IOCG, Provincia de Choapa, Chile. XIV Congreso Geológico Chileno, La Serena, Chile.

[28]

del Real I., Reich M., Simon A.C., Deditius A., Barra F., Rodríguez-Mustafa M.A., Thompson J.F.H., Roberts M.P., 2023b. Formation of giant iron oxide-coppergold deposits by superimposed, episodic hydrothermal pulses. Sci. Rep. 2, 1-13.https://doi.org/10.1038/s43247-021-00265-w

[29]

del Real I., Thompson J.F.H., Carriedo J., 2018. Lithological and structural controls on the genesis of the Candelaria-Punta del Cobre Iron Oxide Copper Gold district. Northern Chile. Ore Geol. Rev. 102, 106-153. https://doi.org/10.1016/j.oregeorev.2018.08.034.

[30]

del Real I., Thompson J.F.H., Simon A.C., Reich M., 2020. Geochemical and isotopic signature of pyrite as a proxy for fluid source and evolution in the Candelaria-Punta del Cobre iron oxide copper-gold district. Chile. Econ. Geol. 115, 1493-1517. https://doi.org/10.5382/ECONGEO.4765.

[31]

Espinoza R., Veliz G., Esquivel L., Arias F., Moraga B., 1996. The cupriferous province of the coastal range, northern Chile. In: CamusF., SillitoeR., PetersenR. (Andean Copper Deposits:Eds.), New Discoveries, Mineralization Styles and Metallogeny. Society of Economic Geologists Special Publication, 5, pp. 19-32.

[32]

Georgiev S.V., Zimmerman A., Yang G., Goswami V., Hurtig N.C., Hannah J.L., Stein H.J., 2018. Comparison of chemical procedures for Re-isotopic measurements by N-TIMS. Chem. Geol. 483, 151-161. https://doi.org/10.1016/j.chemgeo.2018.03.006.

[33]

Gevedon M., Seman S., Barnes J.D., Lackey J.S., Stockli D.F., 2018. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet. Earth Planet. Sci. Lett. 498, 237-246.

[34]

Grocott J., Taylor G.K., 2002. Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30'S to 27°00'S). J. Geol. Soc. London 159, 425-443. https://doi.org/10.1144/0016-764901-124.

[35]

Groves D.I., Bierlein F.P., Meinert L.D., Hitzman M.W., 2010. Iron oxide coppergold (IOCG) deposits through earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 105, 641-654. https://doi.org/10.2113/gsecongeo.105.3.641.

[36]

Herazo A., Reich M., Barra F., Morata D., del Real I., 2021. Trace element geochemistry of pyrite from bitumen-bearing stratabound Cu-(Ag) deposits, Northern Chile. ACS Earth Sp. Chem. 5, 566-579. https://doi.org/10.1021/acsearthspacechem.0c00321.

[37]

Herazo A., Reich M., Barra F., Morata D., del Real I., Pagès A., 2020. Assessing the role of bitumen in the formation of stratabound Cu-(Ag) deposits: Insights from the Lorena deposit, Las Luces district, northern Chile. Ore Geol. Rev. 124, 103639. https://doi.org/10.1016/j.oregeorev.2020.103639.

[38]

Heuser G., Arancibia G., Veloso E.E., Cembrano J., Cordeiro P.F.O., Nehler M., Bracke R., 2020. The evolution of the Dominga Fe-Cu deposit (northern Chile): Insights from mineral textures and micro-CT analysis. Ore Geol. Rev. 119, 103316.

[39]

Hitzman M.W., Oreskes N., Einaudi M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res. 58, 241-287. https://doi.org/10.1016/0301-9268(92)90121-4.

[40]

Hopf S., 1990. The Agustina Mine, a Volcanic-Hosted Copper Deposit in Northern Chile. In: FontbotéL., AmstutzG.C., CardozoM., CedilloE., FrutosJ. (Stratabound Ore Deposits in the Andes.Eds.), Special Publication No. 8 of the Society for Geology Applied to Mineral Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88282-1_32.

[41]

Ichii Y., Abe A., Ichige Y., Matsunaga J., Miyoshi M., 2007. Copper exploration of the Atacama Kozan Mine, Region III, Chile. Shigen-Chishitsu 57, 1-14.

[42]

Iea, 2021. The role of critical minerals in clean energy transitions. IEA, Paris.

[43]

Jackson S., Pearson N., Griffin W., Belousova E., 2004. The pplication of laser ablation-iductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47-69.

[44]

Jaffey A.H., Flynn K.F., Glendenin L.E., Bentley W.C., Essling A.M., 1971. Precision measurement of half-lives and specific activities of U235 and U238. Phys. Rev. 4, 1889-1906. https://doi.org/10.1103/PhysRevC.4.1889.

[45]

Klohn E., Holmgren C., Ruge H., 1990. El Soldado, a stratabound copper deposit associated with alkaline volcanism in the central Chilean coastal range. In: FontbotéL., AmstutzG.C., CardozoM., CedilloE., FrutosJ. (Stratabound Ore Deposits in the Andes.Eds.), Springer, Berlin, Heidelberg, pp. 435-448. doi:10.1007/978-3-642-88282-1_33.

[46]

Knipping J.L., Bilenker L.D., Simon A.C., Reich M., Barra F., Deditius A.P., Lundstrom C., Bindeman I., Munizaga R., 2015a. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43, 591-594. https://doi.org/10.1130/G36650.1.

[47]

Knipping J.L., Bilenker L.D., Simon A.C., Reich M., Barra F., Deditius A.P., Wӓlle M., Heinrich C.A., Holtz F., Munizaga R., 2015b. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim. Cosmochim. Acta 171, 15-38. https://doi.org/10.1016/J.GCA.2015.08.010.

[48]

Kreiner D.C., Barton M.D., 2011. High-level alteration in Iron-Oxide (-Cu-Au) (IOCG) vein systems, examples near Copiapó Chile. In:Proceedings of the 11Th SGA Biennial Conference "let‘s Talk Ore Deposits", pp. 497-499.

[49]

La Cruz N.L., Simon A.C., Wolf A.S., Reich M., Barra F., Gagnon J.E., 2019. The geochemistry of apatite from the Los Colorados iron oxide-apatite deposit, Chile: implications for ore genesis. Miner. Depos. 54, 1143-1156. https://doi.org/10.1007/s00126-019-00861-z

[50]

Lehner S.W., Savage K.S., Ayers J.C., 2006. Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni, and As: Variations in semiconducting properties. J. Cryst. Growth 286, 306-317.

[51]

Lopez G.P., Hitzman M.W., Nelson E.P., 2014. Alteration patterns and structural controls of the El Espino IOCG mining district. Chile. Miner. Depos. 49, 235-259. https://doi.org/10.1007/s00126-013-0485-0.

[52]

Ludwig K.R., 2003. User's Manual for Isoplot 3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 5, 1-72.

[53]

Ludwig K.R., 1998. On the treatment of concordant uranium-lead ages. Geochim. Cosmochim. Acta 62, 665-676. https://doi.org/10.1016/S0016-7037(98)00059-3

[54]

Markey R., Hannah J.L., Morgan J.W., Stein H.J., 2003. A double spike for osmium analysis of highly radiogenic samples. Chem. Geol. 200, 395-406. https://doi.org/10.1016/S0009-2541(03)00197-9

[55]

Markey R., Stein H., Morgan J., 1998. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS. Talanta 45, 935-946. https://doi.org/10.1016/S0039-9140(97)00198-7

[56]

Marschik R., Fontboté L., 2001. The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits. Chile. Econ. Geol. 96, 1799-1826. https://doi.org/10.2113/gsecongeo.96.8.1799.

[57]

Marschik R., Leveille R.A., Martin W., 2000. La Candelaria and the Punta del Cobre district, Chile:Early cretaceous iron oxide-Cu-Au (-Zn-Ag) mineralization. In: PorterTM,Hydrothermal Iron Oxide Copper-Gold Relat Depos. A Glob. Perspect., pp. 163-175.

[58]

Marschik R., Singer B.S., Munizaga F., Tassinari C., Moritz R., Fontbote L., 1997. Age of Cu(-Fe-Au mineralization and thermal evolution of the Punta del Cobre district. Chile. Miner. Depos. 32, 531-546. https://doi.org/10.1007/s001260050120.

[59]

Marschik R., Söllner F., 2006. Early cretaceous U-Pb zircon ages for the Copiapo plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama Region. Chile. Miner. Depos. 41, 785-801. https://doi.org/10.1007/s00126-006-0099-x

[60]

Mateo L., Tornos F., Hanchar J.M., Villa I.M., Stein H.J., Delgado A., 2023. The Montecristo mining district, northern Chile: the relationship between vein-like magnetite-(apatite) and iron oxide-copper-gold deposits. Miner. Depos. 58, 1023-1049. https://doi.org/10.1007/s00126-023-01172-0.

[61]

Mathur R., 2002. the origin of the Chilean Iron Belt, based on Re-Os isotopes. Econ. Geol. 97, 59-71. https://doi.org/10.2113/97.1.59.

[62]

Mathur R., Marschik R., Ruiz J., Munizaga F., Leveille R.A., Martin W., 2003. Age of mineralization of the Candelaria Fe oxide Cu-Au deposit and the origin of the Chilean iron belt, based on Re-Os isotopes- a reply. Econ. Geol. 98 (5), 1050-1052. https://doi.org/10.2113/gsecongeo.98.5.1050.

[63]

Mavor S.P., Singleton J.S., Gomila R., Heuser G., Seymour N.M., Williams S.A., Arancibia G., Johnston S.M., Kylander-Clark A.R.C., Stockli D.F., 2020. Timing, kinematics, and displacement of the Taltal fault system, northern Chile: Implications for the cretaceous tectonic evolution of the Andean margin. Tectonics 39 (2), e2019TC005832. https://doi.org/10.1029/2019tc005832.

[64]

Meinert L.D., Dipple G.M., Nicolescu S., 2005. World Skarn Deposits. In: One Hundredth Anniversary Volume, 1905-2005. Society of Economic Geologists, Littleton, CO, United States, pp. 299-336. doi:10.5382/av100.11.

[65]

Morelli R., Creaser R.A., Seltmann R., Stuart F.M., Selby D., Graupner T., 2007. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology 35, 795-798. https://doi.org/10.1130/G23521A.1.

[66]

Moscoso R., Nasi C., Salinas P., 1982. Hoja Vallenar y parte norte de La Serena, Regiones de Atacama y Coquimbo, mapa escala 1: 250.000. Servicio Nacional De Geología y Minería, Carta Geologica De Chile 55.

[67]

Mourgues F.A., 2004. Advances in ammonite biostratigraphy of the marine Atacama basin (lower cretaceous), northern Chile, and its relationship with the Neuquén basin, Argentina. J. South Am. Earth Sci. 17, 3-10. https://doi.org/10.1016/j.jsames.2004.05.002.

[68]

Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom 26, 2508. https://doi.org/10.1039/c1ja10172b

[69]

Petrus J.A., Kamber B.S., 2012. Vizual age: a novel approach to laser ablation ICPMS U-Pb geochronology data reduction. Geostand. Geoanalytical Res. 36, 247-270. https://doi.org/10.1111/j.1751-908X.2012.00158.x

[70]

Rabbia O.M., Frutos J., Pop N., Isache C., Sanhueza V., Edelstein O., 1996. Características isotópicas de la mineralización de Cu (-Fe) de Mina Carola, distrito minero Punta del Cobre, norte de Chile. In: 8 Th Congreso Geologico Argentino, pp. 241-254.

[71]

Ramos V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Geol. Soc. Am. Mem. 204, 31-65. https://doi.org/10.1130/2009.1204(02).

[72]

Reich M., Simon A.C., Barra F., Palma G., Hou T., Bilenker L.D., 2022. Formation of iron oxide-apatite deposits. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00335-3.

[73]

Reich M., Simon A.C., Deditius A., Barra F., Chryssoulis S., Lagas G., Tardani D., Knipping J., Bilenker L., Sánchez-Alfaro P., Roberts M.P., Munizaga R., 2016. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide coppergold systems? Econ. Geol. 111, 743-761. https://doi.org/10.2113/econgeo.111.3.743.

[74]

Rieger A.A., Marschik R., Diaz M., 2012. The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: New evidence from microthermometry and stable isotope geochemistry. Miner. Depos. 47, 359-369. https://doi.org/10.1007/s00126-011-0390-3.

[75]

Rieger A.A., Marschik R., Díaz M., Hölzl S., Chiaradia M., Akker B., Spangenberg J. E., 2010. The hypogene iron oxide copper-gold mineralization in the Mantoverde district, northern Chile. Econ. Geol. 105, 1271-1299. https://doi.org/10.2113/econgeo.105.7.1271.

[76]

Rojas P., Barra F., Deditius A., Reich M., Simon A., Roberts M., Rojo M., 2018a. New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit. Chile. Ore Geol. Rev. 93, 413-435. https://doi.org/10.1016/j.oregeorev.2018.01.003.

[77]

Rojas P., Barra F., Reich M., Deditius A., Simon A., Uribe F., Romero R., Rojo M., 2018b. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile. Miner. Depos. 53, 947-966. https://doi.org/10.1007/s00126-017-0777-x

[78]

Romero R., Barra F., Reich M., Ojeda A., Tapia M.J., del Real I., Simon A., 2024. Contrasting magma chemistry in the Candelaria IOCG district caused by changing tectonic regimes. Sci. Rep. 14, 10793. https://doi.org/10.1038/s41598-024-61489-2.

[79]

Scheuber E., Hammerschmidt K., Friedrichsen H., 1995. 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama Fault Zone, northern Chile: the age of deformation. Tectonophysics 250(1-23, 61-87.

[80]

Schlegel T.U., Wagner T., Fusswinkel T., 2020. Fluorite as indicator mineral in iron oxide-copper-gold systems: explaining the IOCG deposit diversity. Chem. Geol. 119674. https://doi.org/10.1016/j.chemgeo.2020.119674.

[81]

Segerstrom K., 1967. Geology and ore deposits of central Atacama Province. Chile. Bull. Geol. Soc. Am. 78, 305-318. https://doi.org/10.1130/0016-7606(1967)78[305:GAODOC]2.0.CO;2.

[82]

Segerstrom K., Ruiz C., 1962. Geología del Cuadrángulo Copiapó Provincia de Atacama. Cart. Geológica Chile.

[83]

Selby D., Creaser R.A., Hart C.J.R., Rombach C.S., Thompson J.F.H., Smith M.T., Bakke A.A., Goldfarb R.J., 2002. Absolute timing of sulfide and gold mineralization: a comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology 30, 791-794. https://doi.org/10.1130/0091-7613(2002)030<0791:ATOSAG>2.0.CO;2.

[84]

Seman S., Stockli D.F., McLean N.M., 2017. U-Pb geochronology of grossularandradite garnet. Chem. Geol. 460, 106-116. https://doi.org/10.1016/j.chemgeo.2017.04.020.

[85]

Seymour N., Singleton J., Gomila R., Arancibia G., Ridley J., Gevedon M., Stockli D., Seman S., 2024. Sodic-calci alteration and transpressional shear along the Atacama fault system during IOCG mineralization, Copiapó Chile. Miner. Depos. 59, 1295-1323.

[86]

Seymour N.M., Singleton J.S., Gomila R., Mavor S.P., Heuser G., Arancibia G., Williams S., Stockli D.F., 2021. Magnitude, timing, and rate of slip along the Atacama fault system, northern Chile: implications for Early cretaceous slip partitioning and plate convergence. J. Geol. Soc. London 178, jgs2020-142.https://doi.org/10.1144/JGS2020-142.

[87]

Seymour N.M., Singleton J.S., Mavor S.P., Gomila R., Stockli D.F., Heuser G., Arancibia G., 2020. The relationship between magmatism and deformation along the intra-arc strike-slip Atacama Fault System, Northern Chile. Tectonics 39, e2019TC005702. https://doi.org/10.1029/2019TC005702.

[88]

Sillitoe R.H., 2003. Iron oxide-copper-gold deposits: an Andean view. Miner. Depos. 38, 787-812. https://doi.org/10.1007/s00126-003-0379-7.

[89]

Simon A.C., Knipping J., Reich M., Barra F., Deditius A.P., Bilenker L., Childress T., 2018. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a Combination of Igneous and Magmatic-Hydrothermal Processes: evidence from the Chilean Iron Bel. Soc. Econ. Geol. Spec. Publ., 89-114

[90]

Skirrow R.G., 2022. Iron oxide copper-gold (IOCG) deposits - a review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geol. Rev. 140, 104569. https://doi.org/10.1016/J.OREGEOREV.2021.104569.

[91]

Smoliar M.I., Walker R.J., Morgan J.W., 1996. Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271, 1099-1102. https://doi.org/10.1126/science.271.5252.1099.

[92]

Stein H.J., Markey R.J., Morgan J.W., Hannah J.L., Scherstén A., 2001. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nov. 13, 479-486. https://doi.org/10.1046/j.1365-3121.2001.00395.x

[93]

Stein H.J., Morgan J.W., Scherstén A., 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides: the Harnäs Gold Deposit, Southwest Sweden, records continental-scale tectonic events. Econ. Geol. 95, 1657-1672. https://doi.org/10.2113/gsecongeo.95.8.1657.

[94]

Stern C.R., Mohseni P.P., Fuenzalida P.R., 1991. Petrochemistry and tectonic significance of lower cretaceous Barros Arana Formation basalts, southernmost Chilean Andes. J. South Am. Earth Sci. 4, 331-342. https://doi.org/10.1016/0895-9811(91)90005-6

[95]

Ullrich T.D., Clark A.H., 1997. Paragenetic sequence of mineralization in the main orebody, Candelaria Cu-Au deposit. Unpublished Report to Phelps Dodge Exploration Corporation, Chile.

[96]

Veloso E., Cembrano J., Arancibia G., Heuser G., Neira S., Siña A., Garrido I., Vermeesch P., Selby D., 2017. Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile. Miner. Depos. 52, 595-620. https://doi.org/10.1007/s00126-016-0682-8.

[97]

Verdugo-Ihl M., Ciobanu C., Courtney-Davies L., Cook N., Slattery A., Ehrig K., Tornos F., Hanchar J., 2022. U-Pb geochronology and mineralogy of the hematite from Mantoverde and Carmen de Cobre, Northern Chile: Constraints on andean IOCG mineralization. Econ. Geol. 117 (4), 943-960. https://doi.org/10.5382/econgeo.4903.

[98]

Vermeesch P., 2018. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001.

[99]

Williams P., Barton M., Fontbote L., Mark G., Marshick R., 2005. Iron oxide coppergold deposits: Geology, space-time distribution, and possible modes of origin. Econ. Geol. 100th Anniv., 371-405 https://doi.org/10.5382/AV100.13.

[100]

Yang G., Zimmerman A., Hurtig N.C., Georgiev S.V., Goswami V., Hannah J.L., Stein H.J., 2020. Chemical procedures for rhenium extraction from geological samples: Optimising the anion resin bead clean-up step. Geostand. Geoanalytical Res. 44, 231-242. https://doi.org/10.1111/ggr.12318.

[101]

Zimmerman A., Stein H.J., Morgan J.W., Markey R.J., Watanabe Y., 2014. Re-Os geochronology of the El Salvador porphyry Cu-Mo deposit, Chile: Tracking analytical improvements in accuracy and precision over the past decade. Geochim. Cosmochim. Acta 131, 13-32. https://doi.org/10.1016/j.gca.2014.01.016.

AI Summary AI Mindmap
PDF

768

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/