The mechanism of carbon recycling into orogenic lithosphere: A Li isotope perspective

Xianlei Geng , Yang Yu , Shihong Tian , Wei Xu , Lu Chen , Zhengwei Liang , Wenjie Hu , Na Lu , Jiawen Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102111

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102111 DOI: 10.1016/j.gsf.2025.102111

The mechanism of carbon recycling into orogenic lithosphere: A Li isotope perspective

Author information +
History +
PDF

Abstract

Subducting slabs transport carbon to deep mantle depths and release it into the overlying mantle wedge and lithospheric mantle through multiple mechanisms, including mechanical removal via diapirism, metamorphic decarbonization, carbonate dissolution and parting melting. Identifying the dominant carbon recycling mechanism responsible for carbonation of subcontinental lithospheric mantle (SCLM) remains challenging, yet it is critical for understanding the genesis of post-collisional carbonatites and associated rare earth element deposits. To address this issue, we investigate the Li isotopic systematics of typical post-collisional carbonatite-alkalic complexes from Mianning-Dechang (MD), Southeast Tibet. Our results show that the less-evolved magmas (lamprophyres) have mantle-like or slightly lower δ7Li values (0.3‰-3.6‰) with limited variability, contrasting sharply with the wider δ7Li range observed in associated carbonatites and syenites. We interpret this dichotomy as reflecting distinct processes: while the variable and anomalous δ7Li values in differentiated rocks (carbonatites and syenites) were caused by late-stage magmatic-hydrothermal processes (including biotite fractionation, fluid exsolution and hydrothermal alteration), the lamprophyres retain the primary Li isotopic signature of their mantle source. Together with their arc-like trace element and EM1-EM2-type Sr-Nd-Pb isotopic signatures, such mantle-like or slightly lower δ7Li values of the lamprophyres preclude carbon derivation from high-δ7Li reservoirs (altered oceanic crust, serpentinites) and recycling of sedimentary carbon through metamorphic decarbonization or dissolution. Instead, these features indicate that the carbon was predominantly transported into the mantle source via partial melting of subducted carbonate-bearing sediments. This study demonstrates that Li isotopes can serve as a tracer for identifying the mechanism of carbon recycling in collision zones.

Keywords

Li isotope / Post-collisional carbonatite / Lamprophyre / Orogenic lithosphere / Carbon recycling / Melting of carbon-bearing sediments

Cite this article

Download citation ▾
Xianlei Geng, Yang Yu, Shihong Tian, Wei Xu, Lu Chen, Zhengwei Liang, Wenjie Hu, Na Lu, Jiawen Liu. The mechanism of carbon recycling into orogenic lithosphere: A Li isotope perspective. Geoscience Frontiers, 2025, 16(5): 102111 DOI:10.1016/j.gsf.2025.102111

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xianlei Geng: Writing - review & editing, Writing - original draft, Investigation, Data curation, Conceptualization. Yang Yu: Investigation, Formal analysis. Shihong Tian: Resources, Project administration, Formal analysis. Wei Xu: Writing - review & edit-ing, Investigation. Lu Chen: Writing - review & editing, Investiga-tion, Formal analysis. Zhengwei Liang: Writing - review & editing, Investigation. Wenjie Hu: Investigation, Formal analysis. Na Lu: Investigation, Formal analysis. Jiawen Liu: Writing - review & edit-ing, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was funded by the National Natural Science Foun-dation of China (42263006), Open Fund from the Jiangxi Province, China (Grant No. 20224ACB203011 and 2020101003) and East China University of Technology (DHYC-202401 and 1410000874). We acknowledge the three anonymous reviewers for their insight-ful comments and Associate Editor Dr. Yirang Jang for handling this manuscript.

References

[1]

Ague J.J., Nicolescu S., 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7 (5), 355-360.

[2]

Alt J.C., Schwarzenbach E.M., Früh-Green G.L., Shanks W.C., Bernasconi S. M., Garrido C.J., Crispini L., Gaggero L., Padrón-Navarta J.A., Marchesi C., 2013. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos 178, 40-54.

[3]

Alt J.C., Teagle D.A.H., 1999. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63 (10), 1527-1535.

[4]

Arzilli F., Burton M., La Spina G., Macpherson C.G., van Keken P.E., McCann J., 2023. Decarbonation of subducting carbonate-bearing sediments and basalts of altered oceanic crust: Insights into recycling of CO2 through volcanic arcs. Earth Planet. Sci. Lett. 602, 117945.

[5]

Becker M., Roex A.P.L., 2006. Geochemistry of south African on- and off-craton, Group I and Group II kimberlites: Petrogenesis and source region evolution. J. Petrol. 47 (4), 673-703.

[6]

Behn M.D., Kelemen P.B., Hirth G., Hacker B.R., Massonne H.-J., 2011. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4 (9), 641-646.

[7]

Bell K., Tilton G.R., 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. J. Petrol. 42 (10), 1927-1945.

[8]

Benton L.D., Ryan J.G., Savov I.P., 2004. Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction. Geochem. Geophys. Geosyst. 5 (8), Q08J12.

[9]

Bizimis M., Salters V.J.M., Dawson J.B., 2003. The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib. Mineral. Petrol. 145 (3), 281-300. Bouman, C., Elliott, T., Vroon, P.Z., 2004. Lithium inputs to subduction zones. Chem. Geol. 212 (1), 59-79.

[10]

Brant C., Coogan L.A., Gillis K.M., Seyfried W.E., Pester N.J., Spence J., 2012. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific rise. Geochim. Cosmochim. Acta 96, 272-293.

[11]

Brens Jr., R., Liu, X.-M., 2019. Lithium isotope variations in Tonga-Kermadec arc-Lau back-arc lavas and Deep Sea Drilling Project (DSDP) Site 204 sediments. Isl. Arc 28 (1), e12276.

[12]

Brooker R.A., James R.H., Blundy J.D., 2004. Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem. Geol. 212 (1), 179-204.

[13]

Chan L.-H., Kastner M., 2000. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet. Sci. Lett. 183 (1), 275-290.

[14]

Chan L.-H., Leeman W.P., Plank T., 2006. Lithium isotopic composition of marine sediments. Geochem. Geophys. Geosyst. 7 (6), Q06005.

[15]

Chan L.H., Edmond J.M., Thompson G., Gillis K., 1992. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108 (1), 151-160.

[16]

Chen C., Förster M.W., Foley S.F., Liu Y., 2021. Massive carbon storage in convergent margins initiated by subduction of limestone. Nat. Commun. 12 (1), 4463.

[17]

Chen W., Zhang G., Keshav S., Li Y., 2023. Pervasive hydrous carbonatitic liquids mediate transfer of carbon from the slab to the subarc mantle. Commun. Earth Environ. 4 (1), 73.

[18]

Cheng Z., Zhang Z., Hou T., Santosh M., Chen L., Ke S., Xu L., 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochim. Cosmochim. Acta 202, 159-178.

[19]

Clift P.D., 2017. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55 (1), 97-125.

[20]

Collerson K.D., Williams Q., Ewart A.E., Murphy D.T., 2010. Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: the role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys. Earth Planet. Inter. 181 (3), 112-131.

[21]

Cook-Kollars J., Bebout G.E., Collins N.C., Angiboust S., Agard P., 2014. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chem. Geol. 386, 31-48.

[22]

Decitre S., Deloule E., Reisberg L., James R., Agrinier P., Mével C., 2002. Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochem. Geophys. Geosyst. 3 (1), 1-20.

[23]

Dellinger M., Hardisty D.S., Planavsky N.J., Gill B.C., Kalderon-Asael B., Asael D., Croissant T., Swart P.K., West A.J., 2020. The effects of diagenesis on lithium isotope ratios of shallow marine carbonates. Am. J. Sci. 320 (2), 150-184.

[24]

Deng J., Wang Q., Li G., Li C., Wang C., 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 26 (2), 419-437.

[25]

Elliott T., Thomas A., Jeffcoate A., Niu Y., 2006. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443 (7111), 565-568.

[26]

Farsang S., Louvel M., Zhao C., Mezouar M., Rosa A.D., Widmer R.N., Feng X., Liu J., Redfern S.A.T., 2021. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12 (1), 4311.

[27]

Foley S.F., Chen C., Jacob D.E., 2024. The effects of local variations in conditions on carbon storage and release in the continental mantle. Nat. Sci. Rev. 11 (6), 15-29.

[28]

Foley S.F., Fischer T.P., 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10 (12), 897-902.

[29]

Frezzotti M.L., Selverstone J., Sharp Z.D., Compagnoni R., 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geosci. 4 (10), 703-706.

[30]

Geng X., Tian S., Chen L., Liang Z., Xu W., Lu N., Hu W., Xiang M., 2024. Recycling carbonated hydrous sediments into the mantle source of carbonatite-associated rare-earth-element deposits. Gondwana Res. 133, 1-13.

[31]

Gillis K.M., Coogan L.A., 2011. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302 (3), 385-392.

[32]

Gorman P.J., Kerrick D.M., Connolly J.A.D., 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7 (4), Q04007.

[33]

Grassi D., Schmidt M.W., 2011. The melting of carbonated pelites from 70 to 700km depth. J. Petrol. 52 (4), 765-789.

[34]

Hoernle K., Tilton G., Le Bas M.J., Duggen S., Garbe-Schönberg D., 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 142 (5), 520-542.

[35]

Hou Z., Liu Y., Tian S., Yang Z., Xie Y., 2015. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Sci. Rep. 5 (1), 10231.

[36]

Hou Z., Tian S., Xie Y., Yang Z., Yuan Z., Yin S., Yi L., Fei H., Zou T., Bai G., Li X., 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geol. Rev. 36 (1), 65-89.

[37]

Hou Z., Tian S., Yuan Z., Xie Y., Yin S., Yi L., Fei H., Yang Z., 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth Planet. Sci. Lett. 244 (1), 234-250.

[38]

Huang Z.L., Xu C., Liu C.Q., Xu D.R., Li W.B., Guan T., 2003. Sr and Nd isotope geochemistry of fluorites from the Maoniuping REE deposit, Sichuan Province, China: implications for the source of ore-forming fluids. J. Geochem. Explor. 78-79, 643-648.

[39]

Ionov D.A., Seitz H.-M., 2008. Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: Mantle sources vs. eruption histories. Earth Planet. Sci. Lett. 266 (3), 316-331.

[40]

Jeffcoate A.B., Elliott T., Kasemann S.A., Ionov D., Cooper K., Brooker R., 2007. Li isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta 71 (1), 202-218.

[41]

Kelemen P.B., Manning C.E., 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Nat. Acad. Sci. U.S.A. 112 (30), E3997-E4006.

[42]

Kelemen P.B., Matter J., Streit E.E., Rudge J.F., Curry W.B., Blusztajn J., 2011. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Energy Environ. 39, 545-576.

[43]

Kramers J.D., 1977. Lead and strontium isotopes in Cretaceous kimberlites and mantle-derived xenoliths from Southern Africa. Earth Planet. Sci. Lett. 34 (3), 419-431.

[44]

Lai Y.-J., Pogge von Strandmann P.A.E., Dohmen R., Takazawa E., Elliott T., 2015. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim. Cosmochim. Acta 164, 318-332.

[45]

Le Roex A.P., Bell D.R., Davis P., 2003. Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J. Petrol. 44 (12), 2261-2286.

[46]

Le Roex A.P., Lanyon R., 1998. Isotope and trace element geochemistry of Cretaceous Damaraland lamprophyres and carbonatites, Northwestern Namibia: evidence for plume—lithosphere interactions. J. Petrol. 39 (6), 1117-1146.

[47]

Lechler M., Pogge von Strandmann P.A.E., Jenkyns H.C., Prosser G., Parente M., 2015. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. Lett. 432, 210-222.

[48]

Leeman W.P., Tonarini S., Chan L.H., Borg L.E., 2004. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem. Geol. 212 (1), 101-124.

[49]

Lei X.-F., Romer R.L., Glodny J., Jiang S.-Y., 2023. Geochemical significance of lithium and boron isotopic heterogeneity evolving during the crystallization of granitic melts. Geology 51 (6), 581-585.

[50]

Magna T., Ionov D.A., Oberli F., Wiechert U., 2008. Links between mantle metasomatism and lithium isotopes: evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth Planet. Sci. Lett. 276 (1), 214-222.

[51]

Marriott C.S., Henderson G.M., Crompton R., Staubwasser M., Shaw S., 2004. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem. Geol. 212 (1), 5-15.

[52]

Marschall H.R., Pogge von Strandmann P.A.E., Seitz H.-M., Elliott T., Niu Y., 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet. Sci. Lett. 262 (3), 563-580.

[53]

Marschall H.R., Wanless V.D., Shimizu N., Pogge von Strandmann P.A.E., Elliott T., Monteleone B.D., 2017. The boron and lithium isotopic composition of midocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 207, 102-138.

[54]

Martin L.A.J., Hermann J., 2018. Experimental phase relations in altered oceanic crust: Implications for carbon recycling at subduction zones. J. Petrol. 59 (2), 299-320.

[55]

McDonough W.F., Sun S.S., 1995. The composition of the Earth. Chem. Geol. 120 (3-4), 223-253.

[56]

McKenzie N.R., Horton B.K., Loomis S.E., Stockli D.F., Planavsky N.J., Lee C.-T.-A., 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352 (6284), 444-447.

[57]

Misra S., Froelich P.N., 2012. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335 (6070), 818-823.

[58]

Moriguti T., Nakamura E., 1998. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet. Sci. Lett. 163 (1), 167-174.

[59]

Nishio Y., Nakai S.I., Ishii T., Sano Y., 2007. Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the DUPAL anomaly. Geochim. Cosmochim. Acta 71 (3), 745-759.

[60]

Parkinson I.J., Hammond S.J., James R.H., Rogers N.W., 2007. High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth Planet. Sci. Lett. 257 (3), 609-621.

[61]

Plank T., 2014. 4.17 - The Chemical Composition of Subducting Sediments. In: HollandH.D., TurekianK.K. (Treatiseon Geochemistry second Edition.Eds.), Elsevier, Oxford, pp. 607-629.

[62]

Plank T., Manning C.E., 2019. Subducting carbon. Nature 574 (7778), 343-352.

[63]

Pogge von Strandmann, P.A.E., Elliott T., Marschall H.R., Coath C., Lai., Jeffcoate A.B., Ionov D.A., 2011. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim. Cosmochim. Acta 75 (18), 5247-5268.

[64]

Pogge von Strandmann, P.A.E., Fraser W.T., Hammond S.J.,Tarbuck, G., Wood, I.G., Oelkers, E.H., Murphy, M.J., 2019. Experimental determination of Li isotope behaviour during basalt weathering. Chem. Geol. 517, 34-43.

[65]

Pogge von Strandmann, P.A.E., Jenkyns H.C., Woodfine R.G., 2013. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6 (8), 668-672.

[66]

Poli S., 2015. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat. Geosci. 8 (8), 633-636.

[67]

Richter F.M., Davis A.M., DePaolo D.J., Watson E.B., 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta 67 (20), 3905-3923.

[68]

Rudnick R.L., Gao S., 2014. 4.1 - Composition of the Continental Crust. In: HollandH.D., TurekianK.K. (Treatiseon Geochemistry second Edition.Eds.), Elsevier, Oxford, pp. 1-51.

[69]

Sauzéat L., Rudnick R.L., Chauvel C., Garçon M., Tang M., 2015. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet. Sci. Lett. 428, 181-192.

[70]

Scambelluri M., Bebout G.E., Belmonte D., Gilio M., Campomenosi N., Collins N., Crispini L., 2016. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth Planet. Sci. Lett. 441, 155-166.

[71]

Schuessler J.A., Schoenberg R., Sigmarsson O., 2009. Iron and lithium isotope systematics of the Hekla volcano, Iceland — evidence for Fe isotope fractionation during magma differentiation. Chem. Geol. 258 (1), 78-91.

[72]

Staudigel H., 2014. 4.16 - Chemical Fluxes from Hydrothermal Alteration of the Oceanic Crust. In: HollandH.D., TurekianK.K. (Treatiseon Geochemistry second Edition.Eds.), Elsevier, Oxford, pp. 583-606.

[73]

Staudigel H., Hart S.R., Schmincke H.-U., Smith B.M., 1989. Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing. Geochim. Cosmochim. Acta 53 (11), 3091-3094.

[74]

Stewart E.M., Ague J.J., 2020. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11 (1), 6220.

[75]

Tang M., Rudnick R.L., Chauvel C., 2014. Sedimentary input to the source of Lesser Antilles lavas: a Li perspective. Geochim. Cosmochim. Acta 144, 43-58.

[76]

Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J. Petrol. 47 (7), 1261-1315.

[77]

Tappe S., Foley S.F., Stracke A., Romer R.L., Kjarsgaard B.A., Heaman L.M., Joyce N., 2007. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 256 (3), 433-454.

[78]

Tappe S., Graham Pearson D., Kjarsgaard B.A., Nowell G., Dowall D., 2013. Mantle transition zone input to kimberlite magmatism near a subduction zone: Origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada. Earth Planet. Sci. Lett. 371-372, 235-251.

[79]

Tappe S., Pearson D.G., Nowell G., Nielsen T., Milstead P., Muehlenbachs K., 2011. A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet. Sci. Lett. 305 (1), 235-248.

[80]

Tappe S., Romer R.L., Stracke A., Steenfelt A., Smart K.A., Muehlenbachs K., Torsvik T.H., 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet. Sci. Lett. 466, 152-167.

[81]

Tappe S., Steenfelt A., Nielsen T., 2012. Asthenospheric source of Neoproterozoic and Mesozoic k mberlites from the North Atlantic craton, West Greenland: New highprecision U-Pb and Sr-Nd isotope data on perovskite. Chem. Geol. 320-321, 113-127.

[82]

Teng F.-Z., McDonough W.F., Rudnick R.L., Walker R.J., 2006a. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet. Sci. Lett. 243 (3), 701-710.

[83]

Teng F.-Z., McDonough W.F., Rudnick R.L., Walker R.J., Sirbescu M.-L.-C., 2006b. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am. Mineral. 91 (10), 1488-1498.

[84]

Teng F.Z., McDonough W.F., Rudnick R.L., Dalpé C., Tomascak P.B., Chappell B.W., Gao S., 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta 68 (20), 4167-4178.

[85]

Tian S., Hou Z., Su A., Hou K., Hu W., Li Z., Zhao Y., Gao Y., Li Y., Yang D., Yang Z., 2012. Separation and precise measurement of lithium isotopes in three reference materials using Multi Collector-Inductively coupled Plasma Mass Spectrometry. Acta Geol. Sin. (English Edition) 86 (5), 1297-1305.

[86]

Tian S., Hou Z., Su A., Qiu L., Mo X., Hou K., Zhao Y., Hu W., Yang Z., 2015. The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: Enriched mantle source and petrogenesis. Geochim. Cosmochim. Acta 159, 42-60.

[87]

Tilton G.R., Bell K., 1994. Sr-Nd-Pb isotope relationships in late Archean carbonatites and alkaline complexes: applications to the geochemical evolution of Archean mantle. Geochim. Cosmochim. Acta 58 (15), 3145-3154.

[88]

Tomascak P.B., Langmuir C.H., le Roux P.J., Shirey S.B., 2008. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta 72 (6), 1626-1637.

[89]

Tomascak P.B., Tera F., Helz R.T., Walker R.J., 1999. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim. Cosmochim. Acta 63 (6), 907-910.

[90]

Toyoda K., Horiuchi H., Tokonami M., 1994. Dupal anomaly of Brazilian carbonatites: Geochemical correlations with hotspots in the South Atlantic and implications for the mantle source. Earth Planet. Sci. Lett. 126 (4), 315-331.

[91]

Tsuno K., Dasgupta R., Danielson L., Righter K., 2012. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of central American volcanic arc. Geophys. Res. Lett. 39 (16), L16307.

[92]

Vlastélic I., Staudacher T., Bachèlery P., Télouk P., Neuville D., Benbakkar M., 2011. Lithium isotope fractionation during magma degassing: Constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island). Chem. Geol. 284 (1), 26-34.

[93]

Wang X., Zhao L., Yang J., Guo Z., 2024. Carbon storage in the forearc produced by buoyant diapirs of subducted sediment. Geophys. Res. Lett. 51 (3), e2023GL107011.

[94]

Weng Q., Yang W.-B., Niu H.-C., Li N.-B., Qu P., Shan Q., Fan G.-Q., Jiang Z.-Y., Zhang Z.-Y., Li A., Zhao X.-C., 2021. B-Sr-Nd-Pb isotopic constraints on the origin of the Maoniuping alkaline syenite-carbonatite complex, SW China. Ore Geol. Rev. 135, 104193.

[95]

Wunder B., Meixner A., Romer R.L., Feenstra A., Schettler G., Heinrich W., 2007. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem. Geol. 238 (3), 277-290.

[96]

Wunder B., Meixner A., Romer R.L., Jahn S., 2011. Li-isotope fractionation between silicates and fluids: pressure dependence and influence of the bonding environment. Eur. J. Mineral. 23 (3), 333-342.

[97]

Yang J., 2020. Study on the superficial characteristics and rock-forming processes and ore-forming processes of the Mauniuping Rare Earth Deposit in Western Sichuan. Master thesis, Chinese Academic Science, 126 p.

[98]

Yin A., Harrison T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Energy Environ. 28, 211-280.

[99]

Yuan Z., Shi Z., Bai G., Wu D., Chi R.A., Li X., 1995. The Maoniuping Rare Earth Ore Deposit, Mianning County. Seismological Press, Beijing (in China), Sichuan Province.

[100]

Zhao Y., Hou K., Tian S., Yang D., Su A., 2015. Study on measurements of lithium isotopic compositions for common standard reference materials using Multi-Collector Inductively coupled Plasma-Mass Spectrometry. Rock Mineral Anal. 34 (1), 28-39 (in Chinese with English abstract)

[101]

Zhou M.-F., Ma Y., Yan D.-P., Xia X., Zhao J.-H., Sun M., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): a Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res. 144 (1), 19-38.

AI Summary AI Mindmap
PDF

461

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/