Mechanical softening of lunar olivine probed via nanoindentation and high-pressure X-ray diffraction measurements

P. Grèbol-Tomàs , J. Ibáñez-Insa , J.M. Trigo-RodrÃguez , E. Peña-Asensio , R. Oliva , D. DÃaz-Anichtchenko , P. Botella , J. Sánchez-MartÃn , R. Turnbull , D. Errandonea , A. Liang , C. Popescu , J. Sort

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102110

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102110 DOI: 10.1016/j.gsf.2025.102110

Mechanical softening of lunar olivine probed via nanoindentation and high-pressure X-ray diffraction measurements

Author information +
History +
PDF

Abstract

The mechanical properties of minerals in planetary materials are not only interesting from a fundamental point of view but also critical to the development of future space missions. Here we present nanoindentation experiments to evaluate the hardness and reduced elastic modulus of olivine, (Mg, Fe)2SiO4, in meteorite NWA 12008, a lunar basalt. Our experiments suggest that the olivine grains in this lunaite are softer and more elastic than their terrestrial counterparts. Also, we have performed synchrotron-based high-pressure X-ray diffraction (HP-XRD) measurements to probe the compressibility properties of olivine in this meteorite and, for comparison purposes, of three ordinary chondrites. The HP-XRD results suggest that the axial compressibility of the orthorhombic b lattice parameter of olivine relative to terrestrial olivine is higher in NWA 12008 and also in the highly-shocked Chelyabinsk meteorite. The origin of the observed differences is discussed. A simple model combining the results of both our nanoindentation and HP-XRD measurements allows us to describe the contribution of macroscopic and chemical-bond related effects, both of which are necessary to reproduce the observed elastic modulus softening. Such joint analysis of the mechanical and elastic properties of meteorites and returned samples opens up a new avenue for characterizing these highly interesting materials.

Keywords

Planetary materials / Lunar rocks / Chondrites / Mechanical properties / Elasticity / Nanoindentation / Diamond anvil cell

Cite this article

Download citation ▾
P. Grèbol-Tomàs, J. Ibáñez-Insa, J.M. Trigo-RodrÃguez, E. Peña-Asensio, R. Oliva, D. DÃaz-Anichtchenko, P. Botella, J. Sánchez-MartÃn, R. Turnbull, D. Errandonea, A. Liang, C. Popescu, J. Sort. Mechanical softening of lunar olivine probed via nanoindentation and high-pressure X-ray diffraction measurements. Geoscience Frontiers, 2025, 16(5): 102110 DOI:10.1016/j.gsf.2025.102110

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

P. Grèbol-Tomàs: Writing - original draft, Software, Methodol-ogy, Investigation, Formal analysis, Conceptualization. J. Ibáñez-Insa: Writing - original draft, Supervision, Investigation, Funding acquisition, Formal analysis. J.M. Trigo-Rodríguez: Writing - review & editing, Supervision, Funding acquisition. E. Peña-Asensio: Writing - review & editing, Conceptualization. R. Oliva: Validation. P. Botella: Validation. Josu Sánchez-Martin: Valida-tion. Robin Turnbull: Validation. D. Errandonea: Validation. A. Liang: Validation. C. Popescu: Resources. J. Sort: Writing - review & editing, Resources, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Financial support from the project PID2021-128062NB-I00 funded by the Spanish Ministerio de Ciencia, Innovación y Univer-sidades MCIU (doi:10.13039/501100 011033) is acknowledged, as well as the Spanish program Unidad de Excelencia María de Maeztu CEX2020-001058-M. The ALBA-CELLS synchrotron is acknowledged for granting beamtime at the MSPD beamline under projects 2021095390 and 2022025734. PG-T acknowledges the financial support from the Spanish MCIU through the FPI predoc-toral fellowship PRE2022-104624. JS acknowledges the financial support from projects 2021-SGR-00651 and PID2020-116844RB-C21. EP-A acknowledges financial support from the LUMIO project funded by the Agenzia Spaziale Italiana (2024-6-HH.0). DE thanks the financial support from Spanish MCIU under projects PID2022-138076NB-C41 and RED2022-134388-T from Generalitat Valen-ciana (GVA) through grants CIPROM/2021/075 and MFA/2022/007, which are part of the Advanced Materials program and is supported with funding from the European Union Next Gen-eration EU (PRTR-C17.I1). RT and DE (PB and DE) thank GVA for the Postdoctoral Fellowship CIAPOS/2021/20 (CIAPOS/2023/406). JS-M thanks the Spanish MCIU for the PRE2020-092198 fellowship. NWA 12008 has been studied within the framework of an interna-tional European consortium led by IFP. Special acknowledge to I. Weber for providing the NWA 12008 meteorite thin section. This work is part of the doctoral thesis of PG-T (Doctoral Program in Physics at Universitat Autònoma de Barcelona).

References

[1]

Angel R., Mazzucchelli M., Alvaro M., Nimis P., Nestola F., 2014. Geobarometry from host-inclusion systems: The role of elastic relaxation. Am. Mineral. 99, 2146-2149. https://doi.org/10.2138/am-2014-5047.

[2]

Angel R., Nimis P., Mazzucchelli M., Alvaro M., Nestola F., 2015. How large are departures from lithostatic pressure? Constraints from host-inclusion elasticity. J. Metamorph. Geol. 33, 801-813. https://doi.org/10.1111/jmg.12138

[3]

Angel R.J., 2000. Equations of state. Rev. Mineral. Geochem. 41, 35-59. https://doi.org/10.2138/rmg.2000.41.2.

[4]

Avadanii D., Hansen L., Marquardt K., Wallis D., Ohl M., Wilkinson A., 2023. The role of grain boundaries in low-temperature plasticity of olivine revealed by nanoindentation. J. Geophys. Res. Solid Earth 128, e2023JB026763. https://doi.org/10.1029/2023JB026763.

[5]

Badt N., Goldsby D.L., 2023. Attenuation of olivine single crystals using nanoindentation. in:AGU Fall Meeting Abstracts, San Francisco. pp. MR31A-0045.

[6]

Baral P., Orekhov A., Dohmen R., Coulombier M., Raskin J.P., Cordier P., Idrissi H., Pardoen T., 2021. Rheology of amorphous olivine thin films characterized by nanoindentation. Acta Mater. 219, 117257. https://doi.org/10.1016/j.actamat.2021.117257.

[7]

Barla K., Herino R., Bomchil G., Pfister J., Freund A., 1984. Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction. J. Cryst. Growth 68, 727-732. https://doi.org/10.1016/0022-0248(84)90111-8.

[8]

Bass J.D., 1995. Elasticity of minerals, glasses, and melts. In: AhrensT.J. (Ed.), Mineral Physics & Crystallography. American Geophysical Union (AGU), chapter 1, pp. 44-63. doi:10.1029/RF002p0045.

[9]

Beitz E., Blum J., Parisi M.G., Trigo-Rodriguez J., 2016. The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids. Astrophys. J. 824, 12. https://doi.org/10.3847/0004-637X/824/1/12.

[10]

Bennett C.J., Pirim C., Orlando T.M., 2013. Space-weathering of solar system bodies: A laboratory perspective. Chem. Rev. 113, 9086-9150. https://doi.org/10.1021/cr400153k

[11]

Biener J., Hodge A.M., Hamza A.V., Hsiung L.M., Satcher J.H., 2004. Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 024301. https://doi.org/10.1063/1.1832742.

[12]

Brantley S.L., Mellott N.P., 2000. Surface area and porosity of primary silicate minerals. Am. Mineral. 85, 1767-1783. https://doi.org/10.2138/am-2000-11-1220.

[13]

Britt D.T., Consolmagno G.J.S.J., 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteorit. Planet. Sci. 38, 1161-1180. https://doi.org/10.1111/j.1945-5100.2003.tb00305.x

[14]

Cariou S., Ulm F.J., Dormieux L., 2008. Hardness-packing density scaling relations for cohesive-frictional porous materials. J. Mech. Phys. Solids 56, 924-952. https://doi.org/10.1016/j.jmps.2007.06.011.

[15]

Chandra U., Pandey K., Parthasarathy G., Sharma S.M., 2016. High-pressure investigations on Piplia Kalan eucrite meteorite using in-situ X-ray diffraction and 57 Fe mössbauer spectroscopic technique up to 16 GPa. Geosci. Front. 7, 265-271. https://doi.org/10.1016/j.gsf.2015.05.003.

[16]

Chandra U., Parthasarathy G., Chandra Shekar N.V., Sahu P., 2013. X-ray diffraction, Mössbauer spectroscopic and electrical resistivity studies on Lohawat meteorite under high-pressure up to 9 GPa. Chem. Erde 73, 197-203.

[17]

Chen X.Q., Niu H., Li D., Li Y., 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026.

[18]

Chen Z., Zhao Y., Chi X., Yan Y., Shen J., Zou M., Zhao S., Liu M., Yao W., Zhang B., Ke H., Ma X.L., Bai H., Yang M., Zou Z., Wang W.H., 2023. Geological timescales' aging effects of lunar glasses. Sci. Adv. 9, eadi6086. https://doi.org/10.1126/sciadv.adi6086.

[19]

Cheng A.F., Agrusa H.F., Barbee B.W., Meyer A.J., Farnham T.L., Raducan S.D., Richardson D.C., Dotto E., Zinzi A., Della Corte V., Statler T.S., Chesley S., Naidu S.P., Hirabayashi M., Li J.Y., Eggl S., Barnouin O.S., Chabot N.L., Chocron S., Collins G.S., Daly R.T., Davison T.M., DeCoster M.E., Ernst C.M., Ferrari F., Graninger D.M., Jacobson S.A., Jutzi M., Kumamoto K.M., Luther R., Lyzhoft J. R., Michel P., Murdoch N., Nakano R., Palmer E., Rivkin A.S., Scheeres D.J., Stickle A.M., Sunshine J.M., Trigo-Rodriguez J.M., Vincent J.B., Walker J.D., Wünnemann K., Zhang Y., Amoroso M., Bertini I., Brucato J.R., Capannolo A., Cremonese G., 2023. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature 616, 457-460. https://doi.org/10.1038/s41586-023-05878-z

[20]

Chudoba T., Schwaller P., Rabe R., Breguet J.M., Michler J., 2006. Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters. Phil. Mag. 86, 5265-5283. https://doi.org/10.1080/14786430600746424.

[21]

Chung D., 1971. Elasticity and equations of state of olivines in the Mg2SiO4-Fe2SiO 4 system. Geophys. J. R. Astron. Soc. 25, 511-538.

[22]

Daly R.T., Ernst C.M., Barnouin O.S., Chabot N.L., Rivkin A.S., Cheng A.F., Adams E. Y., Agrusa H.F., Abel E.D., Alford A.L., Asphaug E.I., Atchison J.A., Badger A.R., Baki P., Ballouz R.L., Bekker D.L., Bellerose J., Bhaskaran S., Buratti B.J., Cambioni S., Chen M.H., Chesley S.R., Chiu G., Collins G.S., Cox M.W., DeCoster M.E., Ericksen P.S., Espiritu R.C., Faber A.S., Farnham T.L., Ferrari F., Fletcher Z.J., Gaskell R.W., Graninger D.M., Haque M.A., Harrington-Duff P.A., Hefter S., Herreros I., Hirabayashi M., Huang P.M., Hsieh S.Y.W., Jacobson S.A., Jenkins S.N., Jensenius M.A., John J.W., Jutzi M., Kohout T., Krueger T.O., Laipert F.E., Lopez N.R., Luther R., Lucchetti A., Mages D.M., Marchi S., Martin A.C., McQuaide M.E., Michel P., Moskovitz N.A., Murphy I.W., Murdoch N., Naidu S.P., Nair H., Nolan M.C., Ormö J., Pajola M., Palmer E.E., Peachey J.M., Pravec P., Raducan S.D., Ramesh K.T., Ramirez J.R., Reynolds E.L., Richman J.E., Robin C.Q., Rodriguez L.M., Roufberg L.M., Rush B.P., Sawyer C.A., Scheeres D. J., Scheirich P., Schwartz S.R., Shannon M.P., Shapiro B.N., Shearer C.E., Smith E.J., Steele R.J., Steckloff J.K., Stickle A.M., Sunshine J.M., Superfin E.A., Tarzi Z. B., Thomas C.A., Thomas J.R., Trigo-Rodríguez J.M., Tropf B.T., Vaughan A.T., Velez D., Waller C.D., Wilson D.S., Wortman K.A., Zhang Y., 2023. Successful kinetic impact into an asteroid for planetary defence. Nature 616, 443-447. https://doi.org/10.1038/s41586-023-05810-5.

[23]

Davison T.M., Collins G.S., Bland P.A., 2016. Mesoscale Modelling of Impact Compaction of Primitive Solar System Solids. in: LPI Editorial Board (Ed.), 79th Annual Meeting of the Meteoritical Society, Berlin, Germany, p. 6395.

[24]

Demouchy S., 2021. Defects in olivine. Eur. J. Mineral. 33, 249-282. https://doi.org/10.5194/ejm-33-249-2021.

[25]

Dewaele A., Loubeyre P., Mezouar M., 2004. Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112. https://doi.org/10.1103/PhysRevB.70.094112.

[26]

Duffard R.D., Gómez I.G., Jurado M.J., Trigo-Rodríguez J.M., Rossi C., Schimmel M., Zorzano M.P., 2021. Challenge 1:In-situ resources utilization. Technical Report. Consejo Superior de Investigaciones Científicas (CSIC).

[27]

Durga Prasad K., Bhatt M., A., Ambily G., Sathyan S., Misra D., Srivastava N., Bhardwaj A., 2023. Contextual characterization study of Chandrayaan-3 primary landing site. Mon. Not. R. Astron. Soc.: Lett. 526, 116-123. doi:10.1093/mnrasl/slad106.

[28]

Fauth F., Peral I., Popescu C., Knapp M., 2013. The new material science powder diffraction beamline at alba synchrotron. Powder Diffr. 28, 360-370. https://doi.org/10.1017/S0885715613000900.

[29]

Fegley Jr., B., 2003. Venus. Treat. Geochem. 1, 711. https://doi.org/10.1016/B0-08-043751-6/01150-6.

[30]

Fischer-Cripps A., Nicholson D., 2004. Nanoindentation. Mechanical engineering series. Appl. Mech. Rev. 57, 12. https://doi.org/10.1115/1.1704625.

[31]

Gattacceca J., MCcubbin F.M., Bouvier A., Grossman J., 2020. The Meteoritical Bulletin, No. 107. Meteorit. Planet. Sci. 55, 460-462.

[32]

Gholami S., Zhang X., Kim Y.J., Kim Y.R., Cui B., Shin H.S., Lee J., 2022. Hybrid microwave sintering of a lunar soil simulant: effects of processing parameters on microstructure characteristics and mechanical properties. Mater. Des. 220, 110878. https://doi.org/10.1016/j.matdes.2022.110878.

[33]

Gonzalez-Platas J., Alvaro M., Nestola F., Angel R., 2016. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 49, 1377-1382. https://doi.org/10.1107/S1600576716008050.

[34]

Hoover C.G., Jardine K.J., Ryan A.J., Sanchez P., Biele J., Ballouz R.L., Macke R.J., Landsman Z.A., Long-Fox J.M., Connolly H.C., Lauretta D.S., 2024. Bennu sample physical properties from multi-scale measurements of strength and indentation hardness. in: LPI Contributions. 55th Lunar and Planetary Science Conference, Woodlands, USA, p. 2480.

[35]

Horii Y., Fujii N., Takeda H., 1990. Hardness analysis of metallic particles in ordinary chondrites. in:Proceedings of the NIPR Symposium, National Institute of Polar Research, p. 254.

[36]

Jha K.K., Suksawang N., Lahiri D., Agarwal A., 2012. Energy-based analysis of nanoindentation curves for cementitious materials. Materials 109, 81-90. https://doi.org/10.14359/5168573.

[37]

Jiang Q., Karato S., Datye A., Yang S., Foteinou V., Rogalla D., Schwarz U.D., 2024. Weakening of olivine by hydrogen implantation: results of nano-indentation tests and some applications to planetary materials. Icarus 421, 116243. https://doi.org/10.1016/j.icarus.2024.116243.

[38]

Jones A., 2000. Depletion patterns and dust evolution in the interstellar medium. J. Geophys. Res. 105. https://doi.org/10.1029/1999JA900264.

[39]

Kranjc K., Rouse Z., Flores K.M., Skemer P., 2016. Low-temperature plastic rheology of olivine determined by nanoindentation. Geophys. Res. Lett. 43, 176-184. https://doi.org/10.1002/2015GL065837.

[40]

Kranjc K., Thind A.S., Borisevich A.Y., Mishra R., Flores K.M., Skemer P., 2020. Amorphization and plasticity of olivine during low-temperature micropillar deformation experiments. J. Geophys. Res. Solid Earth 125, e2019JB019242. doi:10.1029/2019JB019242.

[41]

Kumamoto K.M., Hansen L.N., Breithaupt T., Wallis D., Li B.S., Armstrong D.E.J., Goldsby D.L., Li Y.W., Warren J.M., Wilkinson A.J., 2024. The effect of intracrystalline water on the mechanical properties of olivine at room temperature. Geophys. Res. Lett. 51, e2023GL106325. https://doi.org/10.1029/2023GL106325.

[42]

Lauretta D.S., Balram-Knutson S.S., Beshore E., Boynton W.V., Drouet d'Aubigny C., DellaGiustina D.N., Enos H.L., Golish D.R., Hergenrother C.W., Howell E.S., Bennett C.A., Morton E.T., Nolan M.C., Rizk B., Roper H.L., Bartels A.E., Bos B.J., Dworkin J.P., Highsmith D.E., Lorenz D.A., Lim L.F., Mink R., Moreau M.C., Nuth J.A., Reuter D.C., Simon A.A., Bierhaus E.B., Bryan B.H., Ballouz R., Barnouin O.S., Binzel R.P., Bottke W.F., Hamilton V.E., Walsh K.J., Chesley S.R., Christensen P.R., Clark B.E., Connolly H.C., Crombie M.K., Daly M.G., Emery J. P., McCoy T.J., McMahon J.W., Scheeres D.J., Messenger S., Nakamura-Messenger K., Righter K., Sandford S.A., 2017. Osiris-rex: Sample return from asteroid (101955) bennu. Space Sci. Rev. 212, 925-984. https://doi.org/10.1007/s11214-017-0405-1.

[43]

Lim S., Prabhu V.L., Anand M., Taylor L.A., 2017. Extra-terrestrial construction processes - advancements, opportunities and challenges. Adv. Space Res. 60, 1413-1429. https://doi.org/10.1016/j.asr.2017.06.038.

[44]

Lin T.D., Love H., Stark D., 1988. Physical properties of concrete made with Apollo 16 lunar soil sample. in: LPI Editorial Board (Ed.), Second Conference on Lunar Bases and Space Activities of the 21st Century 2, 159.

[45]

Liu B., Sun P., Yao W., Li T., Xu W., 2024. Research progress on the adaptability of lunar regolith simulant-based composites and lunar base construction methods. Int. J. Min. Sci. Technol. 34, 1341-1363. https://doi.org/10.1016/j.ijmst.2024.09.005.

[46]

Liu K., Ostadhassan M., Bubach B., 2016. Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. J. Nat. Gas Eng. 35, 1310-1319. https://doi.org/10.1016/j.jngse.2016.09.068.

[47]

Ma Z., Gamage R.P., Zhang C., 2020. Application of nanoindentation technology in rocks: a review. Geomech. Geophys. Geo-Energy Geo-Resour. 6, 60. https://doi.org/10.1007/s40948-020-00178-6.

[48]

Macke R.J., Britt D.T., Consolmagno G.J., 2011. Density, porosity, and magnetic susceptibility of achondritic meteorites. Meteorit. Planet. Sci. 46, 311-326. https://doi.org/10.1111/j.1945-5100.2010.01155.x

[49]

Macke R.J., Consolmagno G.J., Britt D.T., Hutson M.L., 2010. Enstatite chondrite density, magnetic susceptibility, and porosity. Meteorit. Planet. Sci. 45, 1513-1526. https://doi.org/10.1111/j.1945-5100.2010.01129.x

[50]

MacKenzie W., Adams A., 1994. A Colour Atlas of Rocks and Minerals in Thin Section. Willey, New York, USA.

[51]

Mackwell S.J., Bai Q., Kohlstedt D.L., 1990. Rheology of olivine and the strength of the lithosphere. Geophys. Res. Lett. 17, 9-12. https://doi.org/10.1029/GL017i001p00009.

[52]

Magoariec H., Danescu A., 2009. Modeling macroscopic elasticity of porous silicon. Phys. Status Solidi(C) 6, 1680-1684. https://doi.org/10.1002/pssc.200881053.

[53]

Mazzucchelli M., Reali A., Morganti S., Angel R., Alvaro M., 2019. Elastic geobarometry for anisotropic inclusions in cubic hosts. Lithos 350-351, 105218. https://doi.org/10.1016/j.lithos.2019.105218.

[54]

Min M., Waters L.B.F.M., de Koter A., Hovenier J.W., Keller L.P., Markwick-Kemper F., 2007. The shape and composition of interstellar silicate grains. A&A 462, 667-676. https://doi.org/10.1051/0004-6361:20065436.

[55]

Morgan J.W., Anders E., 1980. Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. 77, 6973-6977. https://doi.org/10.1073/pnas.77.12.6973.

[56]

Moyano-Cambero C.E., Pellicer E., Trigo-Rodríguez J.M., Williams I.P., Blum J., Michel P., Küppers M., Martínez-Jiménez M., Lloro I., Sort J., 2017. Nanoindenting the Chelyabinsk meteorite to learn about impact deflection effects in asteroids. Astrophys J 835, 157. https://doi.org/10.3847/1538-4357/835/2/157.

[57]

NASA, 2020. NASA's Plan for Sustained Lunar Exploration and Development. Technical Report. NASA.

[58]

Naser M., 2019. Extraterrestrial construction materials. Prog. Mater Sci. 105, 100577. https://doi.org/10.1016/j.pmatsci.2019.100577.

[59]

Nestola F., Nimis P., Ziberna L., Longo M., Marzoli A., Harris J.W., Manghnani M. H., Fedortchouk Y., 2011a. First crystal-structure determination of olivine in diamond: composition and implications for provenance in the earth's mantle. Earth Planet. Sci. Lett. 305, 249-255. https://doi.org/10.1016/j.epsl.2011.03.007.

[60]

Nestola F., Pasqual D., Smyth J., Novella D., Secco L., Manghnani M., Negro A.D., 2011b. New accurate elastic parameters for the forsterite-fayalite solid solution. Am. Mineral. 96, 1742-1747. https://doi.org/10.2138/am.2011.3829.

[61]

Neves J.M., Ramanathan S., Suraneni P., Grugel R., Radlin´ska A., 2020. Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. Constr. Build. Mater. 258, 120315. https://doi.org/10.1016/j.conbuildmat.2020.120315.

[62]

Nie J., Cui Y., Senetakis K., Guo D., Wang Y., Wang G., Feng P., He H., Zhang X., Zhang X., Li C., Zheng H., Hu W., Niu F., Liu Q., Li A., 2023. Predicting residual friction angle of lunar regolith based on Chang'e-5 lunar samples. Sci. Bull. 68, 730-739. https://doi.org/10.1016/j.scib.2023.03.019.

[63]

Oliver W.C., Pharr G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564-1583. https://doi.org/10.1557/JMR.1992.1564.

[64]

Oliver W.C., Pharr G.M., 2011. Nanoindentation in materials research: past, present, and future. MRS Bull. 35, 897-907. https://doi.org/10.1557/mrs2010.717.

[65]

Pellicer E., Pané S., Panagiotopoulou V., Fusco S., Sivaraman K., Suriñach S., Baró M., Nelson B., Sort J., 2012. Localized electrochemical deposition of porous Cu-Ni microcolumns: Insights into the growth mechanisms and the mechanical performance. Int. J. Electrochem. Sci. 7, 4014-4029. https://doi.org/10.1016/S1452-3981(23)19516-2

[66]

Peslier A., Woodland A., Bell D., 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78-81. https://doi.org/10.1038/nature09317.

[67]

Peña-Asensio E., Trigo-Rodríguez J.M., Sort J., Ibáñez-Insa J., Rimola A., 2024a. Machine learning applications on lunar meteorite minerals: from classification to mechanical properties prediction. Int. J. Min. Sci. Technol. 34, 1283-1292. https://doi.org/10.1016/j.ijmst.2024.08.001.

[68]

Peña-Asensio E., Trigo-Rodríguez J.M., Sort J., Ibáñez-Insa J., Rimola A., 2024b. Mechanical properties of minerals in lunar and HED meteorites from nanoindentation testing: Implications for space mining. Meteorit. Planet. Sci. 59, 1297-1313. https://doi.org/10.1111/maps.14148.

[69]

Pilehvar S., Arnhof M., Pamies R., Valentini L., Kjøniksen A.L., 2020. Utilization of ureaasanaccessiblesuperplasticizeronthemoonforlunargeopolymermixtures. J. Clean. Prod. 247, 119177. https://doi.org/10.1016/j.jclepro.2019.119177.

[70]

Poppe A.R., Szabo P.S., Imata E.R., Keller L.P., Christoffersen R., 2023. Solar energetic particle track-production rates at 1 au: Comparing in situ particle fluxes with lunar sample-derived track densities. Astrophys. J. Lett. 958, L35. https://doi.org/10.3847/2041-8213/ad0cf6.

[71]

Prescher C., Prakapenka V.B., 2015. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223-230. https://doi.org/10.1080/08957959.2015.1059835.

[72]

Raducan S.D., Jutzi M., Cheng A.F., Zhang Y., Barnouin O., Collins G.S., Daly R.T., Davison T.M., Ernst C.M., Farnham T.L., Ferrari F., Hirabayashi M., Kumamoto K.M., Michel P., Murdoch N., Nakano R., Pajola M., Rossi A., Agrusa H.F., Barbee B.W., Syal M.B., Chabot N.L., Dotto E., Fahnestock E.G., Hasselmann P. H., Herreros I., Ivanovski S., Li J.Y., Lucchetti A., Luther R., Ormö J., Owen M., Pravec P., Rivkin A.S., Robin C.Q., Sánchez P., Tusberti F., Wünnemann K., Zinzi A., Epifani E.M., Manzoni C., May B.H., 2024. Physical properties of asteroid Dimorphos as derived from the DART impact. Nat. Astron 8, 445-455. https://doi.org/10.1038/s41550-024-02200-3.

[73]

Ramakrishnan N., Arunachalam V.S., 1990. Effective elastic moduli of porous solids. J. Mater. Sci. 26, 3930-3937.

[74]

Ramakrishnan N., Arunachalam V.S., 1993. Effective elastic moduli of porous ceramic materials. J. Am. Ceram. Soc. 76, 2745-2752. https://doi.org/10.1111/j.1151-2916.1993.tb04011.x.

[75]

Robin C.Q., Duchene A., Murdoch N., Vincent J.B., Lucchetti A., Pajola M., Ernst C. M., Daly R.T., Barnouin O.S., Raducan S.D., Michel P., Hirabayashi M., Stott A., Cuervo G., Jawin E.R., Trigo-Rodriguez J.M., Parro L.M., Sunday C., Vivet D., Mimoun D., Rivkin A.S., Chabot N.L., 2024. Mechanical properties of rubble pile asteroids (Dimorphos, Itokawa, Ryugu, and Bennu) through surface boulder morphological analysis. Nat. Commun. 15, 6203. https://doi.org/10.1038/s41467-024-50147-w

[76]

Ronco M.P., Thiabaud A., Marboeuf U., Alibert Y., de Elía G.C., Guilera O.M., 2015. Chemical composition of earth-like planets. BAAA 57, 251-253. https://doi.org/10.48550/arXiv.1502.06870.

[77]

Roth N.X., Milam S.N., Remijan A.J., Cordiner M.A., Busch M.W., Thomas C.A., Rivkin A.S., Moullet A., Roush T.L., Siebert M.A., Li J.Y., Fahnestock E.G., Trigo-Rodríguez J.M., Opitom C., Hirabayashi M., 2023. Alma observations of the dart impact: characterizing the ejecta at submillimeter wavelengths. Planet. Sci. J. 4, 206. https://doi.org/10.3847/PSJ/acfcaa.

[78]

Rubin A.E., Ma C., 2017. Meteoritic minerals and their origins. Chem. Erde 325-385. https://doi.org/10.1016/j.chemer.2017.01.005.

[79]

Tabor D., 2000. The Hardness of Metals. Oxford University Press. https://doi.org/10.1093/oso/9780198507765.001.0001.

[80]

Tanbakouei S., Trigo-Rodríguez J.M., Sort J., Michel P., Blum J., Nakamura T., Williams I., 2019. Mechanical properties of particles from the surface of asteroid 25143 Itokawa. A&A 629, 1-5. https://doi.org/10.1051/0004-6361/201935380.

[81]

Tang X., Xu J., Zhang Y., Zhao H., Paluszny A., Wan X., Wang Z., 2023. The rock-forming minerals and macroscale mechanical properties of asteroid rocks. Eng. Geol. 321, 107154. https://doi.org/10.1016/j.enggeo.2023.107154.

[82]

Tardivel S., Scheeres D.J., Michel P., Van wal S., Sánchez P., 2014. Contact motion on surface of asteroid. J. Spacecr. Rockets 51, 1857-1871. https://doi.org/10.2514/1.A32939.

[83]

Taylor G.J., Scott E.R.D., 2003. Mercury. Treat. Geochem. 1, 711. https://doi.org/10.1016/B0-08-043751-6/01071-9.

[84]

Thomas C.A., Naidu S.P., Scheirich P., Moskovitz N.A., Pravec P., Chesley S.R., Rivkin A.S., Osip D.J., Lister T.A., Benner L.A.M., Brozovic´ M., Contreras C., Morrell N., Rozek A., Kušnirák P., Hornoch K., Mages D., Taylor P.A., Seymour A.D., Snodgrass C., Jørgensen U.G., Dominik M., Skiff B., Polakis T., Knight M. M., Farnham T.L., Giorgini J.D., Rush B., Bellerose J., Salas P., Armentrout W.P., Watts G., Busch M.W., Chatelain J., Gomez E., Greenstreet S., Phillips L., Bonavita M., Burgdorf M.J., Khalouei E., Longa-Peña P., Rabus M., Sajadian S., Chabot N.L., Cheng A.F., Ryan W.H., Ryan E.V., Holt C.E., Agrusa H.F., 2023. Orbital period change of Dimorphos due to the DART kinetic impact. Nature 616, 448-451. https://doi.org/10.1038/s41586-023-05805-2.

[85]

Tolu E., Garroni S., Pellicer E., Sort J., Milanese C., Cosseddu P., Enzo S., Baró M., Mulas G., 2013. Highly ordered mesoporous magnesium niobate high-j dielectric ceramic: synthesis, structural/mechanical characterization and thermal stability. J. Mater. Chem. C 1, 4948-4955. https://doi.org/10.1039/C3TC30500G

[86]

Trigo-Rodriguez J.M., Blum J., 2009. Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies. Planet. Space Sci. 57, 243-249. https://doi.org/10.1016/j.pss.2008.02.011.

[87]

Wang C., Jia Y., Xue C., Lin Y., Liu J., Fu X., Xu L., Huang Y., Zhao Y., Xu Y., Gao R., Wei Y., Tang Y., Yu D., Zou Y., 2023. Scientific objectives and payload configuration of the Chang'E-7 mission. Natl. Sci. Rev. 11, nwad329. https://doi.org/10.1093/nsr/nwad329.

[88]

Watanabe S., Hirabayashi M., Hirata N., Hirata N., Noguchi R., Shimaki Y., Ikeda H., Tatsumi E., Yoshikawa M., Kikuchi S., Yabuta H., Nakamura T., Tachibana S., Ishihara Y., Morota T., Kitazato K., Sakatani N., Matsumoto K., Wada K., Senshu H., Honda C., Michikami T., Takeuchi H., Kouyama T., Honda R., Kameda S., Fuse T., Miyamoto H., Komatsu G., Sugita S., Okada T., Namiki N., Arakawa M., Ishiguro M., Abe M., Gaskell R., Palmer E., Barnouin O.S., Michel P., French A.S., McMahon J.W., Scheeres D.J., Abell P.A., Yamamoto Y., Tanaka S., Shirai K., Matsuoka M., Yamada M., Yokota Y., Suzuki H., Yoshioka K., Cho Y., Tanaka S., Nishikawa N., Sugiyama T., Kikuchi H., Hemmi R., Yamaguchi T., Ogawa N., Ono G., Mimasu Y., Yoshikawa K., Takahashi T., Takei Y., Fujii A., Hirose C., Iwata T., Hayakawa M., Hosoda S., Mori O., Sawada H., Shimada T., Soldini S., Yano H., Tsukizaki R., Ozaki M., Iijima Y., Ogawa K., Fujimoto M., Ho T.M., Moussi A., Jaumann R., Bibring J.P., Krause C., Terui F., Saiki T., Nakazawa S., Tsuda Y., 2019. Hayabusa 2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top-shaped rubble pile. Science 364, 268-272. https://doi.org/10.1126/science.aav8032.

[89]

Wilkison S.L., McCoy T.J., McCamant J.E., Robinson M.S., Britt D.T., 2003. Porosity and density of ordinary chondrites: clues to the formation of friable and porous ordinary chondrites. Meteorit. Planet. Sci. 38, 1533-1546. https://doi.org/10.1111/j.1945-5100.2003.tb00256.x

[90]

Xu J.J., Zhang Y.H., Rutqvist J., Hu M.S., Wang Z.Z., Tang X.H., 2023. Thermally induced microcracks in granite and their effect on the macroscale mechanical behavior. J. Geophys. Res. Solid Earth 128, e2022JB024920. https://doi.org/10.1029/2022JB024920.

[91]

Yano H., Kubota T., Miyamoto H., Okada T., Scheeres D., Takagi Y., Yoshida K., Abe M., Abe S., Barnouin-Jha O., Fujiwara A., Hasegawa S., Hashimoto T., Ishiguro M., Kato M., Kawaguchi J., Mukai T., Saito J., Sasaki S., Yoshikawa M., 2006. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science 312, 1350-1353. https://doi.org/10.1126/science.1126164.

[92]

Yomogida K., Matsui T., 1983. Physical properties of ordinary chondrites and their implications. Meteoritics 18, 430-431.

[93]

Zhang L., 1998. Single crystal hydrostatic compression of (Mg, Mn, Fe, Co)2SiO4 olivines. Phys. Chem. Miner. 25, 308-312.

AI Summary AI Mindmap
PDF

529

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/