Prediction of overburden layer thickness based on spatial heterogeneity analysis and machine learning models in hillslope regions

Zhilu Chang , Shui-Hua Jiang , Faming Huang , Lei Shi , Jinsong Huang , Jianhong Wan , Filippo Catani

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102109

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102109 DOI: 10.1016/j.gsf.2025.102109

Prediction of overburden layer thickness based on spatial heterogeneity analysis and machine learning models in hillslope regions

Author information +
History +
PDF

Abstract

The spatial distribution of overburden layer thickness (OLT) is crucial for landslide susceptibility prediction and slope stability analysis. Due to OLT spatial heterogeneity in hillslope regions, combined with the difficulty and time consumption of OLT sample collection, accurately predicting OLT distribution remains a challenging. To address this, a novel framework has been developed. First, OLT samples are collected through field surveys, remote sensing, and geological drilling. Next, the heterogeneity of OLT's spatial distribution is analyzed using the probability distribution of OLT samples and their horizontal and vertical distributions. The OLT samples are categorized and the small sample categories are expanded using the synthetic minority over-sampling technique (SMOTE). The slope position is selected as a key conditioning factor. Subsequently, 16 conditioning factors are applied to construct OLT prediction model using the random forest regression algorithm. Weights are assigned to each OLT sample category to balance the uneven distribution of sample sizes. Finally, the Pearson correlation coefficient, mean absolute error (MAE), root mean square error (RMSE), and Lin's concordance correlation coefficient (Lin's CCC) are employed to validate the OLT prediction results. The Huangtan town serves as the case study. Results show: (1) heterogeneity analysis, SMOTE-based OLT sample expansion strategy and slope position selection can significantly mitigate the effect of spatial heterogeneity on OLT prediction. (2) The Pearson correlation coefficient, RMSE, MAE and Lin's CCC values are 0.84, 1.173, 1.378 and 0.804, respectively, indicating excellent prediction performance. This research provides an effective solution for predicting OLT distribution in hillslope regions.

Keywords

Overburden layer thickness / Heterogeneity analysis / Random forest regression / Slope position / Hillslope regions

Cite this article

Download citation ▾
Zhilu Chang, Shui-Hua Jiang, Faming Huang, Lei Shi, Jinsong Huang, Jianhong Wan, Filippo Catani. Prediction of overburden layer thickness based on spatial heterogeneity analysis and machine learning models in hillslope regions. Geoscience Frontiers, 2025, 16(5): 102109 DOI:10.1016/j.gsf.2025.102109

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhilu Chang: Software, Funding acquisition, Data curation, Writing - review & editing, Writing - original draft, Methodology, Resources. Shui-Hua Jiang: Validation, Supervision, Project admin-istration, Writing - review & editing. Faming Huang: Investiga-tion, Funding acquisition, Supervision, Writing - review & editing. Lei Shi: Visualization, Validation. Jinsong Huang: Valida-tion, Visualization, Supervision, Conceptualization. Jianhong Wan: Investigation, Visualization, Validation. Filippo Catani: Vali-dation, Supervision, Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is funded by the Natural Science Foundation of China (No. 42407241, 42272326 and 52222905), Jiangxi Provincial Natural Science Foundation (Nos. 20242BAB20241, 20242BAB23052 and 20242BAB24001).

References

[1]

Bonfatti B.R., Hartemink A.E., Vanwalleghem T., Minasny B., Giasson E., 2018. A mechanistic model to predict soil thickness in a valley area of Rio Grande do Sul, Brazil. Geoderma 309, 17-31. https://doi.org/10.1016/j.geoderma.2017.08.036.

[2]

Breiman L., 2001. Random forests. Mac. Learn. 45, 5-32. https://doi.org/10.1023/A:1010933404324.

[3]

Brosens L., Campforts B., Robinet J., Vanacker V., Opfergelt S., Ameijeiras-Mariño Y., Minella J.P.G., Govers G., 2020. Slope gradient controls soil thickness and chemical weathering in subtropical Brazil: understanding rates and timescales of regional soilscape evolution through a combination of field data and modeling. J. Geophys. Res-Earth 125 (6), e2019JF005321. https://doi.org/10.1029/2019JF005321.

[4]

Catani F., Segoni S., Falorni G., 2010. An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour. Res. 46 (5), W05508. https://doi.org/10.1029/2008WR007450.

[5]

Chartin C., Bourennane H., Salvador-Blanes S., Hinschberger F., Macaire J.J., 2011. Classification and mapping of anthropogenic landforms on cultivated hillslopes using DEMs and soil thickness data-Example from the SW Parisian Basin, France. Geomorphology 135 (1-2), 8-20. https://doi.org/10.1016/j.geomorph.2011.07.020.

[6]

Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., 2002. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357. https://doi.org/10.1613/jair.953.

[7]

De Vita P., Napolitano E., Godt J.W., Baum R.L., 2013. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy. Landslides 10, 713-728. https://doi.org/10.1007/s10346-012-0348-2.

[8]

Dixon J.L., Heimsath A.M., Amundson R., 2009. The critical role of climate and saprolite weathering in landscape evolution. Earth Surf. Proc. Land. 34 (11), 1507-1521. https://doi.org/10.1002/esp.1836.

[9]

Feng W., Bai H., Lan B., Wu Y., Wu Z., Yan L., Ma X., 2022. Spatial-temporal distribution and failure mechanism of group-occurring landslides in Mibei village, Longchuan County, Guangdong, China. Landslides 19 (8), 1957-1970. https://doi.org/10.1007/s10346-022-01904-9.

[10]

Fu Z., Li Z., Cai C., Shi Z., Xu Q., Wang X., 2011. Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma 167, 41-53. https://doi.org/10.1016/j.geoderma.2011.08.013.

[11]

Ge Q., Li J., Wang X., Deng Y., Zhang K., Sun H., 2024. LiteTransNet: An interpretable approach for landslide displacement prediction using transformer model with attention mechanism. Eng. Geol. 331, 107446. https://doi.org/10.1016/j.enggeo.2024.107446.

[12]

Golkarian A., Khosravi K., Panahi M., Clague J.J., 2023. Spatial variability of soil water erosion: Comparing empirical and intelligent techniques. Geosci. Front. 14 (1), 101456. https://doi.org/10.1016/j.gsf.2022.101456.

[13]

Han X., Liu J., Mitra S., Li X., Srivastava P., Guzman S.M., Chen X., 2018. Selection of optimal scales for soil depth prediction on headwater hillslopes: A modeling approach. Catena 163, 257-275. https://doi.org/10.1016/j.catena.2017.12.026.

[14]

He J., Qiu H., Qu F., Hu S., Yang D., Shen Y., Zhang Y., Sun H., Cao M., 2021. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena 197, 104999. https://doi.org/10.1016/j.catena.2020.104999.

[15]

Ho J.Y., Lee K.T., Chang T.C., Wang Z.Y., Liao Y.H., 2012. Influences of spatial distribution of soil thickness on shallow landslide prediction. Eng. Geol. 124, 38-46. https://doi.org/10.1016/j.enggeo.2011.09.013.

[16]

Jiang S.H., Huang J., Griffiths D.V., Deng Z.P., 2022. Advances in reliability and risk analyses of slopes in spatially variable soils: A state-of-the-art review. Comput. Geotech. 141, 104498. https://doi.org/10.1016/j.compgeo.2021.104498.

[17]

Khaledian Y., Miller B.A., 2020. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 81, 401-418. https://doi.org/10.1016/j.apm.2019.12.016.

[18]

Kuriakose S.L., Devkota S., Rossiter D.G., Jetten V.G., 2009. Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena 79 (1), 27-38. https://doi.org/10.1016/j.catena.2009.05.005.

[19]

Li X., Luo J., Jin X., He Q., Niu Y., 2020. Improving soil thickness estimations based on multiple environmental variables with stacking ensemble methods. Remote Sens. 12 (21), 3609. https://doi.org/10.3390/rs12213609.

[20]

Lin C., Tsai C.F., Lin W.C., 2023. Towards hybrid over-and under-sampling combination methods for class imbalanced datasets: an experimental study. Artif. Intell. Rev. 56 (2), 845-863. https://doi.org/10.1007/s10462-022-10186-5.

[21]

Liu F., Wu H., Zhao Y., Li D., Yang J.L., Song X., Shi Z., Zhu A., Zhang G.L., 2022. Mapping high resolution national soil information grids of China. Sci. Bull. 67 (3), 328-340. https://doi.org/10.1016/j.scib.2021.10.013.

[22]

Liu L.L., Yang C., Huang F.M., Wang X.M., 2021. Landslide susceptibility mapping by attentional factorization machines considering feature interactions. Geomat. Nat.Haz. Risk12(1),1837-1861.https://doi.org/10.1080/19475705.2021.1950217.

[23]

Liu S., Wang L., Zhang W., Sun W., Fu J., Xiao T., Dai Z., 2023. A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir Area. Geosci. Front. 14 (5), 101621. https://doi.org/10.1016/j.gsf.2023.101621.

[24]

Liu S., Wang L., Zhang W., Sun W., Wang Y., Liu J., 2024. Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation. J. Rock Mech. Geotech. 16 (8), 3192-3205. https://doi.org/10.1016/j.jrmge.2023.11.039.

[25]

Ma H., Wang F., Fu Z., Feng Y., You Q., Li S., 2025. Characterizing the clustered landslides triggered by extreme rainfall during the 2024 typhoon Gaemi in Zixing City, Hunan Province, China. Landslides 1-19. https://doi.org/10.1007/s10346-025-02510-1.

[26]

Malone B., Searle R., 2020. Improvements to the Australian national soil thickness map using an integrated data mining approach. Geoderma 377, 114579. https://doi.org/10.1016/j.geoderma.2020.114579.

[27]

Patton N.R., Lohse K.A., Godsey S.E., Crosby B.T., Seyfried M.S., 2018. Predicting soil thickness on soil mantled hillslopes. Nat. Commun. 9 (1), 3329. https://doi.org/10.1038/s41467-018-05743-y.

[28]

Pelletier J.D., Rasmussen C., 2009. Geomorphically based predictive mapping of soil thickness in upland watersheds. Water Resour. Res. 45 (9), W09417. https://doi.org/10.1029/2008WR007319.

[29]

Peng J., Wang J., Yang Q., Long L., Li H., Guo Z., Cai C., 2024. Spatial variation in soil aggregate stability and erodibility at different slope positions in four hilly regions of northeast China. Catena 235, 107660. https://doi.org/10.1016/j.catena.2023.107660.

[30]

Pradhan A.M.S., Kim Y.T., 2021. Development and evaluation of relative relief based soil thickness model: a comparative study in hilly terrain, South Korea. KSCE J. Civ. Eng. 25 (6), 2186-2198. https://doi.org/10.1007/s12205-021-1379-9.

[31]

Salam R., Pla F., Ahmed B., Painho M., 2025. A convolutional neural network-based approach for automatically detecting rainfall-induced shallow landslides in a data-sparse context. Nat. Hazard. Res. 5 (1), 175-186. https://doi.org/10.1016/j.nhres.2024.09.001.

[32]

Sarkar S., Roy A.K., Martha T.R., 2013. Soil depth estimation through soil-landscape modelling using regression kriging in a Himalayan terrain. Int. J. Geogr. Inf. Sci. 27 (12), 2436-2454. https://doi.org/10.1080/13658816.2013.814780.

[33]

Scarpone C., Schmidt M.G., Bulmer C.E., Knudby A., 2016. Modelling soil thickness in the critical zone for Southern British Columbia. Geoderma 282, 59-69. https://doi.org/10.1016/j.geoderma.2016.07.012.

[34]

Shafique M., Van der Meijde M., Rossiter D.G., 2011. Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment. Catena87(1),11-19.https://doi.org/10.1016/j.catena.2011.04.004.

[35]

Sun D., Xu J., Wen H., Wang D., 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Eng. Geol. 281, 105972. https://doi.org/10.1016/j.enggeo.2020.105972.

[36]

Tesfa T.K., Tarboton D.G., Chandler D.G., McNamara J.P., 2009. Modeling soil depth from topographic and land cover attributes. Water Resour. Res. 45 (10), W10438. https://doi.org/10.1029/2008WR007474.

[37]

Wang T., Dahal A., Fang Z., van Westen C., Yin K., Lombardo L., 2024. From spatio-temporal landslide susceptibility to landslide risk forecast. Geosci. Front. 15 (2), 101765. https://doi.org/10.1016/j.gsf.2023.101765.

[38]

Wang W., Zhao Y., Zhang T., Wang R., Wei Z., Sun Q., Wu J., 2021. Regional soil thickness mapping based on stratified sampling of optimally selected covariates.Geoderma400,115092.https://doi.org/10.1016/j.geoderma.2021.115092.

[39]

Weidner L., Oommen T., Escobar-Wolf R., Sajinkumar K.S., Samuel R.A., 2018. Regional-scale back-analysis using TRIGRS: an approach to advance landslide hazard modeling and prediction in sparse data regions. Landslides 15, 2343-2356. https://doi.org/10.1007/s10346-018-1044-7.

[40]

Weiss A., 2001. Topographic position and landforms analysis. In: ESRI User Conference. San Diego, CA. p. 200.

[41]

Xiao T., Segoni S., Liang X., Yin K., Casagli N., 2023. Generating soil thickness maps by means of geomorphological-empirical approach and random forest algorithm in Wanzhou County, Three Gorges Reservoir. Geosci. Front. 14 (2), 101514. https://doi.org/10.1016/j.gsf.2022.101514.

[42]

Yan Q., Wainwright H., Dafflon B., Uhlemann S., Steefel C.I., Falco N., Kwang J., Hubbard S.S., 2021. A hybrid data-model approach to map soil thickness in mountain hillslopes. Earth Surf. Dynam. 9 (5), 1347-1361. https://doi.org/10.5194/esurf-9-1347-2021

[43]

Yang J., Huang Z., Jian W., Robledo L.F., 2024. Landslide displacement prediction by using Bayesian optimization-temporal convolutional networks. Acta Geotech. 19 (7), 4947-4965. https://doi.org/10.1007/s11440-023-02205-8.

[44]

Ye X., Zhu H.H., Chang F.N., Xie T.C., Tian F., Zhang W., Catani F., 2024. Revisiting spatiotemporal evolution process and mechanism of a giant reservoir landslide during weather extremes. Eng. Geol. 332, 107480. https://doi.org/10.1016/j.enggeo.2024.107480.

[45]

Youssef A.M., Pourghasemi H.R., Pourtaghi Z.S., Al-Katheeri M.M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13, 839-856. https://doi.org/10.1007/s10346-015-0614-1.

[46]

Zhang G., Zhu A.X., 2018. The representativeness and spatial bias of volunteered geographic information: a review. Ann. GIS 24 (3), 151-162. https://doi.org/10.1080/19475683.2018.1501607.

[47]

Zhang J., Wang S., Fu Z., Wang F., Wang K., Chen H., 2024. Soil thickness influences the control effect of micro-topography on subsurface runoff generation in the karst hillslope critical zone. Catena 239, 107957. https://doi.org/10.1016/j.catena.2024.107957.

[48]

Zhang S., Liu G., Chen S., Rasmussen C., Liu B., 2021a. Assessing soil thickness in a black soil watershed in northeast China using random forest and field observations. Int. Soil Water Cons. 9 (1), 49-57. https://doi.org/10.1016/j.iswcr.2020.09.004.

[49]

Zhang W., Wu C., Zhong H., Li Y., Wang L., 2021b. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 12 (1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.

[50]

Zhang Y., Xu X., Li Z., Yi R., Xu C., Luo W., 2022. Modelling soil thickness using environmental attributes in karst watersheds. Catena 212, 106053. https://doi.org/10.1016/j.catena.2022.106053.

[51]

Zhou T., Geng Y., Chen J., Sun C., Haase D., Lausch A., 2019. Mapping of soil total nitrogen content in the middle reaches of the Heihe River Basin in China using multi-source remote sensing-derived variables. Remote Sens. 11 (24), 2934. https://doi.org/10.3390/rs11242934.

[52]

Zhu H.H., Ye X., Pei H.F., Zhang W., Cheng G., Li Z.L., 2024. Probing multi-physical process and deformation mechanism of a large-scale landslide using integrated dual-source monitoring. Geosci. Front. 15 (2), 101773. https://doi.org/10.1016/j.gsf.2023.101773.

AI Summary AI Mindmap
PDF

544

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/