Preservation potential of Cambrian small shelly fossils in different microfacies, North China

Yazhou Hu , Timothy P. Topper , Luke C. Strotz , Yue Liang , Fan Liu , Rao Fu , Baopeng Song , Zhao Wang , Bing Pan , Zhifei Zhang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102108

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102108 DOI: 10.1016/j.gsf.2025.102108

Preservation potential of Cambrian small shelly fossils in different microfacies, North China

Author information +
History +
PDF

Abstract

Small shelly fossils (SSFs) have long been recognized as important to the studies of both metazoan evolution and the onset of biomineralization during the Cambrian radiation. The marked decline in the occurrence, diversity and abundance of SSFs in the middle to late Cambrian, when compared with the early Cambrian, has often been regarded as a result of the closure of a phosphatization window. Despite this, there have been numerous and consistent reports of SSFs from the middle Cambrian and younger deposits. To identify possible factors influencing SSF preservation, five microfacies including bioclastic limestone, flat-pebble conglomerates with bioclasts, hummocky cross-stratified grainstone with bioclasts, bioclastic grainstone in hardgrounds and glauconite bioclastic wackstone-packstone, from Cambrian Series 2 to Miaolingian in North China are compared to assess how differences in lithology impact the preservation potential of SSFs. Our results, based on 35,161 SSF specimens from deposits across six sections, suggest that there are still abundant and diverse SSFs in the middle Cambrian of North China preserved in ways not exclusively reliant on the presence of phosphate and that SSF preservation can be linked to the differences in microfacies in the early to middle Cambrian of North China.

Keywords

Small shelly fossils / Shell structure / Glauconite / Phosphatization window

Cite this article

Download citation ▾
Yazhou Hu, Timothy P. Topper, Luke C. Strotz, Yue Liang, Fan Liu, Rao Fu, Baopeng Song, Zhao Wang, Bing Pan, Zhifei Zhang. Preservation potential of Cambrian small shelly fossils in different microfacies, North China. Geoscience Frontiers, 2025, 16(5): 102108 DOI:10.1016/j.gsf.2025.102108

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yazhou Hu: Writing - original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Timothy P. Top-per: Writing - review & editing, Investigation, Formal analysis. Luke C. Strotz: Writing - review & editing, Methodology, Formal analysis. Yue Liang: Writing - original draft, Formal analysis. Fan Liu: Writing- review & editing, Formal analysis. Rao Fu: Writing - review & edit-ing, Data curation. Baopeng Song: Writing - review & editing. Zhao Wang: Writing - review & editing, Formal analysis, Data curation. Bing Pan: Writing - review & editing, Methodology, Data curation. Zhifei Zhang: Writing - review & editing, Supervision, Resources, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2023YFF0803600) and National Natural Science Foundation of China (Grant Nos. 42302009, 42072003, and W2441016). HYZ thanks the Shaanxi Province postdoctoral research project and China Scholarship Council (202306970031). We also thank the Department of Science and Technology of Shaanxi Province (2022TD-11). TPT also acknowledges the Swedish Research Council (VR2017-05183 and VR2021-04295). This is also a contribution to the project of Theory of Hydrocarbon Enrichment under Multi-Spheric Interactions of the Earth (THEMSIE04010106). We extend our appreciation to the editor Prof. Damian Nance, Dr. Sarah Jac-quet and two anonymous reviewers for their help, constructive suggestions that improved the manuscript greatly. We are also very grateful to Dr. Chen Yanlong, Ms. Zhai Juanping and Ms. Zhang Qian for their kind help and assistance in laboratory and fieldwork.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102108.

References

[1]

Antoshkina A.I., Zhegallo E.A., Isaenko S.I., 2020. Microbially mediated organomineralization in Paleozoic carbonate ooids. Paleontol. J. 54, 825-834.

[2]

Chough S.K., Lee H.S., Woo J., Chen J., Choi D.K., Lee S.B., Kang I.S., Park T.Y., Han Z., 2010. Cambrian stratigraphy of the North China Platform: revisiting principal sections in Shandong Province, China. Geosci. J. 14 (3), 235-268.

[3]

Christ N., Immenhauser A., Wood R.A., Darwich K., Niedermayr A., 2015. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth-Sci. Rev. 151, 176-226.

[4]

Creveling J.R., Johnston D.T., Poulton S.W., Kotrc B., März C., Schrag D.P., Knoll A. H., 2014. Phosphorus sources for phosphatic Cambrian carbonates. Geol. Soc. Am. Bull. 126 (1-2), 145-163.

[5]

Donoghue P.C., Kouchinsky A., Waloszek D., Bengtson S., Dong X.P., Val'kov A.K., Cunningham J.A., Repetski J.E., 2006. Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evol. Dev. 8 (2), 232-238.

[6]

Dumas S., Arnott R.W.C., 2006. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34 (12), 1073-1076.

[7]

Dzik J., 1994. Evolution of 'small shelly fossils' assemblages of the Early Paleozoic. Acta Palaeontol. Pol. 39 (3), 247-313.

[8]

Freeman R.L., Dattilo B.F., Brett C.E., 2019. An integrated stratinomic model for the genesis and concentration of "small shelly fossil"-style phosphatic microsteinkernsinnot-so-exceptionalconditions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109344.

[9]

Fu R., Hu R., Liu F., Song B., Zhang Z., 2024. Preliminary report of small shelly fossils from the uppermost Houjiashan Formation (Cambrian Series 2) in Xuzhou, Jiangsu Province. Acta Palaeontol. Sin. 63, 283-309.

[10]

Hu Y., Holmer L.E., Liang Y., Duan X., Zhang Z., 2021. First report of small shelly fossils from the Cambrian Miaolingian limestones (Zhangxia and Hsuzhuang formations) in Yiyang County, Henan Province of North China. Minerals 11 (10), 1104.

[11]

Hu Y., Strotz L.C., Knaust D., Wang J., Liang Y., Zhang Z., 2023. Distinguishing borings and burrows in intraclasts: evidence from the Cambrian (Furongian) of North China. Sediment. Geol. 443, 106302.

[12]

Hu Y., Topper T.P., Zhou J., Wang Z., Pan B., Liang Y., Liu F., Zhang Z., 2024. Organic matter binding detrital grains contributing to ooid formation and small shelly fossil preservation, a case from the middle Cambrian, southern North China. Sediment. Geol. 472, 106740.

[13]

Ivantsov A.Y., Zhuravlev A.Y., Leguta A.V., Krassilov V.A., Melnikova L.M., Ushatinskaya G.T., 2005. Palaeoecology of the early Cambrian Sinsk biota from the Siberian platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220 (1-2), 69-88.

[14]

Jacquet S.M., Betts M.J., Huntley J.W., Brock G.A., 2019. Facies, phosphate, and fossil preservation potential across a lower Cambrian carbonate shelf, Arrowie Basin, South Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109200.

[15]

Lee H.S., Chough S.K., 2011. Depositional processes of the Zhushadong and Mantou formations (Early to Middle Cambrian), Shandong Province, China: roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology 58 (6), 1530-1572.

[16]

Lee J.H., Chen J., Woo J., 2015. The earliest Phanerozoic carbonate hardground (Cambrian Stage 5, Series 3): Implications to the paleoseawater chemistry and early adaptation of hardground fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 172-179.

[17]

Lee J.H., Oh M.K., Choi T., 2021. Recognition of the "Great Unconformity" in the eastern Sino-Korean Block: Insights from the Taebaek Group, Korea. Precam. Res. 364, 106363.

[18]

Li L., 2019. Shell microstructures of Cambrian molluscs and hyoliths from the Xinji Formation of North China. PhD. thesis, Northwest University, p. 227.

[19]

Li L., Zhang X., Skovsted C.B., Yun H., Li G., Pan B., 2019. Shell microstructures of the helcionelloid mollusc Anabarella australis from the lower Cambrian (Series 2) Xinji Formation of North China. J. Syst. Palaeontol. 17 (20), 1699-1709.

[20]

Li L., Zhang X., Skovsted C.B., Yun H., Pan B., Li G., 2021. Revisiting the molluscan fauna from the Cambrian (Series 2, stages 3-4) Xinji Formation of North China. Pap. Palaeontol. 7 (1), 521-564.

[21]

Liu F., Skovsted C.B., Topper T.P., Zhang Z., 2021. Soft part preservation in hyolithids from the lower Cambrian (stage 4) Guanshan Biota of South China and its implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110079.

[22]

Liu H., You W., Liu S., 1991. Cambrian. In: WangW., WangX. (Regionalgeology of Shandong Province,Eds.), 1st ed.ed. Geological Publishing House, Beijing, 78-104.

[23]

Luo M., Brock G.A., Liang Y., Song B., Hu Y., Liu F., Zhang Z., 2024. Correlation and stratigraphic implications of the lowermost Cambrian Small Shelly Fossils from new sites of South China. J. Geol. Soc. 181 (6), jgs2023-231.

[24]

Matthews S.C., Missarzhevsky V.V., 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. J. Geol. Soc. 131 (3), 289-303.

[25]

Mei M., Ma Y., Mei S., Hu J., 1997. Framwork of Cambrian sedimentary sequence and evolution of carbonate platform in North China. Geoscience 11, 275-282.

[26]

Melim L.A., Mure-Ravaud S.R., Hegna T.A., Bellott B.J., Lerosey-Aubril R., 2023. Silicification of trilobites and biofilm from the Cambrian Weeks Formation, Utah: evidence for microbial mediation of silicification. Geology 51 (1), 80-84.

[27]

Pan B., Brock G.A., Skovsted C.B., Betts M.J., Topper T.P., Li G., 2018a. Paterimitra pyramidalis Laurie, 1986, the first tommotiid discovered from the early Cambrian of North China. Gondwana Res. 63, 179-185.

[28]

Pan B., Skovsted C.B., Brock G.A., Topper T.P., Holmer L.E., Li L.Y., Li G.X., 2020. Early Cambrian organophosphatic brachiopods from the Xinji Formation, at Shuiyu section, Shanxi Province, North China. Palaeoworld 29, 512-533.

[29]

Pan B., Skovsted C.B., Sun H., Li G., 2019. Biostratigraphical and palaeogeographical implications of Early Cambrian hyoliths from the North China Platform. Alcheringa: An Australasian Journal of Palaeontology 43 (3), 351-380.

[30]

Pan B., Topper T.P., Skovsted C.B., Miao L., Li G., 2018b. Occurrence of Microdictyon from the lower Cambrian Xinji Formation along the southern margin of the North China Platform. J. Paleontol. 92 (1), 59-70.

[31]

Peel J.S., 2024. Euendolith borings in Chancelloria and Nisusia from the middle Cambrian (Miaolingian) of North Greenland (Laurentia). Bull. Geol. Soc. Den. 73, 57-66.

[32]

Peters S.E., Gaines R.R., 2012. Formation of the ‘Great Unconformity' as a trigger for the Cambrian explosion. Nature 484, 363-366. https://doi.org/10.1038/nature10969.

[33]

Planavsky N.J., Asael D., Rooney A.D., Robbins L.J., Gill B.C., Dehler C.M., Cole D.B., Porter S.M., Love G.D., Konhauser K.O., Reinhard C.T., 2023. A sedimentary record of the evolution of the global marine phosphorus cycle. Geobiology 21 (2), 168-174.

[34]

Porter S.M., 2004. Closing the Phosphatization Window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. PALAIOS 19, 178-183.

[35]

Pratt B.R., Bordonaro O.L., 2007. Tsunamis in a stormy sea: Middle Cambrian inner-shelf limestones of western Argentina. J. Sedimen. Res. 77, 256-262.

[36]

Pruss S.B., Dwyer C.H., Smith E.F., Macdonald F.A., Tosca N.J., 2019a. Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 166-177.

[37]

Pruss S.B., Smith E.F., Leadbetter O., Nolan R.Z., Hicks M., Fike D.A., 2019b. Palaeoecology of the archaeocyathan reefs from the lower Cambrian Harkless Formation, southern Nevada, western United States and carbon isotopic evidence for their demise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 536, 109389.

[38]

Pruss S.B., Tosca N.J., Stark C., 2018. Small shelly fossil preservation and the role of early diagenetic redox in the early Triassic. PALAIOS 33, 441-450.

[39]

Rott C.M., Qing H., 2013. Early dolomitization and recrystallization in shallow marine carbonates, Mississippian Alida Beds, Williston Basin (Canada): evidence from petrography and isotope geochemistry. J. Sedimen. Res. 83 (11), 928-941.

[40]

Rozanov A.Y., 1992. The Cambrian radiation of shelly fossils. Trends Ecol. Evol. 7 (3), 84-87.

[41]

Skovsted C.B., Holmer L.E., 2003. The Early Cambrian (Botomian) stem group brachiopod Mickwitzia from Northeast Greenland. Acta Palaeontol. Pol. 48 (1), 1-20.

[42]

Soudry D., 1992. Primary bedded phosphorites in the Campanian Mishash Formation, Negev, southern Israel. Sedimen. Geol. 80 (1-2), 77-88.

[43]

Topper T.P., Brock G.A., Skovsted C.B., Paterson J.R., 2009. Shelly Fossils from the lower Cambrian ‘Pararaia bunyerooensis' Zone, Flinders Ranges, South Australia. Memoirs of the Association of Australasian Palaeontologists 37, 199-246.

[44]

Topper T.P., Holmer L.E., Caron J.B., 2014. Brachiopods hitching a ride: an early case of commensalism in the middle Cambrian Burgess Shale. Sci. Rep. 4 (1), 6704.

[45]

Vinn O., Kirsimäe K., Parry L.A., Toom U., 2016. A new Byronia species from the late Ordovician of Estonia. Est. J. Earth Sci. 65 (4), 201-206.

[46]

Walton C.R., Hao J., Huang F., Jenner F.E., Williams H., Zerkle A.L., Lipp A., Hazen R.M., Peters S.E., Shorttle O., 2023. Evolution of the crustal phosphorus reservoir. Sci. Adv. 9 (18), eade6923.

[47]

Wan B., Tang Q., Pang K., Wang X., Bao Z., Meng F., Zhou C.M., Yuan X.L., Hua H., Xiao S., 2019. Repositioning the Great Unconformity at the southeastern margin of the North China Craton. Precam. Res. 324, 1-17.

[48]

Wang X., Vannier J., Yang X., Leclère L., Ou Q., Song X., Komiya T., Han J., 2022. Muscle systems and motility of early animals highlighted by cnidarians from the basal Cambrian. Elife 11, e74716. https://doi.org/10.7554/eLife.74716.

[49]

Wright V.P., Cherns L., 2016a. Leaving no stone unturned: the feedback between increased biotic diversity and early diagenesis during the Ordovician. J. Geol. Soc. 173 (2), 241-244.

[50]

Wright V.P., Cherns L., 2016b. How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology 59, 753-765.

[51]

Xiao S., Muscente A.D., Chen L., Zhou C., Schiffbauer J.D., Wood A.D., Polys N.F., Yuan X., 2014. The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes. Natl. Sci. Rev. 1 (4), 498-520.

[52]

Xu X., 1982. The Houjiashan Formation from Xuzhou, Jiangsu Province and adjacent area. J. Strati. 6, 46-51.

[53]

Xu X., Xu H., Sun J., Huang J., 1984. Cambrian. In: LvC., XuX., WuL., YangY. (Monograph on the Regional Geology of Jiangsu Province and Shanghai City.Eds.), 1st ed.ed. Geological Publishing House, Beijing, pp. 86-115.

[54]

Yang X.G., Han J., Wang X., Schiffbauer J.D., Uesugi K., Sasaki O., Komiya T., 2017. Euendoliths versus ambient inclusion trails from early Cambrian Kuanchuanpu Formation, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 476, 147-157.

[55]

Yun H., 2019. Taxonomy and evolution of the Cambrian animal chancelloriids. Northwest University, p. 196. PhD thesis.

[56]

Yun H., Zhang X., Li L., Zhang M., Liu W., 2016. Skeletal fossils and microfacies analysis of the lowermost Cambrian in the southwestern margin of the North China Platform. J. Asian Earth Sci. 129, 54-66.

[57]

Zhang Z.F., Zhang Z.L., Li G.X., Holmer L.E., 2016. The Cambrian brachiopod fauna from the first-trilobite age Shuijingtuo Formation in the three Gorges area of China. Palaeoworld 25, 333-355.

[58]

Zhang Z.L., Zhang Z.F., Ma J., Taylor P.D., Strotz L.C., Jacquet S.M., Skovsted C.B., Chen F.Y., Han J., Brock G.A., 2021. Fossil evidence unveils an early Cambrian origin for Bryozoa. Nature 599 (7884), 251-255.

[59]

Zhou Z.C., Willems H., Li Y., Luo H., 2011. A well-preserved carbonate tempestite sequence from the Cambrian Gushan Formation, eastern North China Craton. Palaeoworld 20, 1-7.

AI Summary AI Mindmap
PDF

567

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/