A snapshot of subduction initiation within a back-arc basin: Insights from Shiquanhe ophiolite, western Tibet

Wei-Liang Liu , Hui Liang , Harald Furnes , Xu Zhang , Qing-Gao Zeng , Yao-Liang Ma , Chi Yan , Ru-Xin Ding , Yun Zhong , Run-Xi Gu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102088

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102088 DOI: 10.1016/j.gsf.2025.102088

A snapshot of subduction initiation within a back-arc basin: Insights from Shiquanhe ophiolite, western Tibet

Author information +
History +
PDF

Abstract

Back-arc basins are key sites for oceanic lithosphere formation and consumption at convergent plate boundaries, and their formation and subduction processes can be highly variable. The tectonic setting and evolution of the Meso-Tethys Shiquanhe-Jiali ophiolite sub-belt (SJO sub-belt) within Bangong-Nujiang Suture Zone (BNSZ), central Tibet, are disputed for the complex rock composition and ages. In this paper, we present geochronology, geochemistry and field observations on the Shiquanhe ophiolite, providing a representative ophiolite example in the western end of SJO. Based on investigation of the petrogenesis and tectonic setting of different rock types, combined with the U-Pb dating, we propose a two-stage subduction model for explaining the tectonic evolution of SJO as well as the wither away of a back-arc basin. Geochemical and geochronological data indicate that the ca. 183 Ma LAN (north of Lameila) gabbros formed in the forearc setting and represent the early-stage subduction of the Bangong Meso-Tethys. This subduction induced the back-arc spreading recorded in the ca. 170 Ma gabbros and lower pillow basalts of PL-SDN (Pagelizanong-Shiquanhe Dam Nan) ophiolitic fragments in the Shiquanhe ophiolite. The basaltic lavas overlying the lower basalts, represented by the ca. 168-164 Ma diabasic and boninite dikes have forearc characteristics, and they represent the back-arc basin subduction initiation at a late stage. This work thus recovered the multiple tectonic evolution of SJO sub-belt and emphasise the importance of the back-arc basin subduction in the evolution of ancient oceans.

Keywords

Back-arc basin / Forearc / Subduction initiation / Ophiolite / Shiquanhe

Cite this article

Download citation ▾
Wei-Liang Liu, Hui Liang, Harald Furnes, Xu Zhang, Qing-Gao Zeng, Yao-Liang Ma, Chi Yan, Ru-Xin Ding, Yun Zhong, Run-Xi Gu. A snapshot of subduction initiation within a back-arc basin: Insights from Shiquanhe ophiolite, western Tibet. Geoscience Frontiers, 2025, 16(5): 102088 DOI:10.1016/j.gsf.2025.102088

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Wei-Liang Liu: Writing - review & editing, Writing - original draft, Software, Methodology, Investigation, Funding acquisition, Conceptualization. Hui Liang: Writing - review & editing, Writing - original draft, Visualization, Software, Project administration, Methodology, Investigation. Harald Furnes: Writing - review & editing. Xu Zhang: Writing - review & editing, Writing - original draft, Visualization, Supervision, Software, Project administration, Methodology, Investigation, Conceptualization. Qing-Gao Zeng: Software, Project administration, Methodology. Yao-Liang Ma: Writing - original draft, Project administration, Methodology, Investigation. Chi Yan: Visualization, Software, Methodology, Investigation. Ru-Xin Ding: Methodology, Funding acquisition. Yun Zhong: Investigation, Methodology, Writing - review & editing. Run-Xi Gu: Software.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are grateful to Guo-Chao Gao and Wei Li for assistance related to regional geological fieldwork, Liang Li, Li Liu and He Xiao for analytical assistance. This research was supported by the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2024A1515010439, 2025A1515010724); National Nature Science Foundation of China (Grant Nos. 41972049, 41472054, 42072229, 41977231); Young Innovative Talent Project of Department of Education of Guangdong Province (Natural Science; Grant No. 2022KQNCX184); Natural Research Project of Guangdong Polytechnic of Industry & Commerce (Grant No. 2022-ZKT-01); China State Scholarship Fund of visiting scholar (Grant No. 20170638507); High-level Talent Special Support Program of Guangdong Polytechnic of Industry & Commerce (Grant No. 2023-gc-03).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102088.

References

[1]

Allégre C.J., Courtillot V., Tapponnier P., Hirn A., Mattauer M., Coulon C., Jaeger J. J., Achache J., Schärer J., Marcoux J., Bueg J.P., Girardeau J., Armijo R., Gariépy C., Göpel C., Li T.D., Xiao X.C., Chang C.F., Li G.Q., Lin B.Y., Teng J.W., Wang N. W., Chen G.M., Han T.L., Wang X.B., Den W.M., Sheng H.B., Cao Y.G., Zhou J., Qiu Bao, P.S., Wang S.C., Wang B.X., Zhou Y.X., Xu R.H., 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature 307, 17-22.

[2]

Aragón E., Pinotti L., Fernando D., Castro A., Rabbia O., Coniglio J., Demartis M., Hernando I., Cavarozzi C.E., Aguilera Y.E., 2013. The Farallon-Aluk ridge collision with South America: Implications for the geochemical changes of slab window magmas from fore-to back-arc. Geosci. Front. 4 (4), 377-388.

[3]

Artemieva I.M., 2023. Back-arc basins: A global view from geophysical synthesis and analysis. Earth-Sci. Rev. 236, 104242. https://doi.org/10.1016/j.earscirev.2022.104242.

[4]

Azizi H., Lucci F., Stern R.J., Hasannejad S., Asahara Y., 2018. The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin? Lithos 308, 364-380.

[5]

Barbero E., Pandolfi L., Delavari M., Dolati A., Saccani E., Di Rosa M., Marroni M., 2025. A review of Mesozoic geodynamic evolution of the North Makran (SE Iran): A tale of a Neo-Tethyan ocean vanished due to two coexisting subduction zones. Gondwana Res. 141, 74-101. https://doi.org/10.1016/j.gr.2025.01.016.

[6]

Bekaert D.V., Turner S.J., Broadley M.W., Barnes J.D., Halld´ orsson S.A., Labidi J., Wade J., Walowski K.J., Barry P.H., 2020. Subduction-driven volatile recycling: A global mass balance. Annu. Rev. Earth Planet. Sci. 49, 37-70. https://doi.org/10.1146/annurev-earth-071620-055024.

[7]

Beaudoin G.M., Barnes J.D., Orlandini O.F., Chatterjee R., Stockli D.F., John T., 2024. Halogen (F, Cl, Br, and I) devolatilization during prograde subduction: Insights from Western Alps ophiolites. Geochem. Geophys. Geosyst. 25, e2023GC011295. doi: 10.1029/2023GC011295.

[8]

Baker J.A., Menzies M.A., Thirlwall M.F., Macpherson C.G., 1997. Petrogenesis of Quaternary intraplate volcanism, Sana'a, Yemen: Implications for plumelithosphere interaction and polybaric melt hybridization. J. Petrol. 38 (10), 1359-1390.

[9]

Bédard J.H., 1999. Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: Identification of subducted source components. J.Petrol. 40, 1853-1889.

[10]

Billen M.I., Gurnis M., 2001. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett. 193, 227-236.

[11]

BoŽovic´ M., Prelevic´ D., Romer, R.L., Barth, M., Van Den Bogaard, P., Boev, B., 2013. The Demir Kapija ophiolite, Macedonia (FYROM): A snapshot of subduction initiation within a back-arc. J. Petrol. 54, 1427-1453.

[12]

Butjosa L., Cambeses A., Proenza J.A., Agostini S., Iturralde-Vinent M., Bernal-Rodríguez L., Garcia-Casco A., 2024. Relict abyssal mantle in a Caribbean forearc ophiolite (Villa Clara, central Cuba): Petrogenetic and geodynamic implications. Int. Geol. Rev. 66 (1), 196-227.

[13]

Brandl P.A., Hamada M., Arculus R.J., Johnson K., Marsaglia K.M., Savov I.P., Ishizuka O., Li H., 2017. The arc arises: The links between volcanic output, arc evolution and melt composition. Earth Planet. Sci. Lett. 461, 73-84.

[14]

Cao S.H., Deng S.H., Xiao Z.J., Liao L.G., 2006. The archipelagic arc tectonic evolution of the Meso-Tethys in the western part of the Bangong Lake-Nujiang suture zone. Sediment. Geol. Tethyan Geol. 26 (4), 25-32 (in Chinese with English abstract)

[15]

Çelik Ö.F., Topuz G., Billor Z., Özkan M., 2019. Middle Jurassic subduction-related ophiolite fragment in Triassic accretionary complex (Mamu Dag˘ı ophiolite, Northern Turkey). Int. Geol. Rev. 61 (16), 2021-2035.

[16]

Chauvel C., Garçon M., Bureau S., Besnault A., Jahn B.M., Ding Z.L., 2014. Constraints from loess on the Hf-Nd isotopic composition of the upper continental crust. Earth Planet. Sci. Lett.388, 48-58.

[17]

Chen Y., Niu Y., Xue Q., Gao Y., Castillo P., 2021. An iron isotope perspective on back-arc basin development: Messages from Mariana trough basalts. Earth Planet. Sci. Lett. 572, 117133. https://doi.org/10.1016/j.epsl.2021.117133.

[18]

Chen Y.F., Zhang Z.M., Chen X.H., Palin R.M., Tian Z.L., Shao Z.G., Qin S.K., Yuan Y. L., 2022. Neoproterozoic and Early Paleozoic magmatism in the eastern Lhasa terrane: Implications for Andean-type orogeny along the northern margin of Rodinia and Gondwana. Precamb. Res. 369, 106520. https://doi.org/10.1016/j.precamres.2021.106520.

[19]

Chen S.S., Shi R.D., Zou H.B., Huang Q.S., Liu D.L., Gong X.H., Yi G.D., Wu K., 2015. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos 230, 30-45.

[20]

Chemenda A.I., Yang R.K., Stephan J.F., Konstantinovskaya E.A., Ivanov G.M., 2001. New results from physical modelling of arc-continent collision in Taiwan: Evolutionary model. Tectonophysics 333 (1-2), 159-178.

[21]

Cluzel D., Ulrich M., Jourdan F., Meffre S., Paquette J., Audet M.A., Secchiari A., Maurizot P., 2016. Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia: A witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc. Lithos 260, 429-442.

[22]

Corfu F., Hanchar J.M., Hoskin P., Kinny P., 2003. Atlas of zircon textures. Rev. Mineral. Geochem. 16, 469-500.

[23]

Dawson J., Hill P., Kinny P., 2001. Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite. Contrib. Mineral. Petrol. 140, 720-733.

[24]

Dong Y.X., Xiao L., Zhou H.M., Du J.X., Zhang N., Xiang H., Wang C.Z., Zhao Z.X., Huang H.X., 2010. Volcanism of the Nanpu Sag in the Bohai Bay basin, eastern China: Geochemistry, petrogenesis, and implications for tectonic setting. J. Asian Earth Sci. 39, 173-191.

[25]

Dhuime B., Hawkesworth C., Cawood P., 2011. When continents formed. Science 331 (6104), 154-155.

[26]

Dilek Y., Furnes H., Shallo M., 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res. 11, 453-475.

[27]

Dilek Y., Furnes H., Shallo M., 2008. Geochemistry of the Jurassic Mirdita ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100, 174-209.

[28]

Dilek Y., Furnes H., 2014. Ophiolites and their origins. Elements 10, 93-100.

[29]

Duncan R.A., Green D.H., 1987. The genesis of refractory melts in the formation of oceanic crust. Contrib. Mineral. Petrol. 96, 326-342.

[30]

Elburg M.A., van Bergen M., Hoogewerfe J., Foden J., Vroon P., Zulkarnain I., Nasution A., 2002. Geochemical trends across an arc-continent collision zone: Magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochim. Cosmochim. Acta 66, 2771-2789.

[31]

El Korh A., Schmidt S.T., Vennemann T., Ballevre M., 2013. Trace element and isotopic fingerprints in HP-LT metamorphic rocks as a result of fluid-rock interactions (Ile de Groix, France). Gondwana Res. 23 (3), 880-900.

[32]

Falloon T.J., Crawford A.J., 1991. The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge. Earth Planet. Sci. Lett. 102, 375-394.

[33]

Fan S.Q., Shi R.D., Ding L., Liu D.L., Huang Q.S., Wang H.Q., 2010. Geochemical characteristics and zircon U-Pb age of the plagiogranite in Gaize ophiolite of central Tibet and their tectonic significance. Acta Petrol. Mineral. 29, 467-478 (in Chinese with English abstract)

[34]

Fan J.J., Li C., Wang M., Liu Y.M., Xie C.M., 2017. Remnants of a late Triassic ocean island in the Gufeng area, northern Tibet: Implications for the opening and early evolution of the Bangong-Nujiang Tethyan Ocean. J. Asian Earth Sci. 135, 35-50.

[35]

Fan J.J., Zhang B.C., Zhou J.B., Niu Y.L., Sun S.L., Lv J.P., Wang Y., Hao Y.J., 2024. The Meso-Tethys Ocean: The nature, extension and spatial-temporal evolution. Earth-Sci. Rev. 255, 104839. https://doi.org/10.1016/j.earscirev.2024.104839.

[36]

Fan X.Z., Sun F.Y., Xu C.H., Wu D.Q., Yu L., Wang L., Yan C., Bakht S., 2022. Volcanic rocks of the Elashan formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for late Triassic geodynamic evolution. Int. Geol. Rev. 64 (9), 1270-1293.

[37]

Floyd P.A., Winchester J.A., 1975. Magma type and tectonic setting discrimination using immobile elements. Earth Panet. Sci. Lett. 27, 211-218.

[38]

Fu C.L., Yan Z., Aitchison J.C., Xiao W.J., Buckman S., Wang B.Z., 2024. Subduction within the Proto-Tethys Ocean revealed by recognition of the earliest Phanerozoic intra-oceanic arc, northern Tibetan Plateau. Earth Space Sci. 11, e2023EA002985. https://doi.org/10.5281/zenodo.7831142.

[39]

Fu D., Huang B., Wilde S.A., Johnson T.E., Polat A., Windley B.F., Hu Z.C., Zhou Z. P., Kusky T.M., 2023. The tempo of back-arc basin evolution: Insights from the early Paleozoic Proto-Tethyan North Qilian orogenic belt, northeastern Tibet. Earth Planet. Sci. Lett. 603, 117976. https://doi.org/10.1016/j.epsl.2022.117976.

[40]

Fu D., Huang B., Johnson T.E., Wilde S.A., Jourdan F., Polat A., Windley B.F., Hu Z., Kusky T., 2021. Boninitic blueschists record subduction initiation and subsequent accretion of an arc-forearc in the northeast Proto-Tethys Ocean. Geology 50, 10-15.

[41]

Furnes H., Dilek Y., 2017. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis. Earth-Sci. Rev. 166, 1-37.

[42]

Furnes H., Safonova I., 2019. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geosci. Front. 10, 1255-1284.

[43]

Furnes H., Dilek Y., Zhao G.C., Safonova I., Santosh M., 2020. Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: Magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust. Earth-Sci. Rev. 208, 103258. https://doi.org/10.1016/j.earscirev.2020.103258.

[44]

Furnes H., Robins B., de Wit M.J., 2012. Geochemistry and petrology of lavas in the upper Onverwacht Suite, Barberton mountain land South Africa. South Afr. J. Geol. 115 (2), 171-210.

[45]

Furnes H., de Wit M., Staudigel H., Rosing M., Muehlenbachs K., 2007. A vestige of Earth's oldest ophiolite. Science 315, 1704-1707.

[46]

Gerya T., 2011. Future directions in subduction modeling. J. Geodyn. 52 (5), 344-378.

[47]

Guilmette C., Smit M.A., van Hinsbergen D.J., Gürer D., Corfu F., Charette B., Maffione M., Rabeau O., Savard D., 2018. Forced subduction initiation recorded in the sole and crust of the Semail ophiolite of Oman. Nat. Geosci. 11 (9), 688-695.

[48]

Guilmette C., van Hinsbergen D.J., Smit M.A., Godet A., Fournier-Roy F., Butler J.P., Maffione M., Li S., Hodges K., 2023. Formation of the Xigaze Metamorphic Sole under Tibetan continental lithosphere reveals generic characteristics of subduction initiation. Commun. Earth Environ. 4, 339. https://doi.org/10.1038/s43247-023-01007-w.

[49]

Gurnis M., Hall C., Lavier L., 2004. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001. https://doi.org/10.1029/2003GC000681.

[50]

Crawford A.J., Falloon T.J., Green D.H., 1989. Classification, Petrogenesis and Tectonic Setting of Boninites. In: CrawfordA.J. (Ed.), Boninites and Related Rocks. Unwin Hyman, London, pp. 1-49.

[51]

Gribble R.F., Stern R.J., Newman S., Bloomer S.H., O'Hearn T., 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: Implications for magmagenesis in back-arc basins. J. Petrol. 39, 125-154.

[52]

Gribble R.F., Stern R.J., Bloomer S.H., Stüben D., O'Hearn T., Newman S., 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough backarc basin. Geochim. Cosmochim. Acta 60, 2153-2166.

[53]

Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J.L., Swapp S., Schwartz J.J., 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Mineral. Petrol. 158, 757-783.

[54]

Godard M., Dautria J.-M., Perrin M., 2003. Geochemical variability of the Oman ophiolite lavas: Relationship with spatial distribution and paleomagnetic directions.Geochem. Geophys. Geosyst. 4, 8609. https://doi.org/10.1029/2002GC00452.

[55]

Girardeau J., Marcoux J., Fourcade E., Bassoullet J.P., Youking T., 1985. Xainxa ultramafic rocks, central Tibet, China: Tectonic environment and geodynamic significance. Geology 13, 330-333.

[56]

Ha G., Montési L.G.J., Zhu W., 2023. Geometrical relations between slab dip and the location of volcanic arcs and back-arc spreading centers. Geochem. Geophys. Geosyst. 24, e2023GC010997. https://doi.org/10.1029/2023GC010997.

[57]

Hall R., 2019. The subduction initiation stage of the Wilson cycle. Geol. Soc. Lond. Spec. Publ. 470, 415-437.

[58]

Hawkins J.W., 1995. The geology of the Lau Basin. In: TaylorB. (Springer, Boston MA, Ed.), Backarc Basins: Tectonics and Magmatism. pp. 63-138.

[59]

Hawkesworth C.J., Turner S.P., McDermott F., Peate D.W., van Calsteren, P., 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science 276, 551-555.

[60]

Hernández-Uribe D., Palin R.M., Cone K.A., Cao W.T., 2020. Petrological implications of seafloor hydrothermal alteration of subducted mid-ocean ridge basalt. J. Petrol. 61 (9), egaa086. https://doi.org/10.1093/petrology/egaa086.

[61]

Hofmann A.W., 1997. Mantle geochemistry: The message from oceanic volcanism. Nature 385, 219-229.

[62]

Hoskin P.W.O., Schaltegger U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53 (1), 27-62.

[63]

Hoskin P.W., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills Australia. Geochim. Cosmochim. Acta 69 (3), 637-648.

[64]

Hickey-Vargas R., Yogodzinski G.M., Bizimis M., Ishizuka O., McCarthy A., Kusano Y., Savov I.P., Arculus R., 2018. Origin of depleted basalts during subduction initiation: Evidence from IODP Expedition 351 Site U1438, Amami Sankaku Basin. Geochim. Cosmochim. Acta 229, 85-111.

[65]

Hu P.Y., Zhai Q.G., Cawood P.A., Zhao G.C., Wang J., Tang Y., Zhu Z.C., Wang W., Wu H., 2022. Middle Neoproterozoic (ca. 700 Ma) tectonothermal events in the Lhasa terrane, Tibet: Implications for paleogeography. Gondwana Res. 104, 252-264.

[66]

Huang B., Johnson T.E., Wilde S.A., Polat A., Fu D., Kusky T., 2022. Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean. Nat. Commun. 13, 6450. https://doi.org/10.1038/s41467-022-34214-8.

[67]

Huang Q.T., Zhang C.L., Zhang K.J., Hua Y.J., Chen W.C., Cao Y.D., Cheng, P., 2023. Interaction of upwelling asthenosphere with oceanic lithospheric mantle in Bangong-Nujiang subduction zone: A new mechanism for the petrogenesis of Nb-enriched basalts. Lithos 448-449, 107172. https://doi.org/10.1016/j.lithos.2023.107172.

[68]

Hickey R.L., Frey F.A., 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochim. Cosmochim. Acta 46, 2099-2115.

[69]

Ichiyama Y., Ito H., Hokanishi N., Tamura A., Arai S., 2017. Plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan: Fragments of middle to lower crust of the Izu-Bonin-Mariana Arc? Lithos 282, 420-430.

[70]

Ishizuka O., Tani K., Reagan M.K., Kanayama K., Umino S., Harigane Y., Sakamoto I., Miyajima Y., Yuasa M., Dunkley D.J., 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet. Sci. Lett. 306, 229-240.

[71]

Ishizuka O., Yuasa M., Taylor R.N., Sakamoto I., 2009. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chem. Geol. 266, 274-296.

[72]

Ishizuka O., Taylor R.N., Umino S., Kanayama K., 2020. Geochemical evolution of arc and slab following subduction initiation: A record from the Bonin Islands. J. Petrol. 61 (5), egaa050. https://doi.org/10.1093/petrology/egaa050.

[73]

Kapp P., Murphy M.A., Yin A., Harrison T.M., Ding L., Guo J.H., 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22, 1029. https://doi.org/10.1029/2001TC001332.

[74]

Keller N.S., Arculus R.J., Hermann J., Richards S., 2008. Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. J. Geophys. Res. Solid Earth 113, B08S07. https://doi.org/10.1029/2007JB005451.

[75]

Kelemen P.B., Koga K., Shimizu N., 1997. Geochemistry of gabbro sills in the crustmantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett. 146, 475-488.

[76]

Kepezhinskas P., McDermott F., Defant M.J., Hochstaedter A., Drummond M.S., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta 61, 577-600.

[77]

Konzett J., Armstrong R.A., Günther D., 2000. Modal metasomatism in the Kaapvaal craton lithosphere: Constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib. Mineral. Petrol. 139, 704-719.

[78]

König S., Münker C., Schuth S., Luguet A., Hoffmann J.E., Kuduon J., 2010. Boninites as windows into trace element mobility in subduction zones. Geochim. Cosmochim. Acta 74 (2), 684-704.

[79]

Kusky T., 2020. Plate tectonics in relation to mantle temperatures and metamorphic properties. Sci. China Earth Sci. 63, 634-642.

[80]

Kryza R., Pin C., 2010. The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res. 17 (2-3), 292-305.

[81]

Lallemand S., Heuret A., Boutelier D., 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophys. Geosyst. 6, Q09006. https://doi.org/10.1029/2005GC000917.

[82]

Lázaro C., Blanco-Quintero I.F., Rojas-Agramonte Y., Proenza J.A., Núñez-Cambra K., García-Casco A., 2013. First description of a metamorphic sole related to ophiolite obduction in the northern Caribbean: Geochemistry and petrology of the Güira de Jauco Amphibolite complex (eastern Cuba) and tectonic implications. Lithos 179, 193-210.

[83]

Lázaro C., García-Casco A., Blanco-Quintero I.F., Rojas-Agramonte Y., Corsini M., Proenza J.A., 2015. Did the Turonian-Coniacian plume pulse trigger subduction initiation in the Northern Caribbean? Constraints from 40Ar/39Ar dating of the Moa-Baracoa metamorphic sole (eastern Cuba). Int. Geol. Rev. 57 (5-8), 919-942.

[84]

Le Bas M.J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 41 (10), 1467-1470.

[85]

Levander A., Bezada M.J., Niu F., Humphreys E.D., Palomeras I., Thurner S.M., Masy J., Schmitz M., Gallart J., Carbonell R., Miller M.S., 2014. Subductiondriven recycling of continental margin lithosphere. Nature 515, 253-256.

[86]

Li Y.J., Wang G.H., Santosh M., Wang J.F., Dong P.P., Li H., 2020a. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intraoceanic forearc ophiolite fragment in central Inner Mongolia, North China. Earth Planet. Sci. Lett. 535, 116087. https://doi.org/10.1016/j.epsl.2020.116087.

[87]

Li H., Wang M., Zeng X.W., Luo A.B., Yu Y.P., Zeng X.J., 2020b. Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet: Products of intra-oceanic subduction of the Meso-Tethys Ocean. Lithos 362-363, 105481. https://doi.org/10.1016/j.lithos.2020.105481.

[88]

Li W., Liu N.N., Nayak R., Ma Y.L., Wang J.J., Hu X.C., Pang J.H., Huang W.L., Zhong Y., Liu W.L., 2021a. An island arc origin of Jurassic plagiogranite in the Shiquanhe ophiolite, western Bangong Suture, Tibet: Zircon U-Pb chronology, geochemistry, and tectonic implications of Bangong Meso-Tethys. Geol. J. 56 (8), 3941-3958.

[89]

Li H., Wang M., Zeng X.W., Luo A.B., Feng S.B., 2021b. Zircon U-Pb and Lu-Hf isotopes and geochemistry of granitoids in Central Tibet: Bringing the missing Early Jurassic subduction events to light. Gondwana Res. 98, 125-146.

[90]

Li H., Wang M., Zeng X.W., Luo A.B., Zhang B.C., Shen D., 2022. Partial melting caused by subduction of young, hot oceanic crust in shallow high-temperature and low-pressure environments: Indications from Middle and late Jurassic oceanic plagiogranite in Shiquanhe, Central Tibet. Lithos 420-421, 106698.https://doi.org/10.1016/j.lithos.2022.106698.

[91]

Li Z.J., Li C.W., Gao Y.M., Zeng M., 2019a. Geochronology and geochemistry characteristics of the late Mid-Jurassic (ca. 163Ma) OIB-type diabase and high-Mg diorites in Shiquanhe ophiolite: Products of early stage oceanic crust subduction? Acta Petrol. Sin. 35 (3), 816-832 (in Chinese with English abstract)

[92]

Li H.Y., Taylor R.N., Prytulak J., Kirchenbaur M., Shervais J.W., Ryan J.G., Godard M., Reagan M.K., Pearce J.A., 2019b. Radiogenic isotopes document the start of subduction in the western Pacific. Earth Panet. Sci. Lett. 518, 197-210.

[93]

Li Y.B., Kimura J.I., Machida S., Ishii T., Ishiwatari S., Maruyama S., Qiu N.N., Ishikawa T., Kato Y., Haraguchi S., Takahata N., Hirahara Y., Miyazaki T., 2013. High-Mg adakite and low-Ca boninite from a Bonin fore-arc seamount: Implications for the reaction between slab melts and depleted mantle. J. Petrol. 54, 1149-1175.

[94]

Liu D.L., Shi M., Jiang S.Y., 2019. Dating oceanic subduction in the Jurassic Bangong-Nujiang oceanic arc: A zircon U-Pb age and Lu-Hf isotopes and Al-inhornblende barometry study of the Lameila pluton in western Tibet China. Minerals 9 (12), 754. https://doi.org/10.3390/min9120754.

[95]

Liu M.Q., Gerya T., 2023. Forced subduction initiation near spreading centers: Effects of brittle-ductile damage. J. Geophys. Res. Solid Earth 128 (2), e2022JB024701. https://doi.org/10.1029/2022JB024701.

[96]

Liu D., Zhao Z.D., Zhu D.C., Niu Y.L., DePaolo D.J., Harrison T.M., Mo X.X., Dong G. C., Zhou S., Sun C.G., Zhang Z.C., Liu J.L., 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochim. Cosmochim. Acta 143, 207-231.

[97]

Liu W.L., Huang Q.T., Gu M., Zhong Y., Zhou R.J., Gu X.D., Zheng H., Liu J.N., Lu X. X., Xia B., 2018. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet. Gondwana Res. 60, 1-14.

[98]

Liu Y.M., Li S.Z., Zhai Q.G., Tang Y., Hu P.Y., Guo R.H., Liu Y.J., Wang Y.H., Yu S.Y., Cao H.H., Wang G., 2022. Jurassic tectonic evolution of Tibetan Plateau: A review of Bangong-Nujiang Meso-Tethys Ocean. Earth-Sci. Rev. 227, 103973.https://doi.org/10.1016/j.earscirev.2022.103973.

[99]

Ma Y.L., Zhong Y., Furnes H., Qiangba Z.X., Pang J.H., Liu W.L., Xia B., 2021. Origin and tectonic implications of boninite dikes in the Shiquanhe ophiolite, western Bangong Suture, Tibet. J. Asian Earth Sci. 205, 104594. https://doi.org/10.1016/j.jseaes.2020.104594.

[100]

Macdonald R., Hawkesworth C.J., Heath E., 2000. The Lesser Antilles volcanic chain: A study in arc magmatism. Earth-Sci. Rev. 49, 1-76.

[101]

Mackay-Champion T.C., Searle M.P., Tapster S., Roberts N.M., Shail R.K., Palin R. M., Evans J.T., 2024. Magmatic, metamorphic and structural history of the Variscan Lizard ophiolite and metamorphic sole, Cornwall, UK. Tectonics 43 (4), e2023TC008187. https://doi.org/10.1029/2023TC008187.

[102]

Manikyamba C., Pahari A., Santosh M., Ray J., Sindhuja C.S., Subramanyam K.S.V., Singh M.R., 2020. Mesoarchean gabbro-anorthosite complex from Singhbhum Craton India. Lithos 366-367, 105541. https://doi.org/10.1016/j.lithos.2020.105541.

[103]

Magni V., Faccenna C., van Hunen J., Funiciello F., 2014. How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models.Geology 42, 511-514.

[104]

Magni V., 2019. The effects of back-arc spreading on arc magmatism. Earth Planet. Sci. Lett. 519, 141-151.

[105]

Martinez F., Taylor B., 2002. Mantle wedge control on back-arc crustal accretion. Nature 416, 417-420.

[106]

Matte P., Tapponnier P., Amaud N., Bourjot L., Avouac J.P., Vidal P., Qing L., Yusheng P., Yi W., 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. 142, 311-330.

[107]

Mavoungou L.N., Das K., Sarkar D.P., Kawaguchi K., Ando J., Hayasaka Y., 2024. How and when did Paleozoic Maizuru back-arc basin close? Implications on the East Asian continental margin tectonics. Gondwana Res. 135, 36-56.

[108]

McCulloch M.T., Gamble J.A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358-374.

[109]

Meffre S., Falloon T.J., Crawford T.J., Hoernle K., Hauff F., Duncan R.A., Bloomer S. H., Wright D.J., 2012. Basalts erupted along the Tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the Tonga fore arc and trench. Geochem. Geophys. Geosyst. 13, 242-248.

[110]

Menant A., Sternai P., Jolivet L., Guillou-Frottier L., Gerya T., 2016. 3-D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case. Earth Planet. Sci. Lett. 442, 93-107.

[111]

Miri M., Sepahi A.A., Maanijou M., Lucci F., 2024. Rare earth element (REE) partitioning in amphibole-bearing medium grade metamorphic rocks from the Alvand complex (Sanandaj-Sirjan Zone, NW Iran).Periodico Di Mineralogia 93 (1), 11-33.

[112]

Molnar P., Atwater T., 1978. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere. Earth Planet. Sci.Lett. 41, 330-340.

[113]

Moghadam H.S., Griffin W.L., Santos J.F., Chen R.X., Karsli O., Lucci F., Sepidbar F., O'Reilly S.Y., 2022. Geochronology, geochemistry and petrology of the oligocene magmatism in SE segment of the UDMB Iran. Lithos 416-417, 106644. https://doi.org/10.1016/j.lithos.2022.106644.

[114]

Moghadam H.S., Dilek Y., Furnes H., Ishizuka O., Chiaradia M., Li Q., Karsli O., Lucci F., Asadi A., 2023. Chemostratigraphy of the extrusive sequence of a late Cretaceous Neotethyan ophiolite in southern Iran and its significance for the mode and tempo of subduction initiation magmatism and melt evolution in forearc tectonic settings. J. Geol. Soc. London 180 (6), jgs2023-080. https://doi.org/10.1144/jgs2023-080.

[115]

Murton B.J., M.J., 1989. Tectonic Controls on Boninite Genesis. In: SaundersA.D. (Ed.), Magmatism in the Ocean Basins, 43. Geol. Soc. Lond. Spec. Publ. 347-377.

[116]

Nicotra E., Passaro S., Ventura G., 2024. The formation and growth mechanisms of young back-arc spreading ridges from high-resolution bathymetry: the Marsili Seamount (Tyrrhenian Sea, Italy). Geosci. Front. 15 (1), 101723. https://doi.org/10.1016/j.gsf.2023.101723.

[117]

Nima C.R., Wang G.C., Dun D., Pu C., Ciren Y.Z., Jiao W.L., Li K.Y., Ye Q., Luosang L. J., Da W., 2017. Zircon U-Pb ages, geochemical characteristics and tectonics implications of late Jurassic intermediate intrusive rocks in Shiquanhe area, western Tibet. J. Geomech. 23 (5), 673-685 (in Chinese with English abstract)

[118]

Pan G.T., Ding J., Wang L.Q., Yao D.S., 2004. Geological Map of Qinghai-Xizang (Tibetan) Plateau and Adjacent Areas. Chengdu Cartographic Publishing House, Chengdu, Scale 1: 1,500,000 (in Chinese).

[119]

Pan G.T., Wang L.Q., Li R.S., Yuan S.R., Ji W.H., Yin F.G., Zhang W.P., Wang B.D., 2012a. Tectonic evolution of the Qinghai-Tibet plateau. J. Asian Earth Sci. 53, 3-14.

[120]

Pan G.T., Wang L.Q., Li R.S., Yin F.G., Zhu D.C., 2012b. Tectonic model of archipelagic arc-basin systems: The key to the continental geology. Sediment.Geol. and Tethyan Geol.32 (3), 1-20 (in Chinese with English abstract)

[121]

Pagé P., Bédard J.H., Tremblay A., 2009. Geochemical variations in a depleted forearc mantle: The Ordovician Thetford Mines ophiolite. Lithos 113, 21-47.

[122]

Parlak O., Çolakog˘lu A., Dönmez C., Sayak H., Yildirim N., Türkel A., Odabas_i I., 2013. Geochemistry and tectonic significance of ophiolites along the Izmir-Ankara-Erzincan Suture Zone in northestern Anatolia. Geol. Soc. London. Spec. Publ. 372, 75-105.

[123]

Pearce J.A., Norry M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic-rocks. Contrib. Miner. Petrol. 69 (1), 33-47.

[124]

Pearce J.A., Deng W.M.,1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series a Mathemat. Physical Sci. 327, 215-238.

[125]

Pearce J.A., Lippard S.J., Roberts S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological. Soc. Spec. Pubs. 16, 77-94.

[126]

Pearce J.A., Peate D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23 (1), 251-285.

[127]

Pearce J.A., Reagan M.K., 2019. Identification classification and interpretation of boninites from the Recent-Eoarchean geologic record using Si-Mg-Ti systematics. Geosphere 15, 1-30.

[128]

Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48.

[129]

Pearce J.A., Stern R.J., 2006. Origin of back-arc basin magmas:Trace element and isotope perspectives. In: ChristieD.M., FisherC.R., LeeS.M., GivensS. (Eds.), Biological, Chemical, and Physical Interactions. American Geophysical Union, In Back-Arc Spreading Systems: Geological, Washington, D.C., pp. 63-86.

[130]

Pearce J.A., 2014. Immobile elements fingerprinting of ophiolites. Elements 10, 101-108.

[131]

Peng B., Li B.L., Zhao T.F., Zhou L., Qin G.Z., 2019. Petrogenesis of quartz diorite and mafic microgranular enclaves from Geji pluton in Lhasa terrance, Tibet and its implications for late Jurassic tectonic evolution of Bangonghu-Nujiang Tethys Ocean. World Geol. 38 (3), 690-707 (in Chinese with English abstract)

[132]

Peng T.P., Wilde S.A., Fan W.M., Peng B.X., Mao Y.S., 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precamb. Res. 235, 190-207.

[133]

Pirajno F., 2016. A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins. Gondwana Res. 33, 44-62.

[134]

Plank T., Langmuir C.H., 1993. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739-743.

[135]

Plank T., Langmuir C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325-394.

[136]

Polat A., Hofmann A.W., Rosing M.T., 2002. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intraoceanic subduction zone processes in the early Earth. Chem. Geol. 184, 231-254.

[137]

Qiao J.R., Dong J., Allen M.B., Su L., Song S.G., 2024. Subduction zone decoupling and rapid forearc spreading at an active continental margin: Evidence from an SSZ-type ophiolite in Qilian Orogen NW China. J. Asian Earth Sci. 266, 106132. https://doi.org/10.1016/j.jseaes.2024.106132.

[138]

Qiu R.Z., Zhou S., Li T.D., Deng J.F., Xiao Q.H., Wu Z.X., Cai Z.Y., 2007. The tectonic setting of ophiolites in the western Qinghai-Tibet Plateau China. J. Asian Earth Sci. 29, 215-228.

[139]

Reagan M.K., Ishizuka O., Stern R.J., Kelley K.A., Ohara Y., Blichert-Toft J., Bloomer S.H., Cash J., Fryer P., Hanan B.B., Hickey-Vargas R., Ishii T., Kimura J., Peate D. W., Rowe M.C., Woods M., 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem. Geophys. Geosyst. 11, Q03X12. https://doi.org/10.1029/2009GC002871.

[140]

Robinson J.A.C., Wood B.J., 1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet. Sci. Lett. 164, 277-284.

[141]

Ross P.S., Bédard J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci. 46, 823-839.

[142]

Rossetti F., Monié P., Nasrabady M., Theye T., Lucci F., Saadat M., 2017. Early Carboniferous subduction-zone metamorphism preserved within the Palaeo-Tethyan Rasht ophiolites (western Alborz, Iran). J. Geol. Soc. Lond. 174 (4), 741-758.

[143]

Russ E., Palinkas C., Cornwell J., 2020. Evaluating estuarine sediment provenance from geochemical patterns in upper Chesapeake Bay. Chem. Geol. 533, 119404. https://doi.org/10.1016/j.chemgeo.2019.119404.

[144]

Saccani E., Photiades A., Beccaluva L., 2008. Petrogenesis and tectonic significance of Jurassic IAT magma types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos 104, 71-84.

[145]

Saccani E., 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci. Front. 6, 481-501.

[146]

Saunders A.D., Tarney J., 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. Geol. Soc. Lond. Spl. Pub. 16, 59-76.

[147]

Sandeman H.A., Hanmer S., Tella S., Armitage A.A., Davis W.J., Ryand J.J., 2006. Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt: A back-arc setting for the northwestern Hearne subdomain, western Churchill Province Canada. Precamb. Res. 144 (1-2), 126-139.

[148]

Schellart W.P., Moresi L., 2013. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate. J. Geophys. Res. Solid Earth 118 (6), 3221-3248.

[149]

Scholz C.H., Campos J., 1995. On the mechanism of seismic decoupling and back arc spreading at subduction zones. J. Geophys. Res. 100, 22103-22115.

[150]

Sdrolias M., Müller R.D., 2006. Controls on back-arc basin formation. Geochem. Geophys. Geosyst. 7, Q04016. https://doi.org/10.1029/2005GC001090.

[151]

Serri G., 1981. The petrochemistry of ophiolite gabbroic complexes. A key for the classification of ophiolites into low-Ti and high-Ti types. Earth Planet. Sci. Lett. 52, 203-212.

[152]

Shervais J.W., Reagan M., Haugen E., Almeev R.R., Pearce J.A., Prytulak J., Ryan J. G., Whattam S.A., Godard M., Chapman T., Li H.Y., Kurz W., Nelson W.R., Heaton D., Kirchenbaur M., Shimizu K., Sakuyama T., Li Y.B., Vetter, S.K., 2019. Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352. Geochem. Geophys. Geosyst. 20, 314-338.

[153]

Shervais J.W., Reagan M.K., Godard M., Prytulak J., Ryan J.G., Pearce J.A., Almeev R.R., Li H.Y., Haugen E., Chapman T., Kurz W., Nelson W.R., Heaton D.E., Kirchenbaur M., Shimizu K., Sakuyama T., Vetter S.K., Li Y.B., Whattam S., 2021. Magmatic response to subduction initiation, Part II: Boninites and related rocks of the Izu-Bonin Arc from IODP Expedition 352. Geochem. Geophys. Geosyst. 22, e2020GC009093. https://doi.org/10.1594/PANGAEA.921304.

[154]

Shervais J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59, 101-118.

[155]

Shinjo R., 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough-Ryukyu arc system. Chem. Geol. 157, 69-88.

[156]

Slovenec D., Lugovic´ B., 2009. Geochemistry and tectono-magmatic affinity of extrusive and dyke rocks from the ophiolite mélange in the SW Zagorje-mid-Transdanubian zone (Mt. Medvednica, Croatia). Ofioliti 34, 63-80.

[157]

Slovenec D., Šegvic´ B., 2019. Boninite volcanic rocks from the mélange of NW Dinaric-Vardar ophiolite zone (Mt. Medvednica, Croatia)-record of Middle to late Jurassic arc-forearc system in the Tethyan subduction factory. Mineral. Petrol. 133, 17-37.

[158]

Smith I.E.M., 2013. The chemical characterization and tectonic significance of ophiolite terrains in southeastern Papua New Guinea. Tectonics 32, 159-170.

[159]

Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T., Chung S.L., Danyushevsky L.V., Elliott T., Frey F.A., Garcia M.O., Gurenko A.A., Kamenetsky V.S., Kerr A.C., Krivolutskaya N.A., Matvienkov V.V., Nikogosian I.K., Rocholl A., Sigurdsson I.A., Sushchevskaya N.M., Teklay M., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412-417.

[160]

Sepidbar F., Lucci F., Biabangard H., Zaki Khedr M., Jiantang P., 2020. Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran). Int. Geol. Rev. 62 (16), 2077-2104.

[161]

Stern R.J., Lin P.N., Morris J.D., Jackson M.C., Fryer P., Bloomer S.H., Ito E., 1990. Enriched back-arc basin basalts from the northern Mariana Trough: Implications for the magmatic evolution of back-arc basins. Earth Planet. Sci. Lett. 100, 210-225.

[162]

Stern R.J., 2004. Subduction initiation: Spontaneous and induced. Earth Planet. Sci. Lett. 226, 275-292.

[163]

Stern R.J., Dickinson W.R., 2010. The gulf of mexico is a Jurassic backarc basin. Geosphere 6 (6), 739-754.

[164]

Stern R.J., Gerya T., 2018. Subduction initiation in nature and models: A review. Tectonophysics 746, 173-198.

[165]

Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42 (1), 313-345.

[166]

Tang Y., Zhai Q.G., Hu P.Y., Xiao X.C., Wang H.T., 2018. Petrology, geochemistry and geochronology of the Zhongcang ophiolite, northern Tibet: Implications for the evolution of the Bangong-Nujiang Ocean. Geosci. Front. 9, 1369-1381.

[167]

Tang Y., Zhai Q.G., Chung S.L., Hu P.Y., Wang J., Xiao X.C., Song B., Wang H.T., Lee H.Y., 2020. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan Plateau. GSA Bull. 132, 2202-2220.

[168]

Tang Y., Zhai Q.G., Hu P.Y., Wang W., Yan Z., Wang H.T., Zhu Z.C., 2021. Forearc lava stratigraphy of the Beila ophiolite, north-central Tibetan Plateau: Magmatic response to initiation of subduction of the Bangong-Nujiang Meso-Tethys Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 582 (15), 110663. https://doi.org/10.1016/j.palaeo.2021.110663.

[169]

Tatsumi Y., 2005. The subduction factory: How it operates in the evolving Earth. GSA Today 15 (7), 4-10.

[170]

Taylor B., Martinez F., 2003. Back-arc basin basalt systematics. Earth Planet. Sci. Lett. 210, 481-497.

[171]

Teklay M., 2006. Neoproterozoic arc-back-arc system analog to modern arc-backarc systems: Evidence from tholeiite-boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield. Precamb. Res. 145 (5), 81-92.

[172]

Todd E., Gill J.B., Pearce J.A., 2012. A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific. Earth Planet. Sci. Lett. 335, 180-194.

[173]

Tong Z.Y., Ding W.W., Wang C.Y., Li C.F., 2024. Analogue modelling of subduction initiation: a review and perspectives. Int. Geol. Rev. 66 (11), 2123-2165.

[174]

Tribuzio R., Renna M.R., Dallai L., Zanetti A., 2014. The magmatic-hydrothermal transition in the lower oceanic crust: Clues from the Ligurian ophiolites, Italy. Geochim. Cosmochim. Acta 130, 188-211.

[175]

Tsukanov N.V., Kramer W., Skolotnev S.G., Luchitskaya M.V., Seifert W., 2007. Ophiolites of the Eastern Peninsulas zone (Eastern Kamchatka): Age, composition, and geodynamic diversity. Isl. Arc 16 (3), 431-456.

[176]

van Hinsbergen D.J.J., Peters K., Maffione M., Spakman W., Guilmette C., Thieulot C., Plümper O., Gürer D., Brower F.M., Aldanmaz E., Kymakci N., 2015. Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem. Geophys. Geosyst. 16 (6), 1771-1785.

[177]

Valsami E., Cann J.R., Rassios A., 1994. The mineralogy and geochemistry of a hydrothermal alteration pipe in the Othris ophiolite, Greece. Chem. Geol. 114, 235-266.

[178]

Wallace L.M., Ellis S., Mann P., 2009. Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings. Geochem. Geophys. Geosyst. 10, Q05001. https://doi.org/10.1029/2008GC002220.

[179]

Wang B.D., Wang L.Q., Chung S.L., Chen J.L., Yin F.G., Liu H., Li X.B., Chen L.K., 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 245, 18-33.

[180]

Wang B.D., Wang L.Q., Zhou D.Q., Wang D.B., Yu Y.P., Yan G.C., Wu Z., 2021. Longmu Co-Shuanghu-Changning-Menglian suture zone: The boundary between Gondwanaland and Pan-Cathaysia mainland in the Qinghai-Tibet Plateau. Geol. Bull. China 40 (11), 1783-1798 (in Chinese with English abstract)

[181]

Wang B.D., Xu J.F., Zeng Q.G., Kang Z.Q., Chen J.L., Dong Y.H., 2007. Geochemistry and genesis of Lhaguo Tso ophiolite in south of Gerze area Center Tibet. Acta Petrol. Sin. 23 (6), 1521-1530 (in Chinese with English abstract)

[182]

Wang B.D., Wang L.Q., Xu J.F., Chen L., Zhao W.X., Peng T.P., Liu H., Li X.B., 2015. Discovery of high-pressure granulite in Dongcuo area from the western section of Bangong Co-Nujiang suture zone and its tectonic significance. Geol. Bull. China 34 (9), 1605-1616 (in Chinese with English abstract)

[183]

Wang L.Q., Pan G.T., Ding J., Yao D.S., 2013. The Geological Map and Instruction of the Qinghai-Tibet Plateau and Its Adjacent Areas. Geological Publishing House, Beijing, Scale 1: 500,000 (in Chinese).

[184]

Wang K.L., Hu Y., He J.H., 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327-332.

[185]

Wang W.L., Aitchison J.C., Lo C.H., Zeng Q.G., 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. J. Asian Earth Sci. 33 (1-2), 122-138.

[186]

Weydt L.M., Lucci F., Lacinska A., Scheuvens D., Carrasco-Núñez G., Giordano G., Rochelle C.A., Schmidt S., Bär K., Sass I., 2022. The impact of hydrothermal alteration on the physiochemical characteristics of reservoir rocks: The case of the Los Humeros geothermal field (Mexico). Geotherm. Energy 10 (1), 20. https://doi.org/10.1186/s40517-022-00231-5.

[187]

Whattam S.A., Montes C., Stern R.J., 2020. Early central American forearc follows the subduction initiation rule. Gondwana Res. 79, 283-300.

[188]

Whattam S.A., 2024. Subduction initiation ophiolites of the SW Pacific I: Firstformed MORB-like lavas. Int. Geol. Rev. 66 (9), 1681-1717.

[189]

Whattam S.A., Stern R.J., 2011. The ‘subduction initiation rule': A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib. Mineral. Petrol. 162, 1031-1045.

[190]

Whattam S.A., Malpas J., Ali J.R., Smith I.E., 2008. New SW Pacific tectonic model: Cyclical intraoceanic magmatic arc construction and near-coeval emplacement along the Australia-Pacific margin in the Cenozoic. Geochem. Geophys. Geosyst. 9, Q03021. https://doi.org/10.1029/2007GC001710.

[191]

Windley B.F., Kusky T., Polat A., 2021. Onset of plate tectonics by the Eoarchean. Precamb. Res. 352, 105980. https://doi.org/10.1016/j.precamres.2020.105980.

[192]

Winchester J.A., Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20, 325-343.

[193]

Wu H., Liu H.Y., Wang Y., Liu X.J., Zeng Q.G., Wang P.X., 2024. Late Jurassic oceanic plateau subduction in the Bangong-Nujiang Tethyan Ocean of northern Tibet. Geosci. Front. 15 (4), 101813. https://doi.org/10.1016/j.gsf.2024.101813.

[194]

Woelki D., Regelous M., Haase K.M., Beier C., 2019. Geochemical mapping of a paleo-subduction zone beneath the Troodos ophiolite. Chem. Geol. 523, 1-8.

[195]

Woodhead J.D., Hergt J.M., Davidson J.P., Eggins S.M., 2001. Hafnium isotope evidence for ‘conservative' element mobility during subduction zone processes. Earth Planet. Sci. Lett. 192 (3), 331-346.

[196]

Woodhead J.D., Eggins S.M., Johnson R.W., 1998. Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes. J. Petrol. 39 (9), 1641-1668.

[197]

Xu M.J., Li C., Zhang X.Z., Wu Y.W., 2014. Nature and evolution of the Neo-Tethys in central Tibet: Synthesis of ophiolitic petrology, geochemistry, and geochronology. Int. Geol. Rev. 56 (9), 1072-1096.

[198]

Xu J.X., Li C., Fan J.J., Wang M., Xie C.M., 2018. Tectonic property of the Laguocuo ophiolite in Gerze County, Tibet: Constrains from petrology, geochemistry, LA-ICP-MS zircon U-Pb dating and Lu-Hf isotope. Geol. Bull. China 37, 1541-1553 (in Chinese with English abstract)

[199]

Xu J., Xia X.P., Wang Q., Spencer C.J., Lai C.K., Zhang L., 2022. Two magma fractionation paths for continental crust growth: Insights from the adakite-like and normal-arc granites in the Ailaoshan fold belt (SW Yunnan, China). GSA Bull. 134, 2986-3002.

[200]

Yan L.L., Zhang K.J., 2020. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, Central Tibet, western China. Gondwana Res. 79, 110-124.

[201]

Yang A.Y., Langmuir C.H., Cai Y., Michael P., Goldstein S.L., Chen Z., 2021. A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nat. Commun. 12, 4757. https://doi.org/10.1038/s41467-021-25027-2.

[202]

Yang G.X., 2022. Subduction initiation triggered by collision: A review based on examples and models. Earth-Sci. Rev. 232, 104129. https://doi.org/10.1016/j.earscirev.2022.104129.

[203]

Yang J., Wang J.R., Zhang Q., Chen W.F., Pan Z.J., Jiao S.T., Wang S.H., 2016. Backarc basin basalt (BABB) data mining: Comparison with MORB and IAB. Adv. Earth Sci. 31, 66-77 (in Chinese with English abstract)

[204]

Yang R.H., Li C., Chi X.G., Wang T.W., 2003. The primary study of geochemical characteristics and tectonic setting of ophiolite Yongzhu-Namuhu Tibet. Geoscience 17 (1), 14-19 (in Chinese with English abstract)

[205]

Yakymchuk C., Kirkland C.L., Clark C., 2018. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 36 (6), 715-737.

[206]

Ye P.S., Wu Z.H., Hu D.G., Jiang W., Yang X.D., 2004. Geochemistry and tectonic setting of ophiolite in west of Namco Lake Tibet. Geoscience 18, 237-248 (in Chinese with English abstract)

[207]

Yuan Y.J., Yin Z.X., Liu W.L., Huang Q.T., Li J.F., Liu H.F., Wan Z.F., Cai Z.R., Xia B., 2015. Tectonic evolution of the Meso-Tethys in the western segment of Bangonghu-Nujiang suture zone: Insights from geochemistry and geochronology of the Lagkor Tso ophiolite. Acta Geol. Sin. 89, 369-388.

[208]

Yin A., Harrison T.M., 2000. Geologic evolution of the Himalayan Tibetan orogeny. Annu. Rev. Earth Planet. Sci. 28 (1), 211-280.

[209]

Zeng X.W., Wang M., Fan J.J., Li C., Xie C.M., Liu Y.M., Zhang T.Y., 2018a. Geochemistry and geochronology of gabbros from the Asa ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean. Lithos 320, 192-206.

[210]

Zeng X.W., Wang M., Li C., Li H., Zeng X.J., Shen D., 2021. Lower Cretaceous turbidites in the Shiquanhe-Namco ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean. Geosci. Front. 12 (4), 101127. https://doi.org/10.1016/j.gsf.2020.12.008.

[211]

Zeng X.W., Wang M., Yu Y.P., Li H., Zeng X.J., Shen D., 2022a. Tectonic evolution of the Meso-Tethys Ocean: Insights from geochemistry and geochronology of the Jurassic ophiolitic complex in the Asa area Central Tibet. Int. Geol. Rev. 64 (3), 351-374.

[212]

Zeng X.W., Wang M., Li H., Chi P., Shen D., 2022b. Early Jurassic intra-oceanic subduction initiation along the Bangong Meso-Tethys: Geochemical and geochronological evidence from the Shiquanhe ophiolitic complex, western Tibet. Lithos 416-417, 106657.

[213]

Zeng Y.C., Xu J.F., Chen J.L., Wang B.D., Kang Z.Q., Huang F., 2018b. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau. Lithos 300-301, 250-260. https://doi.org/10.1016/j.lithos.2017.11.025.

[214]

Zeng Y.C., Chen J.L., Xu J.F., Wang B.D., Huang F., 2016. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite mélange, central Tibet. Geochem. Geophys. Geosyst. 17, 4859-4877.

[215]

Zhai Q.G., Jahn B.M., Wang J., Hu P.Y., Chung S.L., Lee H.Y., Tang S.H., Tang Y., 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. GSA Bull. 128, 355-373.

[216]

Zhai Q.G., Tang Y., Hu P.Y., Liu Y.M., Wang W., 2024. Induced subduction initiation near an ultra-slow spreading ridge: A case study from the Beila ophiolite in the north-central Tibetan Plateau. Gondwana Res. 135, 1-16.

[217]

Zhang B.C., Fan J.J., Luo A.B., Zeng X.W., Duan M.L., Sun S.L., 2023. Tectonic evolution of the Meso-Tethys Ocean in the Jurassic: Birth, growth, and demise of a missing intra-oceanic arc. Gondwana Res. 122, 41-59.

[218]

Zhang K.J., Xia B., Zhang Y.X., Liu W.L., Zeng L., Li J.F., Xu L.F., 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos 210, 278-288.

[219]

Zhang K.Z., Chen Y.L., 2007. Plagiogranite in the Goicang ophiolites in Xizang. Sediment. Geol. Tethyan Geol. 27 (1), 32-37 (in Chinese with English abstract)

[220]

Zhang L.Y., Fan W.M., Ding L., Pullen A., Ducea M.N., Li J.X., Wang C., Xu X.Y., Sein K., 2022. Forced subduction initiation within the Neotethys: An example from the mid-Cretaceous Wuntho-Popa arc in Myanmar. GSA Bull. 134 (3-4), 849-870.

[221]

Zhang C.L., Yang Q.K., Huang Q.T., Chen W.C., Cao Y.D., Yu H.T., Duan H.F., 2024a. Reconstruction of the evolution of the Yurongguo ophiolite: Constraints on the southward intra-oceanic subduction of the Bangong-Nujiang Tethys Ocean. Gondwana Res. 132, 20-31.

[222]

Zhang Q.H., Chen Y., Chen S., Su B., Li Y.B., Shi K.H., Aung M.M., Sein K., 2024b. Intra-Neo-Tethyan subduction initiation inferred from the Indawgyi mafic rocks in the Central ophiolite Belt Myanmar. GSA Bulletin 136 (7-8), 2753-2766.

[223]

Zhang X., Cai D.Z., Furnes H., Liu W.L., Wang R., Li W., Liao X., Yan C., Ding R.X., Zhong Y., 2024c. Neoproterozoic back-arc and arc-type magmatisms in the Rutong and Shiquanhe region, west of Tibet: Tectonic implications for the earlystage evolution of the Bangong-Nujiang suture zone and North Lhasa terrane. Precamb. Res. 405, 107374. https://doi.org/10.1016/j.precamres.2024.107374.

[224]

Zhang X.Z., Wang Q., Dong Y.S., Zhang C.F., Li Q.Y., Xia X.P., Xu W., 2017. Highpressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang Suture Zone, central Tibet: Link to flat-slab subduction. Tectonics 36 (12), 2918-2935.

[225]

Zhang Y.X., Zhang K.J., Li B., Wang Y., Wei Q.G., Tang X.C., 2007. Zircon SHRIMP UPb geochronology and petrogenesis of the plagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet China. Chin. Sci. Bull. 52 (5), 651-659.

[226]

Zhang Y.X., Li Z.W., Zhu L.D., Zhang K.J., Yang W.G., Jin X., 2016. Newly discovered eclogites from the Bangong Meso-Tethyan suture zone (Gaize, central Tibet, western China): Mineralogy, geochemistry, geochronology, and tectonic implications. Int. Geol. Rev. 58 (5), 574-587.

[227]

Zhang Y.Z., Wang Y.J., Geng H.Y., Zhang Y.H., Fan W.M., Zhong H., 2013. Early Neoproterozoic (∼850 Ma) back-arc basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and petrogenetic constraints from meta-basalts. Precamb. Res. 251, 325-342.

[228]

Zhang Z., Zhou S., Geng Q.R., Peng Z.M., Guan J.L., 2020. Geochronology and geological significance of early Jurassic gabbro in Shiquanhe ophiolite mélange belt. Sci. Tech. Eng. 20, 7579-7588 (in Chinese with English abstract)

[229]

Zheng Y.Y., Xu Y.K., He L.X., Gong Q.S., Ci Q., 2004. The Shiquan River ophiolitic mélange zone in Xizang: the delineation and significance of a new archipelagic arc-basin system. Sediment. Geol. Tethyan Geol. 24 (1), 13-25 (in Chinese with English abstract)

[230]

Zheng Y.Y., Xu R.K., Ma G.T., Gao S.B., Zhang G.Y., Ma X.M., Ci Q., 2006. Ages of generation and subduction of Shiquan river ophiolite: Restriction from SHRIMP zircon dating. Acta Geol. Sin. 22, 895-904 (in Chinese with English abstract)

[231]

Zhong Y., Liu W.L., Xia B., Liu J.N., Guan Y., Yin Z.X., Huang Q.T., 2017. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution. Lithos 292-293, 111-131.

[232]

Zhong Y., Xia B., Liu W.L., Yin Z.X., Hu X.C., Huang W., 2015. Geochronology, petrogenesis and tectonic implications of the Jurassic Namco-Renco ophiolites, Tibet. Int. Geol. Rev. 57, 508-528.

[233]

Zhou M.F., Malpas J., Robinson P.T., Reynolds P.H., 1997. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Can. J. Earth Sci. 34, 59-65.

[234]

Zhou X., Wada I., 2021. Differentiating induced versus spontaneous subduction initiation using thermomechanical models and metamorphic soles. Nat. Commun. 12, 4632. https://doi.org/10.1038/s41467-021-24896-x.

[235]

Zhu D.C., Zhao Z.D., Niu Y.L., Dilek Y., Wang Q., Ji W.H., Dong G.C., Sui Q.L., Liu Y. S., Yuan H.L., Mo X.X., 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto Tethyan margin. Chem. Geol. 328, 290-308.

[236]

Zhu D.C., Zhai Z.D., Niu Y.L., Dilek Y., Hou Z.Q., Mo X.X., 2013. The origin and pre--Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 23 (4), 1429-1454.

[237]

Zhu M.S., Yan Z.Y., Pastor-Galán D., Chen L., Miao L.C., Zhang F.Q., Li S., Yang S.H., 2023. Do microcontinents nucleate subduction initiation? Geology 51 (7), 668-672.

AI Summary AI Mindmap
PDF

664

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/