Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches

Yunfeng Ge , Zihao Li , Huiming Tang , Qian Chen , Zhongxu Wen

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102085

PDF
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (5) : 102085 DOI: 10.1016/j.gsf.2025.102085

Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches

Author information +
History +
PDF

Abstract

The application of three-dimensional (3D) point cloud parametric analyses on exposed rock surfaces, enabled by Light Detection and Ranging (LiDAR) technology, has gained significant popularity due to its efficiency and the high quality of data it provides. However, as research extends to address more regional and complex geological challenges, the demand for algorithms that are both robust and highly efficient in processing large datasets continues to grow. This study proposes an advanced rock joint identification algorithm leveraging artificial neural networks (ANNs), incorporating parallel computing and vectorization of high-performance computing. The algorithm utilizes point cloud attributes-specifically point normal and point curvatures-as input parameters for ANNs, which classify data into rock joints and non-rock joints. Subsequently, individual rock joints are extracted using the density-based spatial clustering of applications with noise (DBSCAN) technique. Principal component analysis (PCA) is subsequently employed to calculate their orientations. By fully utilizing the computational power of parallel computing and vectorization, the algorithm increases the running speed by 3-4 times, enabling the processing of large-scale datasets within seconds. This breakthrough maximizes computational efficiency while maintaining high accuracy (compared with manual measurement, the deviation of the automatic measurement is within 2°), making it an effective solution for large-scale rock joint detection challenges.

Keywords

Rock joints / Point clouds / Artificial neural network / High-performance computing / Parallel computing / Vectorization

Cite this article

Download citation ▾
Yunfeng Ge, Zihao Li, Huiming Tang, Qian Chen, Zhongxu Wen. Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches. Geoscience Frontiers, 2025, 16(5): 102085 DOI:10.1016/j.gsf.2025.102085

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yunfeng Ge: Writing - original draft, Visualization, Validation, Supervision, Software, Resources, Methodology, Investigation, For-mal analysis, Data curation, Conceptualization. Zihao Li: Writing - original draft, Visualization, Validation, Software, Investigation, Data curation. Huiming Tang: Project administration, Funding acquisition, Conceptualization. Qian Chen: Software, Data cura-tion. Zhongxu Wen: Writing - original draft.

Availability of data and material

The data and materials that support the findings of this study are available from the first and corresponding author, Yunfeng Ge, upon reasonable request.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foun-dation of China (No. 42477177) and the Hubei Natural Science Foundation Joint Fund Project (No. 2024AFD005).

References

[1]

Abdi H., Williams L.J., 2010. Principal component analysis. Wiley Interdiscip Rev. Comput. Stat. 2 (4), 433-459. https://doi.org/10.1002/wics.101.

[2]

Baltsavias E.P., 1999. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 54 (2-3), 83-94. https://doi.org/10.1016/s0924-2716(99)00014-3.

[3]

Chen Q., Ge Y., Tang H., 2024. Rock discontinuities characterization from large-scale point clouds using a point-based deep learning method. Eng. Geol. 337, 107585. https://doi.org/10.1016/j.enggeo.2024.107585.

[4]

Chetverushkin B.N., Olkhovskaya O.G., Tsigvintsev I.P., 2021. Numerical solution of high-temperature gas dynamics problems on high-performance computing systems. J. Comput. Appl. Math. 390, 113374. https://doi.org/10.1016/j.cam.2020.113374.

[5]

Daghigh H., Tannant D.D., Daghigh V., Lichti D.D., Lindenbergh R., 2022. A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces. Comput. Geosci. 169, 105241. https://doi.org/10.1016/j.cageo.2022.105241.

[6]

Daghigh H., Tannant D.D., Jaberipour M., 2023. A computationally efficient approach to automatically extract rock mass discontinuities from 3D point cloud data. Int. J. Rock Mech. Min. Sci. 172, 105603. https://doi.org/10.1016/j.ijrmms.2023.105603.

[7]

Deng H., Zhang W., Wang L., Kang Y., Wang Y., Wang L., Zou Y., 2025. Deformation mechanism of large-scale ancient reservoir landslides driven by the monitoring fata and numerical simulation. Geol. J. Portico. 60, 1170-1183. https://doi.org/10.1002/gj.5130.

[8]

Dufek J., Gudowski W., 2009. An efficient parallel computing scheme for Monte Carlo criticality calculations. Ann. Nucl. Energy. 36 (8), 1276-1279. https://doi.org/10.1016/j.anucene.2009.04.017.

[9]

Ester M., Kriegel H. P., Sander J., Xu X., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Int. Conf. Knowl. Discov. Data Min. (KDD'96). 226-231. AAAI Press.

[10]

Fang K., Dong A., Tang H., Miao M., An P., Zhang B., Jia S., 2023. 3D tunnel reconstruction and visualization through multi-smartphone photogrammetry. Measurement223,113764.https://doi.org/10.1016/j.measurement.2023.113764.

[11]

Ge Y., Tang H., Xia D., Wang L., Zhao B., Teaway J.W., Chen H., Zhou T., 2018. Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm. Eng. Geol. 242, 44-54. https://doi.org/10.1016/j.enggeo.2018.05.007.

[12]

Ge Y., Cao B., Tang H., 2022. Rock Discontinuities identification from 3D point clouds using artificial neural network. Rock Mech. Rock Eng. 55 (3), 1705-1720. https://doi.org/10.1007/s00603-021-02748-w.

[13]

Ge Y., Wang H., Liu G., Chen Q., Tang H., 2025. Automated identification of rock discontinuities from 3D point clouds using a convolutional neural network. Rock Mech. Rock Eng. 58, 3683-3700. https://doi.org/10.1007/s00603-024-04351-1.

[14]

Golub G.H., Ortega J.M., 2014. Scientific Computing:An Introduction with Parallel Computing. Academic Press, Inc., London, UK.

[15]

Goodman R.E., 1995. Block theory and its application. Géotech. 45 (3), 383-423. https://doi.org/10.1680/geot.1995.45.3.383.

[16]

Han X., Yang S., Zhou F., Wang J., Zhou D., 2017. An effective approach for rock mass discontinuity extraction based on terrestrial LiDAR scanning 3D point clouds. IEEEAccess. 5,26734-26742.https://doi.org/10.1109/access.2017.2771201.

[17]

Hipper G., Tavangarian D., 1998. Advanced workstation cluster architectures for parallel computing. J. Syst. Archit. 44 (3-4), 207-226. https://doi.org/10.1016/s1383-7621(97)00037-4.

[18]

Kenner R., Bühler Y., Delaloye R., Ginzler C., Phillips M., 2014. Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology. 206, 492-504. https://doi.org/10.1016/j.geomorph.2013.10.020.

[19]

Kissling W.D., Shi Y., Koma Z., Meijer C., Ku O., Nattino F., Seijmonsbergen A.C., Grootes M.W., 2022. Laserfarm - A high-throughput workflow for generating geospatial data products of ecosystem structure from airborne laser scanning point clouds. Ecol. Inform. 72, 101836. https://doi.org/10.1016/j.ecoinf.2022.101836.

[20]

Karrenberg R., 2015. Whole-Function Vectorization. In: Automatic SIMD Vectorization of SSA-based Control Flow Graphs. Springer Vieweg, Wiesbaden, pp. 85-125. https://doi.org/10.1007/978-3-658-10113-8_6.

[21]

Kong D., Wu F., Saroglou C., Sha P., Li B., 2021. In-situ block characterization of jointed rock exposures based on a 3D point cloud model. Remote Sens. 13 (13), 2540. https://doi.org/10.3390/rs13132540.

[22]

Liu S., Wang L., Zhang W., Sun W., Fu J., Xiao T., Dai Z., 2023. A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir area. Geosci. Front. 14 (5), 101621. https://doi.org/10.1016/j.gsf.2023.101621.

[23]

Lu X., Xu Z., Xiong C., Zeng X., 2017. High performance computing for regional building seismic damage simulation. Procedia Eng. 198, 836-844. https://doi.org/10.1016/j.proeng.2017.07.134.

[24]

Mattson T.G., Sanders B., Massingill B., 2004. Patterns for parallel programming. Addison-Wesley Professional, Boston, US, pp. 97-102.

[25]

Michael J., 1995. Importance of discontinuities in rock mass engineering: Genesis, characteristics and application. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32 (7), 335. https://doi.org/10.1016/0148-9062(95)92488-4.

[26]

Müller L., 1969. Fundamentals of Rock Mechanics, 1st ed.ed. Springer Vienna. https://doi.org/10.1007/978-3-7091-2834-3.

[27]

Nayak S.C., Misra B.B., Behera H.S., 2014. Impact of data normalization on stock index forecasting. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 6, 13 https://cspub-ijcisim.org/index.php/ijcisim/article/view/254.

[28]

Priest S.D., Hudson J.A., 1976. Discontinuity spacings in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13 (5), 135-148. https://doi.org/10.1016/0148-9062(76)90818-4.

[29]

Priest S.D., Hudson J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18 (5), 82. https://doi.org/10.1016/0148-9062(81)90026-7

[30]

Sarti A., Tubaro S., 2002. Detection and characterisation of planar fractures using a 3D Hough transform. Signal Process. 18 (5), 82. https://doi.org/10.1016/s0165-1684(02)00249-9.

[31]

Ren S., Li Y., 2023. A review of high performance computing applications in high-speed rail systems. High-Speed Railw. 1 (2), 92-96. https://doi.org/10.1016/j.hspr.2023.05.001.

[32]

Riquelme A.J., Abellán A., Tomás R., Jaboyedoff M., 2014. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014.

[33]

Silva C.A., Vilaça R., Pereira A., Bessa R.J., 2024. A review on the decarbonization of high-performance computing centers. Renew. Sustain. Energy Rev. 189, 114019. https://doi.org/10.1016/j.rser.2023.114019.

[34]

Sola J., Sevilla J., 1997. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 44 (3), 1464-1468. https://doi.org/10.1109/23.589532.

[35]

Sturzenegger M., Stead D., 2009. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng. Geol. 106 (3-4), 163-182. https://doi.org/10.1016/j.enggeo.2009.03.004.

[36]

Sun L., Grasselli G., Liu Q., Tang X., Abdelaziz A., 2022. The role of discontinuities in rock slope stability: Insights from a combined finite-discrete element simulation. Comput. Geotech. 147, 104788. https://doi.org/10.1016/j.compgeo.2022.104788.

[37]

Sun W., Wang J., Yang Y., Jin F., 2021. Rock mass discontinuity extraction method based on multiresolution supervoxel segmentation of point cloud. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 8436-8446. https://doi.org/10.1109/jstars.2021.3104845.

[38]

Wang M., Zhou J., Chen J., Jiang N., Zhang P., Li H., 2023. Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. J. Rock Mech. Geotech. Eng. 15 (7), 1810-1825. https://doi.org/10.1016/j.jrmge.2022.12.015.

[39]

Wang Y., Sun X., Wen T., Wang L., 2024. Step-like displacement prediction of reservoir landslides based on a metaheuristic-optimized KELM: A comparative study. Bull. Eng. Geol. Environ. 83, 322. https://doi.org/10.1007/s10064-024-03819-2.

[40]

Xie J., Yang C., Zhou B., Huang Q., 2010. High-performance computing for the simulation of dust storms. Comput. Environ. Urban Syst. 34 (4), 278-290. https://doi.org/10.1016/j.compenvurbsys.2009.08.002.

[41]

Yang L.T., Guo M., 2006. High-Performance Computing: Paradigm and Infrastructure. John Wiley & Sons.

[42]

Yang Y., Dou J., Merghadi A., Liang W., Dong A., Xiong D., Zhang L., 2024. Advanced prediction of landslide deformation through temporal fusion transformer and multivariate time-series clustering of InSAR: Insights from the Badui region, eastern Tibet. IEEE Trans. Geosci. Remote Sens. 62, 1-19. https://doi.org/10.1109/tgrs.2024.3504241.

[43]

Yue D., Wang J., Zhou J., Chen X., Ren H., 2010. Monitoring slope deformation using a 3-D laser image scanning system: A case study. Min. Sci. Technol. (China) 20 (6), 898-903. https://doi.org/10.1016/s1674-5264(09)60303-3.

[44]

Zhang W., Wei M., Zhang Y., Li T., Wang Q., Cao C., Zhu C., Li Z., Nie Z., Wang S., Yin H., 2024a. Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces. J. Rock Mech. Geotech. Eng. 16 (6), 2154-2171. https://doi.org/10.1016/j.jrmge.2023.09.004.

[45]

Zhou J., Chen J., Li H., 2024. An optimized fuzzy K-means clustering method for automated rock discontinuities extraction from point clouds. Int. J. Rock Mech. Min. Sci. 173, 105627. https://doi.org/10.1016/j.ijrmms.2023.105627.

[46]

Zhang L., Zhang R., Dou J., Hou S., Xiang Z., Wang H., Yang P., Liu X., 2024b. Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China. Landslides 22 (1), 169-188. https://doi.org/10.1007/s10346-024-02337-2.

[47]

Zhang W., Li H., Li Y., Liu H., Chen Y., Ding X., 2021. Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif. Intell. Rev. 54 (8), 5633-5673. https://doi.org/10.1007/s10462-021-09967-1.

[48]

Zhang W., Gu X., Tang L., Yin Y., Liu D., Zhang Y., 2022. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 109, 1-17. https://doi.org/10.1016/j.gr.2022.03.015.

[49]

Zhang W., Pradhan B., Stuyts B., Xu C., 2023. Application of artificial intelligence in geotechnical and geohazard investigations. Geol. J. 58 (6), 2187-2194. https://doi.org/10.1002/gj.4779.

AI Summary AI Mindmap
PDF

984

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/