Formation of the giant Cretaceous Jiaodong-type orogenic gold province of the North China Craton: A consequence of lithospheric multi-layer reworking

Qingfei Wang , Hesen Zhao , Lin Yang , David I. Groves , Jilong Han , Kunfeng Qiu , Dapeng Li , Zhao Liu , Rui Zhao , Jun Deng

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102047

PDF (6216KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102047 DOI: 10.1016/j.gsf.2025.102047
research-article

Formation of the giant Cretaceous Jiaodong-type orogenic gold province of the North China Craton: A consequence of lithospheric multi-layer reworking

Author information +
History +
PDF (6216KB)

Abstract

The Cretaceous gold deposits along the margins of the North China Craton (NCC), which formed in a cra-ton destruction setting, display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny. These deposits, known as Jiaodong-type gold deposits, have attracted considerable attention. However, the lithospheric controls and formation mechanisms of these deposits remain unclear, as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits. In this study, the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits. This implies that mantle lithosphere, metasomatized by variable proportions of oceanic and continental crust, was the source for both gold deposits and mafic dikes. Increase of oxygen fugacity and zircon εHf(t) from pre- to syn-gold granites suggests continuous basic magma underplating, which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO2-rich fluids derived from metasomatized mantle lithosphere and basic magma. Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes. Thus, the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.

Keywords

Jiaodong-type orogenic gold deposit / Cretaceous tectonism / North China Craton / Isotope geochemistry / Metasomatized mantle lithosphere / Ore-controlling structures

Cite this article

Download citation ▾
Qingfei Wang, Hesen Zhao, Lin Yang, David I. Groves, Jilong Han, Kunfeng Qiu, Dapeng Li, Zhao Liu, Rui Zhao, Jun Deng. Formation of the giant Cretaceous Jiaodong-type orogenic gold province of the North China Craton: A consequence of lithospheric multi-layer reworking. Geoscience Frontiers, 2025, 16(3): 102047 DOI:10.1016/j.gsf.2025.102047

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Qingfei Wang: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Hesen Zhao: Writing - original draft, Visualiza-tion, Investigation, Formal analysis, Data curation. Lin Yang: Writ-ing - original draft, Visualization, Funding acquisition, Formal analysis, Data curation. David I. Groves: Writing - review & edit-ing, Validation, Methodology, Formal analysis. Jilong Han: Writing - original draft, Visualization, Investigation, Formal analysis, Data curation. Kunfeng Qiu: Resources, Investigation, Conceptualiza-tion. Dapeng Li: Resources, Investigation, Conceptualization. Zhao Liu: Visualization, Investigation, Data curation. Rui Zhao: Visual-ization, Investigation, Data curation. Jun Deng: Supervision, Resources, Project administration, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper. The first author who is also the corresponding author of this paper, Qingfei Wang is an Associate Editor of this Journal, and was not involved in the edito-rial review or the decision to publish this article.

Acknowledgements

This paper is jointly funded by the National Natural Science Foundation of China (42125203, 42330809) and the 111 project of the Ministry of Science and Technology (BP0719021).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102047.

References

[1]

Alex, A., Zajacz, Z., 2022. The solubility of Cu, Ag and Au in magmatic sulfur-bearing fluids as a function of oxygen fugacity. Geochim. Cosmochim. Ac. 330, 93-115.

[2]

Bragagni, A., Mastroianni, F., Muenker, C., Conticelli, S., Avanzinelli, R., 2022. A carbon-rich lithospheric mantle as a source for the large CO 2 emissions of Etna volcano (Italy). Geology 50 (4), 486-490.

[3]

Chen, C.F., Liu, Y.S., Foley, S.F., Ducea, M.N., He, D., Hu, Z.C., Chen, W., Zong, K.Q., 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology 44 (12), 1039-1042.

[4]

Chen, H., Zhu, G.F., Bai, H., Cui, G.S., Zhang, H.H., Mu, P.J., Jin, Y.J., 2024. Late Triassic E-W striking shear zone and its implication on gold mineralization in the Xiaoqinling area, eastern China. Front. Earth Sci. 11, 1304402.

[5]

Chen, Y.J., Pirajno, F., Li, N., Guo, D.S., Lai, Y., 2009. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan province, China: Implications for ore genesis. Ore Geol. Rev. 35 (2), 245-261.

[6]

Cherdantseva, M., Anenburg, M., Fiorentini, M., Mavrogenes, J., 2024. Carbonated magmatic sulfide systems: Still or sparkling? Sci. Advan. 10, eadl3127. Chiaradia, M., 2014. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci. 7 (1), 43-46.

[7]

Cox, S.F., 2016. Injection-Driven Swarm Seismicity and Permeability Enhancement: Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Overpressured Faulting Regimes—An Invited Paper. Econ. Geol. 111 (3), 559-587.

[8]

Dai, L.Q., Zhao, Z.F., Zheng, Y.F., Zhang, J., 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem. Geol. 334, 99-121.

[9]

Deng, J., Yang, L.Q., Li, R.H., Groves, D.I., Santosh, M., Wang, Z.L., Sai, S.X., Wang, S.R., 2019. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province. China. Geol. J. 54, 378-391.

[10]

Deng, J., Wang, Q.F., Liu, X.F., Zhang, L., Yang, L.Q., Yang, L., Qiu, K.F., Guo, L.N., Liang, Y.Y., Ma, Y., 2022. The Formation of the Jiaodong Gold Province. Acta Geol. Sin. 96 (6), 1801-1820.

[11]

Deng, J., Liu, X.F., Wang, Q.F., Dilek, Y., Liang, Y.Y., 2017. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking—Lithospheric extension in the North China craton, eastern Asia. Geol. Soc. Am. Bull. 129 (11-12), 1379-1407.

[12]

Deng, J., Qiu, K.F., Wang, Q.F., Goldfarb, R., Yang, L.Q., Zi, J.W., Geng, J.Z., Ma, Y., 2020a. In situ dating of hydrothermal monazite and implications for the geodynamic controls on Ore formation in the Jiaodong gold province, Eastern China. Econ. Geol. 115 (3), 671-685.

[13]

Deng, J., Wang, Q.F., Gao, L., He, W.Y., Yang, Z.Y., Zhang, S.H., Chang, L.J., Li, G.J., Sun, X., Zhou, D.Q., 2021. Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet. Geology 49 (4), 428-432.

[14]

Deng, J., Wang, Q., Zhang, L., Xue, S.C., Liu, X,F., Yang, L,Q., Qiu, K,F., Liang, Y, Y., 2023. Metallogenetic model of Jiaodong-type gold deposits, eastern China. Sci. China Earth Sci. 66(10), 2287-2310.

[15]

Deng, J., Wang, Q., 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 36, 219-274.

[16]

Deng, J., Yang, L.Q., Groves, D.I., Zhang, L., Wang, Q.F., 2020b. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci. Rev. 208, 103274.

[17]

Ding, C.W., Zhao, B.C., Dai, P., Li, D.P., Zhang, Z.L., Sun, R.T., Wei, P.F., Liu, Q., Li, D.J., 2022. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the alkaline-carbonatite complex in the Weishan REE deposit, Luxi Block: Constraints on the genesis and tectonic setting of the REE mineralization. Ore Geol. Rev. 147, 104996.

[18]

Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J., Hauzenberger, C., 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 41 (3), 213-237.

[19]

Du, F.G., Jiang, Y.H., Qing, L., Ni, C.Y., 2019. H-O, He-Ar and Sr-Nd-Pb isotopic constraints on the sources of ore-forming fluids and ore-forming materials in the Xiadian gold deposit, Jiaodong. Geol. J. China Univ. 25 (5), 686-696 (in Chinese with English abstract).

[20]

Ezad, I.S., Saunders, M., Shcheka, S.S., Fiorentini, M.L., Gorojovsky, L.R., Förster, M.W., Foley, S.F., 2024. Incipient carbonate melting drives metal and sulfur mobilization in the mantle. Sci. Advan. 10, eadk5979.

[21]

Fan, G.H., Li, J.W., Deng, X.D., Gao, W.S., Li, S.Y., 2021. Age and origin of the Dongping Au-Te deposit in the North China craton revisited: evidence from paragenesis, geochemistry, and in situ U-Pb geochronology of garnet. Econ. Geol. 116 (4), 963-985.

[22]

Feng, H., Shen, P., Zhu, R., Ma, G., Li, C.H., Li, J.P., 2020. SIMS U-Pb dating of vein-hosted hydrothermal rutile and carbon isotope of fluids in the Wulong lode gold deposit, NE China: Linking gold mineralization with craton destruction. Ore Geol. Rev. 127, 103838.

[23]

Feng, H., Shen, P., Zhu, R., Tomkins, A.G., Ma, G., Wu, Y., 2023. Bi/Te control on gold mineralizing processes in the North China Craton: Insights from the Wulong gold deposit. Mineral. Deposita 58 (2), 263-286.

[24]

Fu, L.B., Wei, J.H., Bagas, L., Pirajno, F., Zhao, X., Chen, J.J., Zhang, D.H., Chen, Y., Chen, Y., 2020. Multistage exhumation of the Anjiayingzi gold deposit, northern North China Block: Geodynamic settings and exploration implications. Ore. Geol. Rev. 116, 103220.

[25]

Goldfarb, R.J., Mao, J.W., Qiu, K.F., Goryachev, N., 2021. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 100, 223-250.

[26]

Goldfarb, R.J., Qiu, K.F., Deng, J., Chen, Y.J., Yang, L.Q., 2019. Orogenic gold deposits of China. Soc. Econ. Geologists 22, 263-324.

[27]

Goldfarb, R.J., Groves, D.I., 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 233, 2-26.

[28]

Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.J., Robert, F., 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 13 (1-5), 7-27.

[29]

Groves, D.I., Santosh, M., Goldfarb, R.J., Zhang, L., 2018. Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geosci. Front. 9 (4), 1163-1177.

[30]

Guo, F., Wu, Y.M., Zhang, B., Zhang, X.B., Zhao, L., Liao, J., 2021. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: An overview. Earth-Sci. Rev. 212, 103448.

[31]

Hanyu, T., Tatsumi, Y., Nakai, S,I., Chang, Q., Miyazaki, T., Sato, K., Tani, K., Shibata, T. Yoshida, T., 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry. Geochem. Geophy. Geosy. 7(8), 2005GC001220.

[32]

Hart, C.J., Goldfarb, R.J., Qiu, Y., Snee, L., Miller, L.D., Miller, M.L., 2002. Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic-Mesozoic mineralizing events. Mineral. Deposita 37 (3), 326-351.

[33]

Holwell, D.A., Fiorentini, M.L., Knott, T.R., McDonald, I., Blanks, D.E., McCuaig, T.C., Gorczyk, W., 2022. Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny. Nat. Commun. 13 (1), 1-12.

[34]

Hou, M.L., Ding, X., Jiang, S.Y., 2004. Lead and sulfur isotope geochemistry of the Hexi gold deposit in Penglai‚ eastern Shandong. Acta Geosci. Sinica 25 (2), 145-150 (in Chinese with English abstract).

[35]

Hou, Z.Q., Zhou, Y., Wang, R., Zheng, Y.C., He, W.Y., Zhao, M., Evans, N.J., Weinberg, R. F., 2017. Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology 45 (6), 563-566.

[36]

Hronsky, J.M.A., 2019. Deposit-scale structural controls on orogenic gold deposits: an integrated, physical process-based hypothesis and practical targeting implications. Mineral. Deposita 55 (2), 197-216.

[37]

Huang, X.L., Zhong, J.W., Xu, Y.G., 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochim. Cosmochim. Ac. 96, 193-214.

[38]

Jego, S., Pichavant, M., 2012. Gold solubility in arc magmas: experimental determination of the effect of sulfur at 1000 °C and 0.4 GPa. Geochim. Cosmochim. Ac. 84, 560-592.

[39]

Jian, W., Lehmann, B., Mao, J.W., Ye, H.S., Li, Z.W., 2015. Mineralogy, fluid characteristics, and Re-Os age of the Late Triassic Dahu Au-Mo deposit, Xiaoqinling Region, Central China: Evidence for a magmatic-hydrothermal origin. Econ. Geol. 110, 119-145.

[40]

Jorgensen, T.R.C., Gibson, H.L., Roots, E.A., Vayavur, R., Hill, G.J., Snyder, D.B., Naghizadeh, M., 2022. The implications of crustal architecture and transcrustal upflow zones on the metal endowment of a world-class mineral district. Sci. Rep. 12 (1), 1-10.

[41]

Koua, K.A.D., Sun, H.S., Li, J.W., Li, H., Xie, J.L., Sun, Q.M., Li, Z.K., Yang, H., Zhang, L.G., Mondah, O.R., 2022. Petrogenesis of Early Cretaceous granitoids and mafic enclaves from the Jiaodong Peninsula, eastern China: Implications for crust-mantle interaction, tectonic evolution and gold mineralization. J. Asian Earth Sci. 228, 105096.

[42]

Krmicek, L., Romer, R.L., Timmerman, M.J., Ulrych, J., Glodny, J., Prichystal, A., Sudo, M., 2020. Long-lasting (65 Ma) regionally contrasting late- to post-orogenic Variscan mantle-derived potassic magmatism in the Bohemian Massif. J. Petrol. 61 (7), egaa072.

[43]

Labidi, J., Cartigny, P., Jackson, M.G., 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’ in chemical geodynamics. Earth Planet. Sci. Lett. 417, 28-39.

[44]

Li, H., Zhu, D.P., Algeo, T.J., Li, M., Jiang, W.C., Chen, S.F., Elatikpo, S.M., 2022. Pyrite trace element and S-Pb isotopic evidence for contrasting sources of metals and ligands during superimposed hydrothermal events in the Dongping gold deposit, North China. Mineral. Deposita 58 (2), 337-358.

[45]

Li, J.W., Bi, S.J., Selby, D., Chen, L., Vasconcelos, P., Thiede, D., Zhou, M.F., Zhao, X.F., Li, Z.K., Qiu, H.N., 2012a. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet. Sci. Lett. 349-350, 26-37.

[46]

Li, J.W., Li, Z.-K., Zhou, M.F., Chen, L., Bi, S.-J., Deng, X.D., Qiu, H.N., Cohen, B., Selby, D., Zhao, X.F., 2012b. The Early Cretaceous Yangzhaiyu Lode Gold Deposit, North China Craton: A Link Between Craton Reactivation and Gold Veining. Econ. Geol. 107 (1), 43-79.

[47]

Li, Y., Zhu, G., Su, N., Xiao, S., Wu, X., 2019. The Xiaoqinling metamorphic core complex: A record of Early Cretaceous backarc extension along the southern part of the North China Craton. Geol. Soc. Am Bull. 132 (3-4), 617-637.

[48]

Liang, T., Li, L.M., Lu, R., Xiao, W.J., 2020. Early Cretaceous mafic dikes in the northern Qinling Orogenic Belt, central China: Implications for lithosphere delamination. J. Asian Earth Sci. 194, 104142.

[49]

Liu, J., Davis, G.A., Lin, Z., Wu, F., 2005. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and Contiguous Areas. Tectonophysics 407 (1-2), 65-80.

[50]

Liu, J.C., Wang, Y., Mao, J., Jian, W., Huang, S., Hu, Q., Wei, R., Hao, J., 2021a. Precise ages for lode gold mineralization in the Xiaoqinling gold field, southern margin of the North China Craton; new constraints from in situ U-Pb dating of hydrothermal monazite and rutile. Econ. Geol. 116 (3), 773-786.

[51]

Liu, J.L., Ni, J., Chen, X., Craddock, J.P., Hou, C., 2021b. Early Cretaceous tectonics across the North Pacific: New insights from multiphase tectonic extension in Eastern Eurasia. Earth-Sci, Rev, p. 217.

[52]

Liu, X., Zhao, D.P., Li, S.Z., Wei, W., 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet. Sci. Lett. 464, 166-174. Loucks, R.R., Fiorentini, M.L., Henríquez, G.J., 2020. New magmatic oxybarometer using trace elements in zircon. J. Petrol. 61 (3), egaa034.

[53]

Ma, L., Jiang, S.Y., Hofmann, A.W., Dai, B.Z., Hou, M.L., Zhao, K.D., Chen, L.H., Li, J.W., Jiang, Y.H., 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochim. Cosmochim. Ac. 124, 250-271.

[54]

Ma, L., Jiang, S.Y., Hofmann, A.W., Xu, Y.G., Dai, B.Z., Hou, M.L., 2016. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem. Geol. 432, 1-15.

[55]

Mao, J.W., Goldfarb, R., Zhang, Z., Xu, W., Qiu, Y., Deng, J., 2002. Gold deposits in the Xiaoqinling-Xiong’ershan region, Qinling Mountains, central China. Mineral. Deposita 37 (3-4), 306-325.

[56]

Mernagh, T.P., Bierlein, F.P., 2018. Transport and precipitation of gold in Phanerozoic metamorphic terranes from chemical modelling of fluid-rock interaction. Econ. Geol. 103, 1613-1640.

[57]

Muntean, J.L., Cline, J.S., Simon, A.C., Longo, A.A., 2011. Magmatic-hydrothermal origin of nevada/’s carlin-type gold deposits. Nat. Geosci. 4 (2), 122-127.

[58]

Ni, J., Liu, J., Tang, X., Zhao, C.Q., Zeng, Q.D., 2014. Evolution of the ductile shear zone of the Paishanlou gold deposits, western Liaoning, China. Sci. China Earth Sci. 57 (4), 600-613.

[59]

Peng, P., Mitchell, R.N., Chen, Y., 2022. Earth’s one-of-a-kind fault: The Tanlu fault. Terra Nova 34 (5), 381-394.

[60]

Phillips, G.N., Evans, K.A., 2004. Role of CO 2 in the formation of gold deposits. Nature 429, 860-863.

[61]

Qiu, K.F., Deng, J., Laflamme, C., Long, Z.Y., Wan, R.Q., Moynier, F., Yu, H.C., Zhang, J. Y., Ding, Z.J., Goldfarb, R., 2023. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments. Geochim. Cosmochim. Ac. 343, 133-141.

[62]

Richards, J.P., 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat. Geosci. 6 (11), 911-916.

[63]

Richards, J.P.J., 2022. Porphyry copper deposit formation in arcs: What are the odds? Geosphere 18 (1), 130-155.

[64]

Rielli, A., Tomkins, A.G., Nebel, O., Brugger, J., Etschmann, B., Evans, K.A., Wykes, J.L., Vasilyev, P., Paterson, D.J., 2022. Incipient metal and sulfur extraction during melting of metasomatised mantle. Earth Planet. Sci. Lett. 599, 117850.

[65]

Santana, L.C.V., Mcleod, C.L., Blakemore, D., Shaulis, B., Hill, T., 2020. Bolivian hornblendite cumulates: Insights into the depths of Central Andean arc magmatic systems. Lithos 370, 105618.

[66]

Santosh, M., Yang, Q.Y., Teng, X., Tang, L., 2015. Paleoproterozoic crustal growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Res. 263, 197-231.

[67]

Seal, R.R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 61 (1), 633-677.

[68]

Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeocl. Paleoeco. 132 (1-4), 97-118.

[69]

Tan, J., Wei, J.H., He, H.Y., Su, F., Li, Y.J., Fu, L.B., Zhao, S.Q., Xiao, G.L., Zhang, F., Xu, J.F., Liu, Y., Stuart, F.M., Zhu, R.X., 2018. Noble gases in pyrites from the Guocheng-Liaoshang gold belt in the Jiaodong province: Evidence for a mantle source of gold. Chem. Geol. 480, 105-115.

[70]

Tan, J., Wei, J.H., Audétat, A., Pettke, T., 2012. Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle. Ore Geol. Rev. 48, 70-87.

[71]

Tan, W., Reddy, S.M., Fougerouse, D., Wang, C.Y., Wei, B., Xian, H.Y., Yang, Y.P., He, H. P., 2022. Superimposed microstructures of pyrite in auriferous quartz veins as fingerprints of episodic fluid infiltration in the Wulong Lode gold deposit, NE China. Mineral. Deposita 57 (5), 685-700.

[72]

Tang, M., Monica, E., Graham, E., 2018. The redox ‘‘filter” beneath magmatic orogens and the formation of continental crust. Sci. Bull. 4, eaar4444.

[73]

Wang, Y., Zhou, L.Y., Liu, S.F., Li, J.Y., Yang, T.N., 2018. Post-cratonization deformation processes and tectonic evolution of the North China Craton. Earth-Sci. Rev. 177, 320-365.

[74]

Wang, L., Zeng, Z,X., Kursky, T., Asimow, P., He, C,C., Liu, Y,J., Yang, S., Xu, S, P., 2019. Geochemistry of middle-late Mesozoic mafic intrusions in the eastern North China Craton: New insights on lithospheric thinning and decratonization. Gondwana Res. 73, 153-174.

[75]

Wang, Q.F., Groves, D.I., Deng, J., Li, H.J., Yang, L., Dong, C.Y., 2020a. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction. Mineral. Deposita 55, 1085-1104.

[76]

Wang, Q.F., Zhao, H.S., Groves, D.I., Deng, J., Zhang, Q.W., Xue, S.C., 2020b. The Jurassic Danba hypozonal orogenic gold deposit, western China: indirect derivation from fertile mantle lithosphere metasomatized during Neoproterozoic subduction. Mineral. Deposita 55, 309-324.

[77]

Wang, Z.C., Cheng, H., Zong, K.Q., Geng, X.L., Liu, Y.S., Yang, J.H., Wu, F.Y., Becker, H., Foley, S., Wang, C.Y., 2020c. Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton. Geology 48 (2), 169-173.

[78]

Wang, Q.F., Yang, L., Zhao, H.S., Groves, D.I., Weng, W.J., Xue, S.C., Li, H.J., Dong, C.Y., Yang, L.Q., Li, D.P., Deng, J., 2022a. Towards a universal model for orogenic gold systems: A perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity. Earth-Sci. Rev. 224, 103861.

[79]

Wang, T., Tong, Y., Xiao, W., Guo, L., Windley, B.F., Donskaya, T., Li, S., Tserendash, N., Zhang, J., 2022b. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data. Nati. Sci. Rev. 9 (5), nwab210.

[80]

Wang, B., Zhou, J.B., Ding, Z.J., Wilde, S.A., Song, M.C., Zhao, T.Q., Bao, Z.Y., 2024a. Late Mesozoic magmatism and gold metallogeny of the Jiaodong Peninsula, China: A response to the destruction of the North China Craton. Geol. Soc. Am. Bull. 136 (3-4), 1395-1412.

[81]

Wang, Q,F., Liu, X,F., Yin, R,S., Weng, W,J., Zhao, H,S., Yang, L., Zhai, D,G., Li, D,P., Ma, Y., Groves, D,I., Deng, J., 2024b. Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks: Evidence from Hg isotopes. Geology 52(2), 115-119.

[82]

Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M., 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 192 (3), 331-346.

[83]

Wu, X.D., Zhu, G., Yin, H., Su, N., Lu, Y.H., Zhang, S., Xie, C.L., 2020. Origin of low-angle ductile/brittle detachments: examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics 39 (9), 2020TC006132.

[84]

Xiao, W.J., Windley, B.F., Hao, J., Zhai, M.G., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 22 (6), 8-20.

[85]

Xiong, L., Zhao, X.F., Wei, J.H., Jin, X.Y., Fu, L.B., Lin, Z.W., 2020. Linking Mesozoic lode gold deposits to metal-fertilized lower continental crust in the North China Craton: Evidence from Pb isotope systematics. Chem. Geol. 533, 119440.

[86]

Xu, C., Chakhmouradian, A.R., Taylor, R.N., Kynicky, J., Li, W., Song, W., Fletcher, I.R., 2014. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks. Geochim. Cosmochim. Ac. 143, 189-206.

[87]

Yan, D.P., Kong, R., Dong, X., Qiu, L., Liu, H., 2021. Late Jurassic-Early Cretaceous tectonic switching in Liaodong Peninsula of the North China Craton and the implications for gold mineralisation. Sci. China Earth Sci. 64 (9), 1537-1556.

[88]

Yan, H.Y., Sun, G.C., Zhao, Z.F., Zheng, F., 2023. Temporal geochemical variation in early Paleozoic mafic rocks from the Qinling orogen: Implications for the evolution of slab fluids during oceanic subduction. Chem. Geol. 624, 121431.

[89]

Yang, J.H., Xu, L., Sun, J.F., Zeng, Q., Zhao, Y.N., Wang, H., Zhu, Y.S., 2021. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton. Sci. China Earth Sci. 64 (9), 1409-1427.

[90]

Yang, L., Zhao, R., Wang, Q., Liu, X., Carranza, E.J.M., 2018. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China. J. Struct. Geol. 111, 14-26.

[91]

Yang, L.Q., Li, J.L., Deng, J., Guo, L.N., Wang, X.Z., 2016. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 72, 585-602.

[92]

Yang, L.Q., Deng, J., Zhang, L., Zhao, A.H., Santosh, M., Yu, X.F., Yang, W., Li, D.P., Shan, W., Xie, D., Liu, X.D., Gao, X., Song, M.C., He, W.Y., Li, N., Wang, S.R., Wang, L., 2024. Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics. Earth-Sci. Rev. 255, 104862.

[93]

Zeng, Q.D., Wang, Y.B., Yang, J.H., Guo, Y.P., Yu, B., Zhou, L.L., Qiu, H.C., 2021. Spatial-temporal distribution and tectonic setting of gold deposits in the Northern margin gold belt of the North China Craton. Int. Geol. Rev. 63 (8), 941-972.

[94]

Zhai, M.G., 2014. Multi-stage crustal growth and cratonization of the North China Craton. Geosci. Front. 5 (4), 457-469.

[95]

Zhai, M.G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 24 (1), 275-297.

[96]

Zhang, L., Weinberg, R.F., Yang, L.Q., Groves, D.I., Sai, S.X., Matchan, E., Phillips, D., Kohn, B.P., Miggins, D.P., Liu, Y., Deng, J., 2020. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120 ± 2 Ma during cooling of pregold granite intrusions. Econ. Geol. 115 (2), 415-441.

[97]

Zhang, L.G., 1988. Lead isotopic compositions of feldspar and ore and their geological significance. Mineral Deposits 7 (2), 55-64 (in Chinese with English abstract).

[98]

Zhang, Z.S., Zhang, L.G., Liu, J.X., Wang, B.C., Xu, J.F., Zheng, W.S., 1994. A study on lead isotope geochemical backgrounds of geological bodies in Jiaodong region. Contri. Geol. Mineral Resou. Res. 9 (1), 65-78 (in Chinese with English abstract).

[99]

Zhao, H.S., Wang, Q.F., Kendrick, M.A., Groves, D.I., Fan, T., Deng, J., 2022a. Metasomatized mantle lithosphere and altered ocean crust as a fluid source for orogenic gold deposits. Geochim. Cosmochim. Ac. 334, 316-337.

[100]

Zhao, H.S., Wang, Q.F., Li, C., Pan, R.G., Groves, D.I., Yang, L., Xu, J.F., Deng, J., 2024. Two episodes of post-peak metamorphic high- to moderate-T orogenic gold mineralization at Danba, SW China: timing and fluid source constraints from thermodynamic modeling and U-Pb, Re-Os. and S isotopes. Econ. Geol. 119, 1791-1807.

[101]

Zhao, G.C., Wilde, S., Cawood, P., Sun, M., 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 107 (1-2), 45-73.

[102]

Zhao, S.R., Li, Z.K., Li, J.W., Zhao, X.F., Jiang, S.Y., Lin, H.T., Jie, Y.Q., Tao, H., Du, S.G., 2022b. Trace element and S-Pb isotopic compositions of pyrite from the Precambrian metamorphic rocks and their derivative pegmatites in the Xiaoqinling district, southern North China Craton: Implications for possible gold source of the Early Cretaceous gold deposits. Precamb. Res. 377, 106739.

[103]

Zhao, S.R., Li, Z.K., Zhao, X.F., Li, J.W., 2021. Genesis of the Hongtuling Au-Mo deposit in the southern North China Craton revealed from pyrite trace element compositions and S-Pb isotopes. Ore Geol. Rev. 131, 104017.

[104]

Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics. 475 (2), 327-358.

[105]

Zheng, Y.F., Xu, Z., Zhao, Z.F., Dai, L.Q., 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 61 (4), 353-385.

[106]

Zhen, S., Wang, Q., Wang, D., Carranza, E.J.M., Liu, J., Pang, Z., Cheng, Z., Xue, Z., Wang, J., Zha, Z., 2020. Genesis of the Zhangquanzhuang gold deposit in the northern margin of North China Craton: Constraints from deposit geology and ore isotope geochemistry. Ore Geol. Rev. 122, 103511.

[107]

Zhu, R.X., Fan, H.R., Li, J.W., Meng, Q.R., Li, S.R., Zeng, Q.D., 2015. Decratonic gold deposits. Sci. China Earth Sci. 58 (9), 1523-1537.

[108]

Zhu, R.X., Sun, W.D., 2021. The big mantle wedge and decratonic gold deposits. Sci. China Earth Sci. 64 (9), 1451-1462.

[109]

Zou, D., Zhang, H., 2022. Destruction of the lower crust beneath the North China Craton recorded by granulite and pyroxenite xenoliths. Sci. China Earth. Sci. 66 (2), 190-204.

AI Summary AI Mindmap
PDF (6216KB)

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/