Experimental heating of CI chondrite: Empirical constraints on the evolution of micrometeorite O-isotopes during atmospheric entry

N.G. Rudraswami , M.D. Suttle , Yves Marrocchi , M. Pandey , Laurent Tissandier , Johan Villeneuve

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102046

PDF (2865KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102046 DOI: 10.1016/j.gsf.2025.102046
research-article

Experimental heating of CI chondrite: Empirical constraints on the evolution of micrometeorite O-isotopes during atmospheric entry

Author information +
History +
PDF (2865KB)

Abstract

Extraterrestrial dust exhibits a wide range of textural, chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry. Experimental heating provides an opportunity to investigate the relationship between thermal processing and micrometeorite composition for a known precursor material. We conducted experiments to simulate the atmospheric entry of micrometeorites (MMs) using controlled, short-duration (10-50 s) flash heating (400-1600 °C) of CI chondrite chips (<1500 lm) in atmospheric air (1 bar, 21% O2) combined with microanal-ysis (textures, chemical and isotopic compositions) of the experimental products. The heated chips clo-sely resemble natural samples, with materials similar to unmelted MMs, partially melted (scoriaceous) MMs and fully melted cosmic spherules produced. We reproduced several key features such as dehydra-tion cracks, magnetite rims, volatile gas release, vesicle formation and coalescence, melting and quench cooling. Our parameter space allows for discriminating peak temperature and heating duration effects. Peak temperature is the first-order control on MM mineralogy, while heating duration controls vesicle coalescence and homogenization. When compared against previous heating experiments, our data demonstrates that CI chondrite dust is more thermally resistant, relative to CM chondrite dust, by approximately +200 °C. The 207 measurement of O-isotopes allows, for the first time, petrographic effects (such as volatile degassing and melting) to be correlated against bulk O-isotope evolution. Our results demonstrate findings applicable to CI chondrites and potentially to all fine-grained hydrated carbona-ceous chondrite dust grains: (1) O-isotope variations arising during sub-solidus heating are dominated by the release of water from phyllosilicates, forcing the residual MM composition towards its anhydrous precursor composition. (2) Oxygen isotope compositions undergo the most significant changes at supra-solidus temperatures. As previously demonstrated and now empirically confirmed, most of these changes are driven by a mass-dependent fractionation effect caused by evaporation, which shifts residual rock compositions toward heavier values. Mixing with atmospheric air alters compositions toward the terres-trial fractionation line. Notably, these two processes do not begin simultaneously. Our data indicate that at 1200 °C, isotopic evolution is dominated by evaporative mass loss. However, at higher temperatures (1400-1600 °C), both pronounced evaporation and mixing with atmospheric oxygen become active, resulting in a more complex isotopic signature. (3) The total change in Δ17O during heating up to 1600 °Cis < 3‰ and in most scenarios < 2‰.

Keywords

Micrometeorite / Heating / Oxygen isotope / CI chondrite

Cite this article

Download citation ▾
N.G. Rudraswami, M.D. Suttle, Yves Marrocchi, M. Pandey, Laurent Tissandier, Johan Villeneuve. Experimental heating of CI chondrite: Empirical constraints on the evolution of micrometeorite O-isotopes during atmospheric entry. Geoscience Frontiers, 2025, 16(3): 102046 DOI:10.1016/j.gsf.2025.102046

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

N.G. Rudraswami: Writing - original draft, Project administra-tion, Data curation, Conceptualization. M.D. Suttle: Writing - orig-inal draft, Conceptualization. Yves Marrocchi: Methodology, Conceptualization. M. Pandey: Methodology, Formal analysis. Lau-rent Tissandier: Methodology, Conceptualization. Johan Vil-leneuve: Methodology, Formal analysis.

Data availability

All data generated or analyzed during this study can be accessed at https://doi.org/10.17632/8yx5c9rycx.1.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

ISRO-RESPOND GAP3332 and PMN-MOES GAP2175 Project sup-port this work. We thank Areef Sardar for their assistance during electron microscopy. We thank the reviewers for their suggestions that improved the quality of the manuscript. This is NIO’s contribu-tion No. 7408.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102046.

References

[1]

Anders, E., Grevesse, N., 1989. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197-214.

[2]

Barkan, E., Luz, B., 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 19 (24), 3737-3742.

[3]

Barrat, J., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., Bayon, G., 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes. Geochim. Cosmochim. Acta 83, 79-92.

[4]

Bradley, J.P., 1988. Analysis of chondritic interplanetary dust thin-sections. Geochim. Cosmochim. Acta 52 (4), 889-900.

[5]

Brearley, A.J., 1992. Phyllosilicates in the matrix of the unusual carbonaceous chondrite, LEW 85332 and possible affinities to CI chondrites. In: Abstracts of the Lunar and Planetary Science Conference, volume 23, page 155. Brownlee, D.E., 1985. Collection of cosmic dust: Past and future. International Astronomical Union Colloquium 85, 143-147.

[6]

Brownlee, D.E., Bates, B., Schramm, L., 1997. The elemental composition of stony cosmic spherules. Meteorit. Planet. Sci. 32, 157-175.

[7]

Clayton, R.N., Mayeda, T.K., 1999. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089-2104.

[8]

Clayton, R.N., Mayeda, T.K., Brownlee, D.E., 1986. Oxygen isotopes in deep-sea spherules. Earth Planet. Sci. Lett. 79, 235-240.

[9]

Clayton, R.N., Mayeda, T.K., 2009. Kinetic isotope effects in oxygen in the laboratory dehydration of magnesian minerals. J. Phys. Chem. A 113 (10), 2212-2217.

[10]

Clayton, R.N., Onuma, N., Grossman, L., Mayeda, T.K., 1977. Distribution of the presolar component in Allende and othercarbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209-224.

[11]

Cordier, C., Folco, L., 2014. Oxygen isotopes in cosmic spherules and the composition of the near Earth interplanetary dust complex. Geochim. Cosmochim. Acta 146, 18-26.

[12]

Cordier, C., Folco, L., Suavet, C., Sonzogni, C., Rochette, P., 2011. Major, trace element and oxygen isotope study of glass cosmic spherules of chondritic composition: The record of their source material and atmospheric entry heating. Geochim. Cosmochim. Acta 75 (18), 5203-5218.

[13]

Engrand, C., McKeegan, K.D., Leshin, L., 1999. Oxygen isotopic compositions of individual minerals in Antarctic micrometeorites: Further links to carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2623-2636.

[14]

Engrand, C., McKeegan, K.D., Leshin, L.A., Herzog, G.F., Schnabel, C., Nyquist, L.E., Brownlee, D.E., 2005. Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: toward a better comprehension of atmospheric entry heating effects. Geochim. Cosmochim. Acta 69, 5365-5385.

[15]

Folco, L., Cordier, C., 2015. Micrometeorites. EMU Notes in Mineralogy 15, 253-297.

[16]

Garenne, A., Beck, P., Montes-Hernandez, G., Chiriac, R., Toche, F., Quirico, E., Bonal, L., Schmitt, B., 2014. The abundance and stability of ‘‘water” in type 1 and 2 carbonaceous chondrites (CI, CM and CR). Geochim. Cosmochim. Acta 137, 93-112.

[17]

Genge, M.J., Grady, M.M., Hutchison, R., 1997. The textures and compositions of fine-grained Antarctic micrometeorites: Implications for comparisons with meteorites. Geochim. Cosmochim. Acta 61 (23), 5149-5162.

[18]

Genge, M.J., 2006. Igneous rims on micrometeorites. Geochim. Cosmochim. Acta 70(10), 2603-2621.

[19]

Genge, M.J., Engrand, C., Gounelle, M., Taylor, S., 2008. The classification of micrometeorites. Meteorit. Planet. Sci. 43, 497-515.

[20]

Goderis, S., Soens, B., Huber, M.S., McKibbin, S., Van Ginneken, M., Van Maldeghem, F., Claeys, P., 2020. Cosmic spherules from Widerøefjellet, Sør Rondane Mountains (East Antarctica). Geochim. Cosmochim. Acta 270, 112-143.

[21]

Gounelle, M., Engrand, C., Maurette, M., Kurat, G., McKeegan, K.D., Brandstatter, F., 2005. Small Antarctic micrometeorites: a mineralogical and in situ oxygen isotope study. Meteorit. Planet. Sci. 40, 917-932.

[22]

Greshake, A., Klock, W., Arndt, P., Maetz, M., Flynn, G.J., Bajt, S., Bischoff, A., 1998. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteorit. Planet. Sci. 33, 267-290.

[23]

Ivanova, M.A., Lorenz, C.A., Franchi, I.A., Bychkov, A.Y., Post, J.E., 2013. Experimental simulation of oxygen isotopic exchange in olivine and implication for the formation of metamorphosed carbonaceous chondrites. Meteorit. Planet. Sci. 48 (10), 2059-2070.

[24]

King, A.J., Schofield, P.F., Howard, K.T., Russell, S.S., 2015a. Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochim. Cosmochim. Acta 165, 148-160.

[25]

King, A.J., Solomon, J.R., Schofield, P.F., Russell, S.S., 2015b. Characterizing the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy. Earth Planet. Sp. 67, 1-12.

[26]

King, A.J., Schofield, P.F., Russell, S.S., 2021. Thermal alteration of CM carbonaceous chondrites: mineralogical changes and metamorphic temperatures. Geochim. Cosmochim. Acta 298, 167-190.

[27]

King, A.J., Bates, H.C., Krietsch, D., Busemann, H., Clay, P.L., Schofield, P.F., Russell, S. S., 2019. The Yamato-type (CY) carbonaceous chondrite group: Analogues for the surface of asteroid Ryugu? Geochemistry 79 (4), 125531.

[28]

Klock, W., Stadermann, F.I., 1994. Mineralogical and chemical relationships of interplanetary dust particles, micrometeorites and meteorites. AIP Conf. Proc. 310, 51-88. https://doi.org/10.1063/1.46523.

[29]

Kurat, G., Brandstaetter, F., Maurette, M., Coeberl, C., 1992. CI-like micrometeorites from Cap Prudhomme, Antarctica. In: Abstracts of the Lunar and Planetary Science Conference, volume 23, page 747.

[30]

Kurat, G., Koebrel, C., Presper, T., Brandstattefr, Maurrete, M., 1994. Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim. Acta 58, 3879-3904.

[31]

Lambart, S., Hamilton, S., Lang, O.I., 2022. Compositional variability of San Carlos olivine. Chem. Geol. 605, 120968.

[32]

Libourel, G., Ganino, C., Delbo, M., Niezgoda, M., Remy, B., Aranda, L., Michel, P., 2021. Network of thermal cracks in meteorites due to temperature variations: new experimental evidence and implications for asteroid surfaces. Mon. Not. R. Astron. Soc. 500 (2), 1905-1920.

[33]

Lindgren, P., Lee, M.R., Sparkes, R., Greenwood, R.C., Hanna, R.D., Franchi, I.A., King, A.J., Floyd, C., Martin, P.E., Hamilton, V.E., Haberle, C., 2020. Signatures of the post-hydration heating of highly aqueously altered CM carbonaceous chondrites and implications for interpreting asteroid sample returns. Geochim. Cosmochim. Acta 289, 69-92.

[34]

Love, S.G., Brownlee, D.E., 1991. Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus 89, 26-43.

[35]

Love, S.G., Joswiak, D.J., Brownlee, D.E., 1994. Densities of stratospheric micrometeorites. Icarus 111, 227-236.

[36]

Matrajt, G., Brownlee, D., Sadilek, M., Kruse, L., 2006. Survival of organic phases in porous IDPs during atmospheric entry: A pulse-heating study. Meteorit. Planet. Sci. 41, 903-911.

[37]

Maurette, M., Olinger, C., Michel-Levy, M.C., Kurat, G., Pourchet, M., Brandstätter, F., Bourot-Denise, M., 1991. A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351 (6321), 44-47.

[38]

Miller, M.F., 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66 (11), 1881-1889.

[39]

Moriarty, G.M., Rumble III, D., Friedrich, J.M., 2009. Compositions of four unusual CM or CM-related Antarctic chondrites. Geochemistry 69 (2), 161-168.

[40]

Morin, G.L.F., Marrocchi, Y., Villeneuve, J., Jacquet, E., 2022. 16O-rich anhydrous silicates in CI chondrites: Implications for the nature and dynamics of dust in the solar accretion disk. Geochim. Cosmochim. Acta 332, 203-219.

[41]

Nakamura, T., 2005. Post-hydration thermal metamorphism of carbonaceous chondrites. J. Min. Petr. Sci. 100 (6), 260-272.

[42]

Noguchi, T., Ohashi, N., Tsujimoto, S., Mitsunari, T., Bradley, J.P., Nakamura, T., Toh, S., Stephan, T., Iwata, N., Imae, N., 2015. Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth’s surface. Earth Planet. Sci. Lett. 410, 1-11.

[43]

Noguchi, T., Nakamura, T., Nozaki, W., 2002. Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish Lake and Sayama meteorites. Earth Planet. Sci. Lett. 202 (2), 229-246.

[44]

Nozaki, W., Nakamura, T., Noguchi, T., 2006. Bulk mineralogical changes of hydrous micrometeorites during heating in the upper atmosphere at temperatures below 1000 ℃. Meteorit. Planet. Sci. 41 (7), 1095-1114.

[45]

Pack, A., Höweling, A., Hezel, D.C., Stefanak, M.T., Beck, A.K., Peters, S.T., Sengupta, S., Herwartz, D., Folco, L., 2017. Tracing the oxygen isotope composition of the upper Earth’s atmosphere using cosmic spherules. Nat. Commun. 8 (1), 1-7.

[46]

Piralla, M., Marrocchi, Y., Verdier-Paoletti, M.J., Vacher, L.G., Villeneuve, J., Piani, L., Bekaert, D.V., Gounelle, M., 2020. Primordial water and dust of the Solar System: Insights from in situ oxygen measurements of CI chondrites. Geochim. Cosmochim. Acta 269, 451-464.

[47]

Plane, J.M.C., 2012. Cosmic dust in the Earth’s atmosphere. Chem. Soc. Rev. 41, 6507-6518.

[48]

Prasad, M.S., Rudraswami, N.G., Panda, D.K., 2013. Micrometeorite flux on Earth during the last ∼50,000 years. J. Geophys. Res. 118, 2381-2399.

[49]

Prasad, M.S., Rudraswami, N.G., De Araujo, A., Babu, E.V.S.S.K., Vijaya Kumar, T., 2015. Ordinary chondritic micrometeorites from the Indian Ocean Meteorit. Planet. Sci. 50 (6), 1013-1031.

[50]

Prasad, M.S., Rudraswami, N.G., de Araujo, A.A., Khedekar, V.D., 2018. Characterization, sources and flux of unmelted micrometeorites on Earth during the last∼ 50,000 years. Sci. Rep. 8 (1), 8887.

[51]

Rudraswami, N.G., Shyam, P.M., Dey, S., Plane, J.M.C., Feng, W., Taylor, S., 2015a. Evaluating changes in the elemental composition of micrometeorites during entry into the Earth’s atmosphere. Astrophys. J. 814, 78.

[52]

Rudraswami, N.G., Shyam Prasad, M., Nagashima, K., Jones, R.H., 2015b. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites. Geochim. Cosmochim. Acta 164, 53-70.

[53]

Rudraswami, N.G., Shyam Prasad, M., Jones, R.H., Nagashima, K., 2016. In situ oxygen isotope compositions in olivines of different types of cosmic spherules: An assessment of relationships to chondritic particles. Geochim. Cosmochim. Acta 194, 1-14.

[54]

Rudraswami, N.G., Fernandes, D., Naik, A.K., Shyam Prasad, M., Carrillo-Sánchez, J.D., Plane, J.M.C., Feng, W., Taylor, S., 2018a. Selective disparity of ordinary chondritic precursors in micrometeorite flux. Astrophys. J. 853 (1), 38.

[55]

Rudraswami, N.G., Fernandes, D., Naik, A.K., Shyam Prasad, M., Taylor, S., 2018b. Fine-grained volatile components ubiquitous in solar nebula: Corroboration from scoriaceous cosmic spherules. Meteorit. Planet. Sci. 53 (6), 1207-1222.

[56]

Rudraswami, N.G., Marrocchi, Y., Shyam Prasad, M., Fernandes, D., Villeneuve, J., Taylor, S., 2019. Oxygen isotopic and chemical composition of chromites in micrometeorites: Evidence of ordinary chondrite precursors. Meteorit. Planet. Sci. 54 (6), 1347-1361.

[57]

Rudraswami, N.G., Fernandes, D., Pandey, M., 2020a. Probing the nature of extraterrestrial dust reaching the Earth’s surface collected from the Maitri station. Antarctica. meteorit. Planet. Sci. 55 (10), 2256-2266.

[58]

Rudraswami, N.G., Genge, M.J., Marrocchi, Y., Villeneuve, J., Taylor, S., 2020b. The oxygen isotope compositions of large numbers of small cosmic spherules: Implications for their sources and the isotopic composition of the upper atmosphere. J. Geophys. Res.: Planets 125, e2020JE006414.

[59]

Rudraswami, N.G., Pandey, M., Fernandes, D., Carrillo-Sánchez, J.D., Feng, W., Plane, J. M.C., Singh, V.P., 2022. Oxygen ablation during atmospheric entry: its influence on the isotopic composition of micrometeorites. Astrophys. J. 940 (1), 25.

[60]

Sakamoto, K., Nakamura, T., Noguchi, T., Tsuchiyama, A., 2010. A new variant of saponite-rich micrometeorites recovered from recent Antarctic snowfall. Meteorit. Planet. Sci. 45 (2), 220-237.

[61]

Scicchitano, M.R., Rubatto, D., Hermann, J., Shen, T., Padrón-Navarta, J.A., Williams, I. S., Zheng, Y.-F., 2018. In situ oxygen isotope determination in serpentine minerals by ion microprobe: reference materials and applications to ultrahigh-pressure serpentinites. Geostand. Geoanal. Res. 42 (4), 459-479. https://doi.org/10.1111/ggr.12232.

[62]

Suavet, C., Alexandre, A., Franchi, I.A., Gattacceca, J., Sonzogni, C., Greenwood, R.C., Folco, L., Rochette, P., 2010. Identification of the parent bodies of micrometeorites with high-precision oxygen isotope ratios. Earth Planet. Sci. Lett. 293, 313-320.

[63]

Suavet, C., Cordier, C., Rochette, P., Folco, L., Gattacceca, J., Sonzogni, C., Damphoffer, D., 2011. Ordinary chondrite-related giant (>800 lm) cosmic spherules from the Transantarctic Mountains, Antarctica. Geochim. Cosmochim. Acta 75 (20), 6200-6210.

[64]

Suttle, M.D., Genge, M.J., Folco, L., Russell, S.S., 2017. The thermal decomposition of fine-grained micrometeorites, observations from mid-IR spectroscopy. Geochim. Cosmochim. Acta 206, 112-136.

[65]

Suttle, M.D., Folco, L., Genge, M.J., Russell, S.S., Najorka, J., van Ginneken, M., 2019. Intense aqueous alteration on C-type asteroids: Perspectives from giant fine-grained micrometeorites. Geochim. Cosmochim. Acta 245, 352-373.

[66]

Suttle, M.D., Dionnet, Z., Franchi, I., Folco, L., Gibson, J., Greenwood, R.C., Russell, S.S., 2020. Isotopic and textural analysis of giant unmelted micrometeorites-identification of new material from intensely altered 16O-poor water-rich asteroids. Earth Planet. Sci. Lett. 546, 116444.

[67]

Suttle, M.D., Greshake, A., King, A.J., Schofield, P.F., Tomkins, A., Russell, S.S., 2021a. The alteration history of the CY chondrites, investigated through analysis of a new member: Dhofar 1988. Geochim. Cosmochim. Acta 295, 286-309.

[68]

Suttle, M.D., King, A.J., Schofield, P.F., Bates, H., Russell, S.S., 2021b. The aqueous alteration of CM chondrites, a review. Geochim. Cosmochim. Acta 299, 219-256.

[69]

Suttle, M.D., Folco, L., Dionnet, Z., Van Ginneken, M., Di Rocco, T., Pack, A., Scheel, M., Rotundi, A., 2022. Isotopically heavy micrometeorites—fragments of CY chondrite or a new hydrous parent body? J. Geophys. Res.: Planets 127 (8), e2021JE007154.

[70]

Taylor, S., Lever, J.H., Harvey, R.P., 2000. Numbers, types, and compositions of an unbiased collection of cosmic spherules. Meteorit. Planet. Sci. 35 (4), 651-666.

[71]

Taylor, S., Jones, K.W., Herzog, G.F., Hornig, C.E., 2011. Tomography: A window on the role of sulfur in the structure of micrometeorites. Meteorit. Planet. Sci. 46 (10), 1498-1509.

[72]

Taylor, S., Matrajt, G., Guan, Y., 2012. Fine-grained precursors dominate the micrometeorite flux. Meteorit. Planet. Sci. 47 (4), 550-564.

[73]

Thiemens, M.H., Jackson, T., Zipf, E.C., Erdman, P.W., van Egmond, C., 1995. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science 270 (5238), 969-972.

[74]

Tomeoka, K., Buseck, P.R., 1988. Matrix mineralogy of the Orgueil CI carbonaceous chondrite. Geochim. Cosmochim. Acta 52 (6), 1627-1640.

[75]

Toppani, L., Libourel, G., Engrand, C., Maurette, M., 2001. Experimental simulation of atmospheric entry of micrometeorites. Meteorit. Planet. Sci. 36 (10), 1377-1396.

[76]

Toppani, L., Libourel, G., 2003. Factors controlling compositions of cosmic spinels: application to atmospheric entry conditions of meteoritic materials. Geochim. Cosmochim. Acta 67, 4621-4638.

[77]

Vacher, L.G., Piani, L., Rigaudier, T., Thomassin, D., Florin, G., Piralla, M., Marrocchi, Y., 2020. Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components. Geochim. Cosmochim. Acta 281, 53-66.

[78]

Van Ginneken, M., Folco, L., Cordier, C., Rochette, P., 2012. Chondritic micrometeorites from the Transantarctic Mountains. Meteorit. Planet. Sci. 47 (2), 228-247.

[79]

Van Ginneken, M., Gattacceca, J., Rochette, P., Sonzogni, C., Alexandre, A., Vidal, V., Genge, M.J., 2017. The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites. Geochim. Cosmochim. Acta 21, 196-210.

[80]

Wen, J., Thiemens, M.H., 1991. Experimental and theoretical study of isotope effects on ozone decomposition. J. Geophys. Res. 96 (D6), 10911-10921.

[81]

Young, E.D., Galy, A., Nagahara, H., 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66 (6), 1095-1104.

[82]

Zhang, M., Fukuda, K., Spicuzza, M.J., Siron, G., Heimann, A., Hammerstrom, A.J., Kita, N.T., Ushikubo, T., Valley, J.W., 2022. SIMS matrix effects in oxygen isotope analysis of olivine and pyroxene: Application to Acfer 094 chondrite chondrules and reconsideration of the primitive chondrule minerals (PCM) line. Chem. Geol. 608, 121016.

[83]

Zolensky, M., Barrett, R., Browning, L., 1993. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57 (13), 3123-3148.

AI Summary AI Mindmap
PDF (2865KB)

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/