Assessment of trace elements distribution and sources from snowpits in the Lambert Glacier region, coastal East Antarctica

Yalalt Nyamgerel , Soon Do Hur , Tseren-Ochir Soyol-Erdene , Cunde Xiao , Hyejung Jung , Jeonghoon Lee

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102045

PDF (3326KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102045 DOI: 10.1016/j.gsf.2025.102045
research-article

Assessment of trace elements distribution and sources from snowpits in the Lambert Glacier region, coastal East Antarctica

Author information +
History +
PDF (3326KB)

Abstract

The measurement of trace elements in Antarctic snow is crucial for understanding historical atmospheric geochemical changes and circulation patterns. However, studies on their spatial distributions remain limited, particularly those evaluating multiple metals across several snowpits, making interpretation challenging. This study investigates the distributions and sources of trace elements-including Cd, Ba, Pb, U, Bi, V, Mn, Fe, Cu, Zn, and As-across four snowpits in the Lambert Glacier Basin, East Antarctica. The trace elements exhibit site-, element-, and season-dependent variations, with higher concentrations observed at inland sites. In contrast, δ18O and ion concentrations decrease with increasing distance from the coast and elevation, underscoring the influence of marine emissions. Crustal sources primarily contributed to Ba, U, V, Mn, and Fe, while non-crustal sources predominantly contributed to Cd, Bi, Zn, Pb, Cu, and As. Positive matrix factorization (PMF) analysis indicates that trace element concentrations in Pits 2 and 3 are influenced by both crustal and non-crustal sources, while Pit 4 reflects a mixed-source influence. Pit 1 (coastal site) also indicates the mixed sources with influence of a highly dynamic marine climate and environment. The PMF results reveal similarities in emission sources and atmospheric transport patterns across the snowpits, facilitating a more comprehensive interpretation of longer ice core records. Overall, this study provides valuable insights into trace element distributions and enhances our understanding of past environmental and climatic conditions.

Keywords

Trace elements / Spatial variation / Antarctica / Lambert Glacier Basin / Positive matrix factorization

Cite this article

Download citation ▾
Yalalt Nyamgerel, Soon Do Hur, Tseren-Ochir Soyol-Erdene, Cunde Xiao, Hyejung Jung, Jeonghoon Lee. Assessment of trace elements distribution and sources from snowpits in the Lambert Glacier region, coastal East Antarctica. Geoscience Frontiers, 2025, 16(3): 102045 DOI:10.1016/j.gsf.2025.102045

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yalalt Nyamgerel: Conceptualization, Formal analysis, Writing - original draft, Writing -review and editing. Soon Do Hur: Funding acquisition, Formal analysis, Writing - review and editing. Tseren-Ochir Soyol-Erdene: Writing - review and editing. Xiao Cunde: Writing - review and editing. Hyejung Jung: Writing -review and editing. Jeonghoon Lee: Conceptualization, Writing -review and editing.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Korea Polar Research Institute grant (PE25100) and the National Research Foundation of Korea grant funded by the Korean Government (NRF2022R1A2C3007047). This study was partially supported by Korea Institute of Marine Science & Technology Promotion (KIMST) and by the Ministry of Oceans and Fisheries (RS-2023-00256677; PM23020).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102045.

References

[1]

Allison, I., 1998. Surface climate of the interior of the Lambert Glacier basin, Antarctica, from automatic weather station data. Ann. Glaciol. 27, 515-520. https://doi.org/10.3189/1998AoG27-1-515-520.

[2]

Barbante, C., Turetta, C., Gambaro, A., Capodaglio, G., Scarponi, G., 1998. Sources and origins of aerosols reaching Antarctica as revealed by lead concentration profiles in shallow snow. Ann. Glaciol. 27, 674-678. https://doi.org/10.3189/ 1998AoG27-1-674-678.

[3]

Bruland, K.W., Lohan, M.C., 2003. 6.02 - Controls of trace metals in seawater. Treatise on Geochemistry 6, 23-47. https://doi.org/10.1016/B0-08-043751-6/ 06105-3.

[4]

Cesari, D., Amato, F., Pandolfi, M., Alastuey, A., Querol, X., Contini, D., 2016. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environ. Sci. Pollut. Res. 23, 15133-15148. https://doi. org/10.1007/s11356-016-6599-z.

[5]

Chavent, M., Guégan, H., Kuentz, V., Patouille, B., Saracco, J., 2009. PCA- and PMF-based methodology for air pollution sources identification and apportionment. Environmetrics 20, 928-942. https://doi.org/10.1002/env.963.

[6]

Dixon, D.A., Mayewski, P.A., Korotkikh, E., Sneed, S.B., Handley, M.J., Introne, D.S., Scambos, T.A., 2013. Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. The Cryosphere 7 (2), 515-535. https://doi.org/10.5194/tc-7-515-2013.

[7]

Du, Z., Xiao, C., Ding, M., Li, C., 2018. Identification of multiple natural and anthropogenic sources of dust in snow from Zhongshan Station to Dome A, East Antarctica. J. Glaciol. 64 (248), 855-865. https://doi.org/10.1017/jog.2018.72.

[8]

Du, Z., Xiao, C., Handley, M.J., Mayewski, P.A., Li, C., Liu, S., Ma, X., Yang, J., 2019. Fe variation characteristics and sources in snow samples along a traverse from Zhongshan Station to Dome A, East Antarctica. Sci. Total Environ. 675, 380-389.

[9]

Du, Z., Xiao, C., Mayewski, P., Handley, M.J., Li, C., Ding, M., Liu, J., Yang, J., Liu, K., 2020. The iron records and its sources during 1990-2017 from the Lambert Glacial Basin shallow ice core, East Antarctica. Chemosphere 251, 126399.

[10]

Ding, M., Xiao, C., Li, Y., Ren, J., Hou, S., Jin, B., Sun, B., 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol. 57 (204), 658-666. https://doi.org/10.3189/002214311797409820.

[11]

Ding, M., Zou, X., Sun, Q., Yang, D., Zhang, W., Bian, L., Lu, C., Allison, I., Heil, P., Xiao, C., 2022. The PANDA automatic weather station network between the coast and Dome A, East Antarctica. Earth Syst. Sci. Data 14, 5019-5035. https://doi.org/10.5194/essd-14-5019-2022.

[12]

Fischer, B.M.C., Meerveld, H.J., Seibert, J., 2017. Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation. J. Hydrol. 547, 755-769. https://doi.org/10.1016/j.jhydrol.2017.01.045.

[13]

Fortner, S.K., Lyons, W.B., Olesik, J.W., 2011. Eolian deposition of trace elements onto Taylor Valley Antarctic glaciers. Appl. Geochem. 26-11, 1897-1904. https://doi.org/10.1016/j.apgeochem.2011.06.013.

[14]

Fricker, H.A., Allison, I., Craven, M., Hyland, G., Ruddell, A., Young, N., Coleman, R., Kind, M., Krebs, K., Popov, S., 2002. Redefinition of the grounding zone of the Amery Ice Shelf, East Antarctica, grounding zone. J. Geophys. Res. 107 (B5), ECV 1-1-ECV 1-9. doi:10.1029/2001JB000383.

[15]

Gabrielli, P., Planchon, F., Barbante, C., Boutron, C.F., Petit, J.R., Bulat, S., Hong, S., Gozzi, G., Cescon, P., 2009. Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica. Geochim. Cosmochim. Acta 73 (20), 5959-5974. https://doi.org/10.1016/j.gca.2009.05.050.

[16]

Gabrielli, P., Wegner, A., Petit, J.R., Delmonte, B., De Deckker, P., Gaspari, V., Fischer, H., Ruth, U., Kriews, M., Boutron, C., Cescon, P., Barbante, C., 2010. A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice. Quat. Sci. Rev. 29 (1-2), 265-273. https://doi.org/10.1016/j.quascirev.2009.09.002.

[17]

Gasparon, M., Matschullat, J., 2006. Trace metals in Antarctic ecosystems: results from the Larsemann Hills, East Antarctica. Appl. Geochem. 21 (9), 1593-1612.

[18]

Görlach, U., Boutron, C.F., 1990. Preconcentration of lead, cadmium, copper and zinc in water at the pg g-1 level by nonboiling evaporation. Anal. Chim. Acta 236, 391-398.

[19]

Han, C., Hwang, H., Kang, J.H., Hong, S.B., Han, Y., Lee, K., Hur, S.D., Hong, S., 2020. Reliable ultra trace analysis of Cd, U and Zn concentrations in Greenland snow and ice by using ultraclean methods for contamination control. Molecules 25 (11), 2519. https://doi.org/10.3390/molecules25112519.

[20]

Henderson, G.M., Hall, B.L., Smith, A., Robinson, L.F., 2006. Control on (234U/238U) in lake water: a study in the Dry Valleys of Antarctica. Chem. Geol. 226 (3-4), 298-308. https://doi.org/10.1016/j.chemgeo.2005.09.026.

[21]

Herath, I.K., Ma, H., Bargagli, R., Hu, Y., Hirabayashi, M., Motoyama, H., Shi, G., 2024. Sources and distribution of trace elements in surface snow from coastal Zhongshan Station to Dome A (East Antarctica). Atmos. Environ. 331, 120583.

[22]

Hong, S., Lluberas, A., Rodriguez, F., 2000a. A clean protocol for determining ultralow heavy metal concentrations: its application to the analysis of Pb, Cd, Cu, Zn and Mn in Antarctic snow. Korean J. Polar Res. 11, 35-47.

[23]

Hong, S., Lee, G., Van de Velde, K., Boutron, C.F., 2000b. Variability of Pb, Mn, Al and Na concentrations in snow deposited from winter and early summer 1998 in Livingston Island, Antarctic Peninsula. Journal of Korean Society for. Atmos. Environ. 16 (E-2), 85-96.

[24]

Hong, S., Soyol-Erdene, T.O., Hwang, H.J., Hong, S.B., Hur, S.D., Motoyama, H., 2012. Evidence of global-scale as, Mo, Sb, and Tl atmospheric pollution in the Antarctic snow. Environ. Sci. Technol. 46 (21), 11550-11557. https://doi.org/10.1021/es303086c.

[25]

Hong, S., Han, C.H., Hwang, H.J., Soyol-Erdene, T.-O., Kang, J.H., Hur, S.D., Burn-Nunes, L.J., Gabrielli, P., Barbante, C., Boutron, C.F., 2013. Trace elements and Pb isotope record in Dome C (East Antarctica) ice over the past 800,000 years. E3S Web Conf. 1, 23001. https://doi.org/10.1051/e3sconf/20130123001.

[26]

Huang, W., Yan, M., Mulvaney, R., Qian, Z., Liu, L., An, C., Xiao, C., Zhang, Y., 2021. Spatial variability of glaciochemistry along a transect from Zhongshan Station to LGB69, Antarctica. Atmosphere 12, 393. https://doi.org/10.3390/atmos12030393.

[27]

Hur, S.D., Ming, Y., Barbante, C., Boutron, C.F., Lee, K., Gabrielli, P., Hong, S.-H., Xiao, C., 2007. Seasonal patterns of heavy metal deposition to the snow on Lambert Glacier basin, East Antarctica. Atmos. Environ. 41, 8567-8578. https://doi.org/10.1016/j.atmosenv.2007.07.012.

[28]

Ito, K., Xue, N., Thurston, G., 2004. Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City. Atmos. Environ. 38, 5269-5282.

[29]

Jiang, X.X., Hou, S., Li, Y.S., Pang, H.X., Hua, R., Paul, M., Sharon, S., An, C.L., Michael, H., Liu, K., Zhang, W.B., 2018. Spatial variations of Pb, As, and Cu in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica. Sciences in Cold and Arid Regions 10 (3), 219-231. https://doi.org/10.3724/SP.J.1226.2018.00219.

[30]

Kakareka, S., Kukharchyk, T., Kurman, P., 2020. Study of trace elements in the surface snow for impact monitoring in Vecherny Oasis, East Antarctica. Environ. Monit. Assess 192, 725. https://doi.org/10.1007/s10661-020-08682-8.

[31]

Lee, K.S., Grundstein, A.J., Wenner, D.B., Choi, M.S., Woo, N.C., Lee, D.H., 2003. Climatic controls on the stable isotopic composition of precipitation in North-east Asia. Clim. Res. 23, 137-148. https://doi.org/10.3354/cr023137.

[32]

Li, C., Kang, S., Shi, G., Huang, J., Ding, M., Zhang, Q., Zhang, L., Guo, J., Xiao, C., Hou, S., Sun, B., Qin, D., Ren, J., 2014. Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A. Tellus b: Chemical and Physical Meteorology 66 (1), 25152. https://doi.org/10.3402/tellusb:v66.25152.

[33]

Li, C., Xiao, C., Shi, G., Ding, M., Qin, D., Ren, J., 2016. Spatial and temporal variability of marine-origin matter along a transect from Zhongshan Station to Dome A, Eastern Antarctica. J. Environ. Sci. (China) 46, 190-202. https://doi.org/10.1016/j.jes.2015.07.011.

[34]

Lide, D.R., 2005. Abundance of elements in the earth’s crust and in the sea. In: Lide D.R. (Ed.), CRC Handbook of Chemistry and Physics, Internet Version 2005. CRC Press, Boca Raton.

[35]

Liu, K., Hou, S., Wu, S., Zhang, W., Zou, X., Pang, H., Yu, J., Jiang, X., Wu, Y., 2019. Dissolved iron concentration in the recent snow of the Lambert Glacial Basin, Antarctica. Atmos. Environ. 196, 44-52.

[36]

Liu, K., Hou, S., Wu, S., Zhang, W., Zou, X., Yu, J., Jiang, X., Wu, Y., 2021. Assessment of heavy metal contamination in the atmospheric deposition during 1950-2016 A. D. from a snow pit at Dome A, East Antarctica. Environmental Pollution 268, 115848. https://doi.org/10.1016/j.envpol.2020.115848.

[37]

Liu, H., Anwar, S., Fang, L., Chen, L., Xu, W., Xiao, L., Zhong, B., Liu, D., 2022. Source apportionment of agricultural soil heavy metals based on PMF model and multivariate statistical analysis. Environ. Forensics 25 (1-2), 40-48. https://doi.org/10.1080/15275922.2022.2047838.

[38]

Marchant, B.P., Saby, N.P.A., Arrouays, D., 2017. A survey of top soil arsenic and mercury concentrations across France. Chemosphere 181, 635-644. https://doi.org/10.1016/j.chemosphere.2017.04.10.

[39]

Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H., Headland, R., Herried, B., Katsumata, K., Brocq, A.L., Licht, K., Morgan, F., Neff, P.D., Ritz, C., Scheinert, M., Tamura, T., Putte, A. Van, de, van den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge, B., Tronstad, S., Melvær, Y., 2021. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and subantarctic islands. Environ. Model. Softw. 140, 105015.

[40]

Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/108 ( NTIS PB2015-105147).

[41]

Nyamgerel, Y., Han, Y., Kim, S., Hong, S.-B., Lee, J., Hur, S.D., 2020. Chronological characteristics for snow accumulation on Styx Glacier in northern Victoria Land, Antarctica. J. Glaciol. 66 (260), 916-926. https://doi.org/10.1017/jog.2020.53.

[42]

Nyamgerel, Y., Han, Y., Hwang, H., Han, C., Hong, S., Hur, S., Lee, J., 2024. Climate-related variabilities in the Styx-M ice core record from northern Victoria Land, East Antarctica, during 1979-2014. Sci. Tot. Environ. 935, 173319. https://doi.org/10.1016/j.scitotenv.2024.173319.

[43]

Planchon, F.A., Boutron, C.F., Barbante, C., Cozzi, G., Gaspari, V., Wolff, E.W., Ferrari, C.P., Cescon, P., 2002. Changes in heavy metals in Antarctic snow from Coats Land since the mid- 19th to the late-20th century. Earth Planet Sci. Lett. 200 (1-2), 207-222.

[44]

Rhodes, R.H., Baker, J.A., Millet, M.A., Bertler, N.A.N., 2011. Experimental investigation of the effects of mineral dust on the reproducibility and accuracy of ice core trace element analyses. Chem. Geol. 286 (3-4), 207-221. https://doi.org/10.1016/j.chemgeo.2011.05.006.

[45]

Rodenburg, L.A., Meng, Q., Yee, D., Greenfield, B.K., 2014. Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment. Chemosphere 106, 36-43. https://doi.org/10.1016/j.chemosphere.2013.12.083.

[46]

Sayyed, M.R.G., 2014. Lithological control on the mobility of elements during chemical weathering. Comunicações Geológicas 101 (1), 63-69.

[47]

Schwanck, F., Simões, J.C., Handley, M., Mayewski, P.A., Auger, J.D., Bernardo, R.T., Aquino, F.R., 2017. A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica. Cryosphere 11 (4), 1537-1552. https://doi.org/10.5194/tc-11-1537-2017.

[48]

Shi, G., Teng, J., Ma, H., Li, Y., Sun, B., 2015. Metals and metalloids in precipitation collected during CHINARE campaign from Shanghai, China, to Zhongshan Station, Antarctica: Spatial variability and source identification. Global Biogeochem. Cycles 29, 760-774. https://doi.org/10.1002/2014GB005060.

[49]

Shi, G., Teng, J., Ma, H., Wang, D., Li, Y., 2018. Metals in topsoil in Larsemann Hills, an ice-free area in East Antarctica: lithological and anthropogenic inputs. Catena 160, 41-49. https://doi.org/10.1016/j.catena.2017.09.001.

[50]

Taghvaee, S., Sowlat, M.H., Mousavi, A., Hassanvand, M.S., Yunesian, M., Naddafi, K., Sioutas, C., 2018. Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci. Total Environ. 628-629, 672-686. https://doi.org/10.1016/j.scitotenv.2018.02.096.

[51]

Tang, X., Guo, J., Dou, Y., Zhang, Y., Cheng, S., Luo, K., Yu, L., Cui, X., Li, L., Zhang, S., Sun, B., 2020. Glaciological and meteorological conditions at the Chinese Taishan Station, East Antarctica. Front. Earth Sci. 8, 250. https://doi.org/10.3389/feart.2020.00250.

[52]

Tuohy, A., Bertler, N., Neff, P., Edwards, R., Emanuelsson, D., Beers, T., Mayewski, P., 2015. Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. J. Geophys. Res. Atmos. 120, 10996-11011. https://doi.org/10.1002/ 2015JD023293.

[53]

Vallelonga, P., Barbante, C., Cozzi, G., Gaspari, V., Candelone, J.-P., Van De Velve, K., Morgan, V.I., Rosman, K.J.R., Boutron, C.F., Cescon, P., 2004. Elemental indicators of natural and anthropogenic aerosol inputs to Law Dome, Antarctica. Ann. Glaciol 39, 169-174. https://doi.org/10.3189/172756404781814483.

[54]

Van De Velde, K., Vallelonga, P., Candelone, J.P., Rosman, K., Gaspari, V., Cozzi, G., Barbante, C., Udisti, R., Cescon, P., Boutron, C.F., 2005. Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth Planet. Sci. Lett. 232, 95-108. https://doi.org/10.1016/j.epsl.2005.01.007.

[55]

Yang, D., Yao, T., Wu, G., Zhao, H., Zhu, M., Deji Qu, D., Shi, Y., 2024. Identifying the natural and agricultural impacts on the glaciochemistry of the Aru ice core on the northwestern Tibetan Plateau. Sci. Tot. Environ. 906, 167501. https://doi.org/10.1016/j.scitotenv.2023.167501.

[56]

Wedepohl, K.H., 1995. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.

[57]

Zheng, K., Li, Y., Li, Z., Huang, J., 2021. Provenance tracing of dust using rare earth elements in recent snow deposited during the pre-monsoon season from mountain glaciers in the central to northern Tibetan Plateau. Environ. Sci. Pollut. Res. 28 (33), 45765-45779. https://doi.org/10.1007/s11356-021-13561-x.

[58]

Xiao, C., Allison, I., Ren, J., Qin, D., Zhang, M., Li, Z., 2004. Meteorological and glaciological evidence for different climatic variations on the east and west sides of the Lambert Glacier basin, Antarctica. Ann. Glaciol. 39, 188-194. https://doi.org/10.3189/172756404781814492.

[59]

Xu, G., Chen, L., Zhang, M., Zhang, Y., Wang, J., Lin, Q., 2019. Year-round records of bulk aerosol composition over the Zhongshan Station, Coastal East Antarctica. Air Qual. Atmos. Health 12, 271-288. https://doi.org/10.1007/s11869-018-0642-9.

[60]

Xu, Q., Chu, Z., Gao, Y., Mei, Y., Yang, Z., Huang, Y., Yang, L., Xie, Z., Sun, L., 2020. Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environmental Pollution 257, 113552. https://doi.org/10.1016/j.envpol.2019.113552.

AI Summary AI Mindmap
PDF (3326KB)

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/