Contribution of pegmatite shells to magmatic evolution and rare metal mineralization: Insights from the Shihuiyao deposit, Inner Mongolia, Northeast China

Zhichao Zhang , Zheng Ji , Yusheng Zhu , Hao Yang , Zhenyu Chen , Haoran Wu , Yongzhi Wang , Wenchun Ge

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102042

PDF (9206KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102042 DOI: 10.1016/j.gsf.2025.102042
research-article

Contribution of pegmatite shells to magmatic evolution and rare metal mineralization: Insights from the Shihuiyao deposit, Inner Mongolia, Northeast China

Author information +
History +
PDF (9206KB)

Abstract

Highly evolved granite associated with pegmatite shells exhibits significant potential for rare metal min-eralization; however, the mechanisms through which these pegmatite shells contribute to magmatic evo-lution and rare metal enrichment remain poorly understood. The Late Jurassic Shihuiyao Nb-Ta-(Rb-Be- Li) deposit is one of the largest rare-metal deposits in the Southern Great Xing’an Range (SGXR), Northeast China. Exploratory trenches expose distinct layered zones from top to bottom: alternating microcline pegmatite and aplite layers (zone I), topaz lepidolite albite granite and lepidolite amazonite pegmatite (zone II), and muscovite albite granite (zone III). We conducted U-Pb dating of cassiterite, monazite, and Nb-Ta oxide, monazite Nd isotopes, and whole-rock and mineral geochemistry for the three zones. Multi-mineral U-Pb ages indicate that the three zones formed during the Late Jurassic- Early Cretaceous (147-142 Ma). Geochemical analyses of whole-rock, mica, and microcline suggest an evolutionary sequence from zone I to zone III, and finally to zone II. The Zr/Hf, Nb/Ta, Y/Ho, and K/Rb ratios combined with the rare earth element (REE) tetrad effects suggest higher degree of differentiation and fluid-melt interaction of the Shihuiyao leucogranite without a pegmatite shell compared to coeval barren granites from both Shihuiyao and the SGXR. A progressive increase in the degree of evolution is evident from the leucogranite without a pegmatite shell to the leucogranite with a discontinuous shell, and ultimately to the leucogranite with a continuous shell. The pegmatite shell acted as a geochemical barrier that facilitated the accumulation of Li and F in the underlying magma, which played a crucial role in lowering the solidus temperature of the granitic magma. This process prolonged the crystallization duration while reducing melt viscosity and density, thereby creating favorable conditions for magma dif-ferentiation and fluid-melt interaction. Rapid crystallization of the earlier water-and Be-rich melt led to the Be mineralization in the pegmatite shell. Moreover, the formation of this shell served as a barrier for Li mineralization in the underlying topaz lepidolite albite granite. This study enhances our understanding of the critical contribution of pegmatite shells to magmatic evolution and rare-metal mineralization.

Keywords

Pegmatite shell / Highly fractionated granite / Magmatic-hydrothermal evolution / Fractional crystallization / Fluid–melt interaction

Cite this article

Download citation ▾
Zhichao Zhang, Zheng Ji, Yusheng Zhu, Hao Yang, Zhenyu Chen, Haoran Wu, Yongzhi Wang, Wenchun Ge. Contribution of pegmatite shells to magmatic evolution and rare metal mineralization: Insights from the Shihuiyao deposit, Inner Mongolia, Northeast China. Geoscience Frontiers, 2025, 16(3): 102042 DOI:10.1016/j.gsf.2025.102042

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhichao Zhang: Writing - review & editing, Writing - original draft, Visualization, Validation, Investigation, Formal analysis. Zheng Ji: Validation, Resources, Methodology, Conceptualization. Yusheng Zhu: Validation, Investigation. Hao Yang: Validation, Investigation. Zhenyu Chen: Investigation. Haoran Wu: Investiga-tion. Yongzhi Wang: Validation, Investigation. Wenchun Ge: Val-idation, Resources, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We appreciate the Key Laboratory of Metallogeny and Mineral Assessment, Chinese Academy of Geological Sciences, Beijing, China for EPMA analysis and the State Key Laboratory of Litho-spheric Evolution, Institute of Geology and Geophysics, Beijing, China for LA-ICP-MS elemental analysis of topaz, mica, and micro-cline, LA-ICP-MS monazite, cassiterite, and Nb–Ta oxide U–Pb dat-ing, and monazite Nd isotope. We also appreciate Solution Analytical Technology Co., Ltd, Wuhan, China, for whole-rock major and trace element analysis. The work was financially sup-ported by the Key Research Program of the Institute of Geology & Geophysics, CAS (IGGCAS-202205), the National Natural Science Foundation of China (Grant No. 92062216 and 42102046), Doctoral Students’ Scientific Research and Innovation Capability Enhance-ment Program of Jilin Province (JJKH20250074BS), and Graduate Innovation Fund of Jilin University (2024CX231).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102042.

References

[1]

Bai, W.J., Dong, Y., Ge, W.C., Yang, H., Bi, J.H., Liu, C., Yu, J.L., Zhou, H.Y., Ji, Z., 2023. Subduction initiation of Paleo-Pacific Ocean and final closure of Paleo-Asian Ocean: constraints from Triassic granitoids in Jiamusi Block, NE China. Int. Geol. Rev. 66 (12), 2313-2344.

[2]

Bain, W.M., Lecumberri-Sanchez, P., Marsh, E.E., Steele-MacInnis, M., 2022. Fluids and melts at the magmatic-hydrothermal transition, recorded by unidirectional solidification textures at Saginaw Hill, Arizona, USA. Econ. Geol. 117 (7), 1543-1571.

[3]

Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartese, R., Vigneresse, J., 2016. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology 44, 231-234.

[4]

Ballouard, C., Massuyeau, M., Elburg, M.A., Tappe, S., Viljoen, F., Brandenburg, J.T., 2020. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth Sci. Rev. 203, 103115.

[5]

Bartels, A., Behrens, H., Holtz, F., Schmidt, B.C., 2015. The effect of lithium on the viscosity of pegmatite forming liquids. Chem. Geol. 410, 1-11.

[6]

Breiter, K., Vanˇková M., Galiová M.V., Korbelová Z., Kanicky´ V., 2017. Lithium and trace-element concentrations in triotahedral micas from granites of different geochemical types measured via laser ablation ICP-MS. Mineral. Mag. 81 (1), 15-33.

[7]

Butler, R.W.H., Torvela, T., 2018. The competition between rates of deformation and solidification in syn-kinematic granitic intrusions: resolving the pegmatite paradox. J. Struct. Geol. 117, 1-13.

[8]

Cao, H.W., Pei, Q.M., Santosh, M., Li, G.M., Zhang, L.K., Zhang, X.F., Zhang, Y.H., Zou, H., Dai, Z.W., Lin, B., Tang, L., Yu, X., 2022. Himalayan leucogranites: a review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth Sci. Rev. 234, 104229.

[9]

Chen, X.K., Zhou, Z.H., Gao, X., Zhao, J.Q., 2023. Insights into the formation of Shihuiyao Ta-Nb deposit in southern Great Xing’an Range, NE China: evidence from chronology and fluid inclusion. Ore Geol. Rev. 158, 105522.

[10]

Chen, X.K., Zhou, Z.H., 2023. Deposit types, metallogenesis and resource prospect of Li-Be-Nb-Ta deposits in the Great Xing’an Range. Acta Petrol. Sin. 39 (7), 1973- 1991 (in Chinese with English abstract).

[11]

Ding, X., 2016. Ore-Forming Mechanism of the Asikaerte Granite Type Beryllium Deposit in Xinjiang, China. M.S. thesis, China University of Geosciences (in Chinese with English abstract).

[12]

Dostal, J., Kontak, D.J., Gerel, O., Shellnutt, J.G., Fayek, M., 2015. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: products of extreme magmatic fractionation and pervasive metasomatic fluid: rock interaction. Lithos 236-237, 173-189.

[13]

Duan, Z.P., Jiang, S.Y., Su, H.M., Zhu, X.Y., Zou, T., Cheng, X.Y., 2021. Geochronological and geochemical investigations of the granites from the giant Shihuiyao Rb-(Nb-Ta-Be-Li) deposit, Inner Mongolia: implications for magma source, magmatic evolution, and rare metal mineralization. Lithos 400-401, 106415.

[14]

Duan, Z.P., Jiang, S.Y., Su, H.M., Zhu, X.Y., Zou, T., 2022. Nb-Ta oxides as recorders of hydrothermal activity in the Shihuiyao Rb-Nb-Ta-(Be-Li) deposit, Inner Mongolia, NE China. Ore Geol. Rev. 150, 105149.

[15]

Duan, Z.P., Jiang, S.Y., Su, M.H., Salvi, S., Monnier, L., Zhu, X.Y., Lv, X.Q., 2024. Beryl as an indicator for elemental behavior during magmatic evolution and metasomatism in the large Shihuiyao Rb-Nb-Ta-Be deposit, Inner Mongolia, NE China. Ore Geol. Rev. 166, 105940.

[16]

Duke, E.F., Papike, J.J., Laul, J.C., 1992. Geochemistry of a boron rich peraluminous granite pluton: the Calamity Peak layered granite-pegmatite complex, Black Hills, South Dakota. Can. Mineral. 30, 811-833.

[17]

Gao, Y., Zhang, D.D., Zhao, J.Q., Chen, X.K., Zhou, Z.H., Ding, Q.F., Feng, J.R., Liu, G.D., 2023. Petrogenesis of the Mesozoic granitoids from the Yuanlinzi Sn-Cu deposit, Northeast China: implications for Cu-rich Sn mineralization. Ore Geol. Rev. 163, 105770.

[18]

Gauzzi, T., da Silva, G.Á., Diniz, R.S., Graça, L.M., 2019. Polycrystals of ‘‘imperial” topaz from Minas Gerais state, Brazil. Miner. Petrol. 113, 273-283.

[19]

Gordiyenko, V.V., 1971. Concentrations of Li, Rb, and Cs in potash feldspar and muscovite as criteria for assessing the rare-metal mineralization in granite pegmatites. Int. Geol. Rev. 13, 134-142.

[20]

Green, T.H., 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 120, 347-359.

[21]

Guo, C.L., Zhang, B.W., Zheng, Y., Xu, J.Q., Zhao, Q.Q., Yan, J.Y., Zhou, R., Fu, W., Huang, K., 2024. Granite-type lithium deposits in China: important characteristics, metallogenic conditions, and genetic mechanism. Acta Petrol. Sin. 40 (2), 347- 403 (in Chinese with English abstract).

[22]

Harlaux, M., Mercadier, J., Bonzi, W.M.E., Kremer, V., Marignac, C., Cuney, M., 2017. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): insights from LA-ICP-MS analysis of primary fluid inclusions. Geofluids 2017 (1), 1925817.

[23]

Holtz, F., Johannes, W., Tamic, N., Behrens, H., 2001. Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56, 1-14.

[24]

Hönig, S., Leichmann, J., Novák, M., 2010. Unidirectional solidification textures and garnet layering in V-enriched garnet-bearing aplite-pegmatites in the Cadomian Brno Batholith, Czech Republic. J. Geosci. 55 (2), 113-129.

[25]

Hort, M., Marsh, B.D., Spohn, T., 1993. Igneous layering through oscillatory nucleation and crystal settling in well mixed magmas. Contrib. Miner. Petrol. 114, 425-440.

[26]

Jahn, B.M., Wu, F.Y., Chen, B., 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23 (2), 82-92.

[27]

Jahn, B.M., Wu, F.Y., Capdevila, R., Martineau, F., Zhao, Z.H., Wang, Y.X., 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 59, 171-198.

[28]

Jahns, R.H., Tuttle, F.O., 1963. Layered pegmatite-aplite intrusives. Mineralogical Society of America, Special Papers 1, 78-92.

[29]

Ji, G.Y., Jiang, S.H., Li, G.F., Yi, J.J., Zhang, L.L., Liu, Y.F., 2021. Metallogenetic control of magmatism on the Maodeng Sn-Cu deposit in the southern Great Xing’an Range: evidence from geochronology, geochemistry, and Sr-Nd-Pb isotopes. Geotecton. Metallog. 45 (4), 681-704 (in Chinese with English abstract).

[30]

Ji, Z., Meng, Q.A., Wan, C.B., Zhu, D.F., Ge, W.C., Zhang, Y.L., Yang, H., Dong, Y., 2019. Geodynamic evolution of flat-slab subduction of Paleo-Pacific Plate: constraints from Jurassic adakitic lavas in the Hailar Basin, NE China. Tectonics 38, 4301-4319.

[31]

Ji, Z., Ge, W.C., Yang, H., Wang, Y.Z., Wu, H.R., Zhang, Z.C., Dong, Y., Zhou, H.Y., Jing, Y., 2024. Linking beryllium enrichment to crystal-melt separation in granitic magmatic systems: insights from high-silica granites in the southern Great Xing’an Range, NE China. GSA Bull. 136 (7-8), 3335-3352.

[32]

Jiang, S.H., Leon, B., Hu, P., Han, N., Chen, C.L., Liu, Y., Kang, H., 2016. Zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: implications for the timing of mineralization and ore genesis. Lithos 261 (15), 322-339.

[33]

Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin, pp. 18-57.

[34]

Legros, H., Marignac, C., Mercadier, J., Cuney, M., Richard, A., Wang, R.C., Charles, N., Lespinasse, M.Y., 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos 264, 108-124.

[35]

Liu, Y.J., Li, W.M., Feng, Z.Q., Wen, Q.B., Neubauer, F., Liang, C.Y., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondw. Res. 43, 123-148.

[36]

Liu, Y.J., Li, W.M., Ma, Y.F., Feng, Z.Q., Guan, Q.B., Li, S.Z., Chen, Z.X., Liang, C.Y., Wen, Q.B., 2021b. An orocline in the eastern Central Asian Orogenic Belt. Earth-Sci. Rev. 221, 103808.

[37]

Liu, X.C., Matthew, J.K., Wang, J.M., He, S.X., Wang, R.C., Wu, F.Y., 2024. Formation of lithium-rich pegmatites via rapid crystallization and shearing-case study from the South Tibetan Detachment, Himalaya. Earth Planet. Sci. Lett. 629, 118598.

[38]

Liu, Y.C., Qin, K.Z., Zhao, J.X., Zhou, Q.F., Shi, R.Z., He, C.T., Gao, Y.Y., 2023. Feldspar traces mineralization processes in the Qongjiagang giant lithium ore district, Himalaya, Tibet. Ore Geol. Rev. 157, 105451.

[39]

Liu, W., Siebel, W., Li, X.J., Pan, X.F., 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: constraints on basaltic underplating. Chem. Geol. 219 (1-4), 5-35.

[40]

Liu, H.N., Yuan, F., Zhao, S.J., Fan, M.J., Guo, X.G., 2020. SHRIMP U-Pb zircon ages, geochemistry and Sr-Nd-Hf isotope systematics of the Zalute intrusive suite in the Southern Great Xing’an Range, NE China: petrogenesis and geodynamical implications. Minerals 10, 927.

[41]

Liu, L.J., Zhou, T.F., Fu, B., Zhang, D.Y., Yuan, F., Liu, G.X., White, N.C., Hollings, P., 2021a. Petrogenesis of Early Cretaceous granitic rocks from the Haobugao area, southern Great Xing’an Range, northeast China: geochronology, geochemistry and Sr-Nd-Hf-O isotope constraints. Lithos 406-407, 106501.

[42]

London, D., 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can. Mineral. 30, 499-540.

[43]

London, D., 1999. Melt boundary-layers and the growth of pegmatitic textures. Can. Mineral. 37, 826-827.

[44]

London, D., 2008. Pegmatites. Canad. Mineral, Special Publications 10, 1-347.

[45]

London, D., 2022. A Rayleigh model of cesium fractionation in granite-pegmatite systems. Am. Mineral. 107 (1), 82-91.

[46]

London, D., Morgan, G.B., 2012. The pegmatite puzzle. Elements 8, 263-268.

[47]

Maneta, V., Anderson, A.J., 2018. Monitoring the crystallization of water-saturated granitic melts in real time using the hydrothermal diamond anvil cell. Contrib. Miner. Petrol. 173, 83.

[48]

Manning, D.A.C., 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Miner. Petrol. 76, 206-215.

[49]

Mi, K.F., Z.C., Yan, T.J., Zou, T., 2020. Zircon U-Pb geochronology and Sr-Nd-Hf-O isotopic constraints on the relationship between Mo and Pb-Zn mineralization in the Haisugou pluton in the southern Great Xing’an Range, northeast China. Ore Geol. Rev. 144, 104838.

[50]

Mulja, T., Williams-Jones, A.E., 2018. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada. Chem. Geol. 493, 282-297.

[51]

Müller, A., Kirwin, D., Seltmann, R., 2023. Textural characterization of unidirectional solidification textures related to Cu-Au deposits and their implication for metallogenesis and exploration. Miner. Deposita 58, 1211-1235.

[52]

Ouyang, H.G., Mao, J.W., Zhou, Z.H., Su, H.M., 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondw. Res. 27 (3), 1153-1172.

[53]

Pollard, P.J., 2021. The Yichun Ta-Sn-Li deposit, South China: evidence for extreme chemical fractionation in F-Li-P-Rich Magma. Econ. Geol. 116 (2), 453-469.

[54]

Rieder, M., Hybler, J., Smrcok, L., Weiss, Z., 1996. Refinement of the crystal structure of lepidolite 2M1. Eur. J. Mineral. 8, 1241-1248.

[55]

Rockhold, J.R., Nabelek, P.I., Glascock, M.D., 1987. Origin of rhythmic layering in the Calamity Peak satellite pluton of the Harney Peak granite, South Dakota: the role of boron. Geochim. Cosmochim. Acta 51, 487-496.

[56]

Rudnick. R., Gao, S., 2003. Composition of the Continental Crust. Elsevier Inc. 6 (4), 1-51.

[57]

Sánchez-Muñoz, L., Müller, A., Andrés, S.L., Martin, R.F., Modreski, P.J., de Moura, O.J. M., 2017. The P-Fe diagram for K-feldspars: a preliminary approach in the discrimination of pegmatites. Lithos 272-273, 116-127.

[58]

Shuai, X., Li, S.M., Zhu, D.C., Wang, Q., Zhang, L.L., Zhao, Z., 2021. Tetrad effect of rare earth elements caused by fractional crystallization in high-silica granites: an example from central Tibet. Lithos 384-385, 105968.

[59]

Smeds, S.A., 1992. Trace elements in potassium-feldspar and muscovite as a guide in the prospecting for lithium-and tin-bearing pegmatites in Sweden. J. Geochem. Explor. 42, 351-369.

[60]

Soufi, M., 2021. Origin and physical-chemical control of topaz crystallization in felsic igneous rocks: contrasted effect of temperature on its OH-F substitution. Earth Sci. Rev. 213, 103467.

[61]

Stern, L.A., Brown, G.E., Bird, D.K., Jahns, R.H., Foord, E.E., Shigley, J.E., Spaulding, L.B., 1986. Mineralogy and geochemical evolution of the Little Three pegmatite-aplite layered intrusive, Ramona, California. Am. Mineral. 71 (3-4), 406-427.

[62]

Su, H.M., Jiang, S.Y., Zhu, X.Y., Duan, Z.P., Huang, X.K., Zou, T., 2021. Magmatic-hydrothermal processes and controls on rare-metal enrichment of the Baerzhe peralkaline granitic pluton, Inner Mongolia, northeastern China. Ore Geol. Rev. 131, 103984.

[63]

Sun, Y., 2013. Study on the Magmatic-Fluid Evolution and Metallogenesis of Rare-Metal Granite in Mid-South Great Hinggan Mountains. M.S. thesis, Peking University (in Chinese with English abstract).

[64]

Sun, Y., Wang, R.J., Li, J.K., Zhao, Z., 2015. 40 Ar-39 Ar Dating of the Muscowite and regional exploration prospect of Shihuiyao Rubidium-multi-metal deposit, Selenhot, Inner Mongolia. Geol. Rev. 61 (2), 463-468 (in Chinese with English abstract).

[65]

Sun, D.Y., Wang, S., Gou, J., Zhang, D., Deng, C., Yang, D., Tian, L., 2023. Petrogenesis of Shihuiyao Rare-Metal Granites in the Southern Great Xing’an Range, NE China. Minerals 13 (5), 701.

[66]

Tang, Y., Wang, H., Zhang, H., Lv, Z.H., 2018. K-feldspar composition as an exploration tool for pegmatite-type rare metal deposits in Altay, NW China. J. Geochem. Explor. 185, 130-138.

[67]

Thomas, R., Davidson, P., 2013. The missing link between granites and granitic pegmatites. J. Geosci. 58, 183-200.

[68]

Wang, F.H., Bagas, L., Jiang, S.H., Liu, Y.F., 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geol. Rev. 80, 1206-1229.

[69]

Wang, C., Shao, Y.J., Cawood, P.A., Chen, J.F., Xiong, Y.Q., Wang, Y.J., 2023. Regional Zoning of a Li-Cs-Ta pegmatite field: insights from monazite-cheralite chemistry, U-Th-Pb and Sm-Nd isotopes. J. Petrol. 64 (7), 1-24.

[70]

Wang, R.C., Wu, B., Xie, L., Che, X.D., Xiang, L., Liu, C., 2021. Global tempo-spatial distribution of rare-metal mineralization and continental evolution. Acta Geol. Sin. 95 (l), 182-193.

[71]

Webber, K.L., Simmons, W.B., Falster, A.U., Foord, E.E., 1999. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. Am. Mineral. 84, 708-717.

[72]

Wilde, S.A., 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—a review of the evidence. Tectonophysics 662, 345-362.

[73]

Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., Wilde, S., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187, 143-173.

[74]

Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 41 (1), 1-30.

[75]

Wu, F.Y., Guo, C.L., Hu, F.Y., Liu, X.C., Zhao, J.X., Li, X.F., Qin, K.Z., 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrol. Sin. 39 (1), 1-36 (in Chinese with English abstract).

[76]

Wu, G., Liu, R.L., Chen, G.Z., Li, T.G., Li, R.H., Li, Y.L., Yang, F., Zhang, T., 2021. Mineralization of the Weilasituo rare metal-tin-polymetallic ore deposit in Inner Mongolia: insights from fractional crystallization of granitic magmas. Acta Petrol. Sin. 37 (3), 637-664 (in Chinese with English abstract).

[77]

Wu, M.Q., Samson, I.M., Zhang, D., 2018. Textural features and chemicalevolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China. Econ. Geol. 113, 937-960.

[78]

Wu, H.R., Yang, H., Ge, W.C., Ji, Z., Wang, K.Y., Jing, J.H., Jing, Y., 2022. Formation age and genesis of the Nasigatu greisen-type berylium mineralization in the southern Great Xing’an Range: monazite chronological and geochemical evidence. Acta Petrol. Sin. 38 (7), 1915-1936 (in Chinese with English abstract).

[79]

Wu, H.R., Yang, H., Ge, W.C., Santosh, M., Jing, J.H., Ji, Z., Jing, Y., 2024. The origin of high-silica granites and rare metal mineralization: insights from geochemistry and U-Pb-Sr-Nd-Hf-O isotopes of Early Cretaceous granitoids in the southern Great Xing’an Range, NE China. GSA Bull. 136 (3-4), 1151-1170.

[80]

Xie, L., Liu, Y., Wang, R.C., Hu, H., Che, X.D., Xiang, L., 2018. Li-Nb-Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith, south China: a fluid-rich and quenching ore-forming process. J. Asian Earth Sci. 185, 104047.

[81]

Xie, W., Zeng, Q.D., Wang, R.L., Wu, J.J., Zhang, Z.M., Li, F.C., Zhang, Z., 2021. Spatial-temporal distribution and tectonic setting of Mesozoic W-mineralized granitoids in the Xing-Meng Orogenic Belt, NE China. Int. Geol. Rev. 64 (13), 1845-1884.

[82]

Yang, Y.H., Wu, S.T., Che, X.D., Yang, M., Huang, C., Wang, H., Yang, J.H., Wang, R.C., Wu, F.Y., 2024. In-situ isotopic dating and tracing of the rare-metal minerals in ore deposit. Acta Petrologica Sinica 40 (4), 1023-1043 (in Chinese with English abstract).

[83]

Zaraisky, G.P., Korzhinskaya, V., Kotova, N., 2010. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550°C and 50 to 100 MPa. Miner. Petrol. 99, 287-300.

[84]

Zhang, J.H., Gao, S., Ge, W.C., Wu, F.Y., Yan, J.H., Wilde, S.A., Li, M., 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: implications for subduction-induced delamination. Chem. Geol. 276, 44-65.

[85]

Zhang, T.F., Guo, S., Xin, H.T., Zhang, Y., Liu, W.G., Zhang, K., Liu, C.B., Wang, K.X., Zhang, C., 2019a. Petrogenesis and magmatic evolution of highly fractionated granite and their constraints on Sn-(Li-Rb-Nb-Ta) mineralization in the Weilasituo Deposit, nner Mongolia, Southern Great Xing’an Range, China. Earth Science 44 (1), 248-267 (in Chinese with English abstract).

[86]

Zhang, Z.Y., Hou, Z.Q., Peng, H.M., Fan, X.K., Wu, X.Y., Dai, J.L., 2019b. In situ oxygen isotope, trace element, and fluid inclusion evidence for a primary magmatic fluid origin for the shell-shaped pegmatoid zone within the giant Dahutang tungsten deposit, Jiangxi Province, South China. Ore Geol. Rev. 104, 540-560.

[87]

Zhang, T.F., Hou, Z.Q., Pan, X.F., Duan, L.F., Xiang, Z.Q., 2023a. Cassiterite geochemistry and U-Pb geochronology of the Shihuiyao Rb-(Nb-Ta-Be-Sn) deposit, Northeast China. Implication for ore-forming processes and mineral exploration. Ore Geol. Rev. 156, 105393.

[88]

Zhang, Z.C., Ji, Z., Ge, W.C., Yang, H., Wu, H.R., Wang, Y.Z., 2023b. Contribution discrepancy of two distinct wall rocks to wolframite mineralization from Dongshanwan quartz-vein tungsten deposit, Southern Great Xing’an Range, China. Ore Geol. Rev. 163, 105800.

[89]

Zhang, X.B., Wang, K.Y., Wang, C.Y., Li, W., Yu, Q., Wang, Y.C., Li, J.F., Wan, D., Huang, G.H., 2017. Age, genesis, and tectonic setting of the Mo-W mineralized Dongshanwan granite porphyry from the Xilamulun metallogenic belt, NE China. J. Earth Sci. 28, 433-446.

[90]

Zhou, Z.H., Mao, J.W., Lyckberg, P., 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: implication for their origin and tectonic setting. J. Asian Earth Sci. 49 (30), 272-286.

[91]

Zhou, Z.H., Breiter, K., Wilde, S.A., Gao, X., Burnham, A.D., Ma, X.H., Zhao, J.Q., 2022. Ta-Nb mineralization in the shallow-level highly-evolved P-poor Shihuiyao granite, Northeast China. Lithos 416-417, 106655.

[92]

Zhou, Z.H., Mao, J.W., 2022. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range. Earth Sci. Front. 9 (1), 176-199 (in Chinese with English abstract).

[93]

Zhu, J.C., Wang, R.C., Lu, J.J., Zhang, H., Zhang, W.L., Xie, L., Zhang, R.Q., 2011. Fractionation, evolution, petrogenesis and mineralization of Laiziling granite pluton, southern Hunan Province. Geological Journal of China Universities 17 (3), 381-392 (in Chinese with English abstract).

[94]

Zhang, Z.C., Ji, Z., Ge, W.C., Yang, H., Wu, H.R., Zhu, Y.S., Wang, Y.Z., 2024. Linking beryllium mineralization to fluid-rock reactions: A case study of the Madumeng quartz vein-type beryllium mineralization in the Southern Great Xing’an Range, Northeast China. Lithos 484- 485 (1-2), 107744.

AI Summary AI Mindmap
PDF (9206KB)

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/