Metamorphic evolution of blueschists in the Heilongjiang Complex: Implications for the subduction history of the Mudanjiang Ocean

Guang-Ming Sun , Xu-Ping Li , Hans-Peter Schertl , Wen-Yong Duan

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102039

PDF (8763KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102039 DOI: 10.1016/j.gsf.2025.102039
research-article

Metamorphic evolution of blueschists in the Heilongjiang Complex: Implications for the subduction history of the Mudanjiang Ocean

Author information +
History +
PDF (8763KB)

Abstract

The Heilongjiang Complex in northeast China (NE China) separates the Jiamusi and Songliao blocks and marks the suture zone of the former Mudanjiang Ocean, as evidenced by a variety of oceanic basalt-derived blueschists. Understanding the closure history of the Mudanjiang Ocean is crucial to unravelling the tectonic transition from the final amalgamation of the Central Asian Orogenic Belt (CAOB) to the onset of the Paleo-Pacific subduction. In this study, we investigate epidote-ferroglaucophane (Ep-Fgl) and garnet-ferrobarroisite (Grt-Fbrs) schists from the Yilan area of the Heilongjiang Complex through petro-logical, mineralogical, thermodynamic modelling, whole-rock geochemical, and geochronological analy-ses. The Ep-Fgl schists preserve a peak assemblage of ferroglaucophane + epidote + chlorite + clinopyroxene + phengite + titanite with peak P-T conditions of 13.5-15.8 kbar and 458-495 °C. On the other hand, the Grt-Fbrs schists exhibit a peak assemblage of garnet + glaucophane/ferroglauco phane + lawsonite + chlorite + phengite + rutile ± clinopyroxene ± titanite, deriving peak P-T conditions of 16.4-18.3 kbar and 457-475 °C. Both types of schist record similar clockwise P-T paths, with three metamorphic stages: a peak epidote-to-lawsonite blueschist-facies stage, a post-peak decompression stage in the epidote amphibolite-facies, and a late greenschist-facies overprint stage. The Ep-Fgl schists display alkaline OIB-like geochemical affinities, while the Grt-Fbrs schists show tholeiitic MORB-like characteristics, suggesting that the protoliths represent fragments of the Mudanjiang oceanic crust. Magmatic zircon grains from Ep-Fgl schists yield protolith ages of 276 ± 1 Ma and 280 ± 1 Ma, whereas zircon of Grt-Fbrs schists document protolith ages of 249 ± 2 Ma and 248 ± 2 Ma, indicating that the Mudanjiang Ocean existed since at least the early Permian. Reconstruction of the metamorphic P-T evo-lution, combined with previous magmatic and metamorphic age data from rocks of the Heilongjiang Complex and of adjacent tectonic units suggests that the subduction and eventual closure of the Mudanjiang Ocean occurred between the late Triassic and middle Jurassic, driven by a regional stress regime shift caused by the westward subduction of the Paleo-Pacific Plate beneath Eurasia.

Keywords

Heilongjiang Complex / Mudanjiang Ocean / Blueschist / Metamorphic evolution / Geochronology / Geochemistry

Cite this article

Download citation ▾
Guang-Ming Sun, Xu-Ping Li, Hans-Peter Schertl, Wen-Yong Duan. Metamorphic evolution of blueschists in the Heilongjiang Complex: Implications for the subduction history of the Mudanjiang Ocean. Geoscience Frontiers, 2025, 16(3): 102039 DOI:10.1016/j.gsf.2025.102039

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Guang-Ming Sun: Writing - original draft, Investigation, For-mal analysis, Data curation, Conceptualization. Xu-Ping Li: Writing - review & editing, Supervision, Funding acquisition, Conceptual-ization. Hans-Peter Schertl: Writing - review & editing, Supervi-sion, Conceptualization. Wen-Yong Duan: Software, Investigation.

Data availability

Data are available through Mendeley Data at: https://doi.org/10.17632/kb3b2zympk.3. Declaration of competing interest

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We extend our sincere thanks to Sabine Weisel for her assis-tance with sample preparation, Thomas Murad and Niels Jöns for their help during experimental analyses, and Arne Willner for shar-ing his expertise on high-P/low-T rocks. We also appreciate the support of Yajing Mao and Lingquan Zhao during the preparation of the manuscript. This research was financially supported by the National Natural Science Foundation of China (No. U2244206).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102039.

References

[1]

Agard, P., Yamato, P., Jolivet, L., Burov, E., 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth Sci. Rev. 92, 53-79.

[2]

Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204 Pb. Chem. Geol. 192 (1), 59-79.

[3]

Aoki, K., Itaya, T., Shibuya, T., Masago, H., Kon, Y., Terabayashi, M., Kaneko, Y., Kawai, T., Maruyama, S., 2008. The youngest blueschist belt in SW Japan: implication for the exhumation process of the Cretaceous Sanbagawa high-P/T metamorphic belt. J. Metamorph. Geol. 26, 583-602.

[4]

Aouizerat, A., Xiao, W., Schulmann, K., Jerábek, P., Monié P., Zhou, J.-B., Zhang, J., Ao, S., Li, R., Li, Y., Esmaeili, R., 2019. Structures, strain analyses, and 40 Ar/ 39 Ar ages of blueschist-bearing Heilongjiang complex (NE China): implications for the Mesozoic tectonic evolution of NE China. Geol. J. 54 (2), 716-745.

[5]

Aouizerat, A., Xiao, W., Schulmann, K., Windley, B.F., Zhou, J., Zhang, J., Ao, S., Song, D., Monie, P., Liu, K., 2020. Accretion, subduction erosion, and tectonic extrusion during late Paleozoic to Mesozoic orogenesis in NE China. J. Asian Earth Sci. 194, 104258.

[6]

Bi, J.H., Ge, W.C., Yang, H., Zhao, G.C., Yu, J.J., Zhang, Y.L., Wang, Z.H., Tian, D.X., 2014. Petrogenesis and tectonic implications of early Paleozoic granitic magmatism in the Jiamusi Massif, NE China: geochronological, geochemical and Hf isotopic evidence. J. Asian Earth Sci. 96, 308-331.

[7]

Chen, S.S., Fan, W.M., Shi, R.D., Xu, J.F., Liu, Y.M., 2021. The Tethyan Himalaya igneous province: early melting products of the Kerguelen mantle plume. J. Petrol. 62 (11), 1-22.

[8]

Chen, Z., Li, G.Y., Xiao, W.J., Zhou, J.B., 2022. History of collision between the Jiamusi and Songliao blocks: new constraints from the Luobei complex, NE China. Int. J. Earth Sci. 111, 2669-2689.

[9]

Diener, J.F.A., Powell, R., 2012. Revised activity-composition models for clinopyroxene and amphibole. J. Metamorph. Geol. 30, 131-142.

[10]

Dong, Y., He, Z.H., Ren, Z.H., Ge, W.C., Yang, H., Ji, Z., He, Y., 2018a. Formation of the Permian Taipinggou igneous rocks, north of Luobei (Northeast China): implications for the subduction of the Mudanjiang Ocean beneath the Bureya-Jiamusi Massif. Int. Geol. Rev. 60 (10), 1195-1212.

[11]

Dong, Y., Ge, W.C., Yang, H., Ji, Z., He, Y., Zhao, D., Xu, W., 2018b. Convergence history of the Jiamusi and Songnen-Zhangguangcai Range massifs: insights from detrital zircon U-Pb geochronology of the Yilan Heilongjiang Complex, NE China. Gondwana Res. 56, 51-68.

[12]

Dong, Y., Ge, W.C., Yang, H., Xu, W.L., Liu, X.W., Bi, J.H., Ji, Z., 2019. Geochemical and SIMS U-Pb rutile and LA-ICP-MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang Ocean from amphibolites of the Heilongjiang complex, NE China. Gondwana Res. 69, 25-44.

[13]

Ernst, W.G., Liou, J.G., 2008. High-and ultrahigh-pressure metamorphism: past results and future prospects. Am. Mineral. 93, 1771-1786.

[14]

Evans, B.W., 1990. Phase relations of epidote-blueschists. Lithos 25, 3-23.

[15]

Gao, J., Klemd, R., 2003. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos 66, 1-22.

[16]

Ge, M.H., Zhang, J.J., Li, L., Liu, K., 2018. A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Lesser Xing’an-Zhangguangcai Range granitoids. Lithos 302, 263-277.

[17]

Ge, M.H., Zhang, J.J., Liu, K., Li, Z., 2020. The Late Paleozoic to Mesozoic tectonics of the Jiamusi block: evidence from the geochemical characteristics of the blueschists and the 40 Ar-39 Ar age of the mica schist in the Heilongjiang complex, Northeast China. Chin. J. Geol. 55 (4), 1179-1201 (in Chinese with English abstract).

[18]

Ge, M.H., Zhang, J.J., Liu, K., Ling, Y.Y., Wang, M., Wang, J.M., 2016. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China. Lithos 261, 232-249.

[19]

Ge, M.H., Zhang, J.J., Li, L., Liu, K., Ling, Y.Y., Wang, J.M., Wang, M., 2017. Geochronology and geochemistry of the Heilongjiang complex and the granitoids from the Lesser Xing’an-Zhangguangcai Range: implications for the late Paleozoic-Mesozoic tectonics of eastern NE China. Tectonophysics 717, 565-584.

[20]

Green, E.C.R., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845-869.

[21]

Han, X.M., Zheng, C.Q., Xu, X.C., Han, Y.B., Xu, J.L., 2018. Blueschist facies metamorphism and its evolution in the Yilan area, Heilongjiang Province. Acta Petrol. Sin. 34 (04), 1139-1153 (in Chinese with English abstract).

[22]

Hao, W.L., Xu, W.L., Wang, F., Tang, J., Xu, M.J., Gao, F.H., 2014. Geochronology of the ‘‘Neoproterozoic” Yimianpo Group in the Zhangguangcai Range, NE China: constraints from U-Pb ages of detrital and magmatic zircons. Acta Petrol. Sin. 30 (7), 1867-1878 (in Chinese with English abstract).

[23]

Harrison, T.M., McDougall, I., 1980. Investigations of an intrusive contact, northwest Nelson, New Zealand—II. Diffusion of radiogenic and excess 40 Ar in biotite, muscovite, and hornblende. Geochim. Cosmochim. Acta 44 (12), 2005-2020.

[24]

Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., Heizler, M.T., 2009. Diffusion of 40 Ar in muscovite. Geochim. Cosmochim. Acta 73 (4), 1039-1051.

[25]

Hofmann, A., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297-314.

[26]

Holland, T., 2009. AX: A Program to Calculate Activities of Mineral Endmembers from Chemical Analyses (Usually Determined by Electron Microprobe). Available at:

[27]

Holland, T.J.B., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29 (3), 333-383.

[28]

Holland, T.J.B., Powell, R., 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 145, 492-501.

[29]

Huang, P.H., Wei, C.J., Zhang, J.R., 2021. High-P metamorphism of garnet-epidote-amphibole schists from the Yuli Belt, Eastern Taiwan: Evidence related to warm subduction. J. Metamorph. Geol. 39 (6), 675-693.

[30]

Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211 (1-2), 47-69.

[31]

Jeffcoat, C.R., 2012. U-Pb Zircon Geochronology, Hf Isotope and Trace Element Geochemistry of a unique Lower Crustal-Upper Mantle Section of a Dying Slow-Spreading Mid-Ocean Ridge ( Macquarie Island, Southern Ocean). Ph.D. thesis, University of Alabama, Tuscaloosa.

[32]

Jia, S., Zheng, C., Liang, C., Zhou, J., Xu, X., Zhao, Y., Wen, Q., 2022. Metamorphism of the Yilan amphibolites from the Heilongjiang Complex and deformation of the granodioritic mylonites from the Jiamusi Massif, Northeastern China. Geol. J. 57 (8), 3368-3394.

[33]

Jing, J.J., Yang, H., Ge, W.C., Ji, Z., Zhang, Y.L., Dong, Y., Lan, L.X., Bi, J., Zhou, H.Y., 2022. Provenance and metamorphic records of forearc sediments from the Heilongjiang Complex, NE China: implications for subduction erosion associated with the Mudanjiang Ocean. Geol. Soc. Am. Bull. 134 (11-12), 3049-3063.

[34]

Li, W.M., Takasu, A., Liu, Y.J., Genser, J., Zhao, Y.L., Han, G.Q., Guo, X.Z., 2011. U-Pb and 40 Ar/ 39 Ar age constrains on protolith and high-P/T type metamorphism of the Heilongjiang Complex in the Jiamusi Massif, NE China. J. Mineral. Petrol. Sci. 106, 326-331.

[35]

Li, W.M., Liu, Y.J., Takasu, A., Zhao, Y.L., Wen, Q.B., Guo, X.Z., Zhang, L., 2014. Pressure (P)-temperature (T)-time (t) paths of the blueschists from the Yilan area, Heilongjiang Province. Acta Petrol. Sin. 30 (10), 3085-3099 (in Chinese with English abstract).

[36]

Li, G.Y., Zhou, J.B., Li, H.D., Chen, Z., Wang, H.Y., Wang, B., 2022. The transition of the Late Paleozoic tectonic regime in eastern Jilin and Heilongjiang provinces: constraints from the double accretionary complex and island arc magmatic rock belts in the Jiamusi-Khanka Block. Acta Petrol. Sin. 38 (9), 2743-2761 (in Chinese with English abstract).

[37]

Li, G.Y., Zhou, J.B., Li, L., 2023. The Jiamusi Block: a hinge of the tectonic transition from the Paleo-Asian Ocean to the Paleo-Pacific Ocean regimes. Earth Sci. Rev. 236, 104279.

[38]

Li, X.P., Kong, F.M., Zheng, Q.D., Dong, X., Yang, Z.Y., 2010. Geochronological study on the Heilongjiang complex at Luobei area, Heilongjiang Province. Acta Petrol. Sin. 26, 2015-2024 (in Chinese with English abstract).

[39]

Liang, H.D., Jin, S., Wei, W.B., Gao, R., Hou, H.S., Han, J.T., Han, S., Liu, G.X., 2017. Deep electrical structures of the eastern margin of the Songnen massif and the western margin of the Jiamusi massif. Chin. J. Geophys. 60, 1511-1520 (in Chinese with English abstract).

[40]

Liu, Y.J., Li, W.M., Feng, Z.Q., Wen, Q.B., Neubauer, F., Liang, C.Y., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 43, 123-148.

[41]

Long, X.Y., Xu, W.L., Guo, P., Sun, C.Y., Luan, J.P., 2020. Opening and closure history of the Mudanjiang Ocean in the eastern Central Asian Orogenic Belt: geochronological and geochemical constraints from early Mesozoic intrusive rocks. Gondwana Res. 84, 111-130.

[42]

Ludwig, K.R., 2007. Isoplot/Ex version 3.41b, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4.

[43]

Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 38, 485-594.

[44]

Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Wang, F., Zhang, X.Z., 2011. Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China: zircon U-Pb-Hf isotopes and geochemical evidence. J. Asian Earth Sci. 41 (2), 119-132.

[45]

Oh, C.W., Liou, J.G., 1998. A petrogenetic grid for eclogite and related facies under high-pressure metamorphism. Island Arc 7 (1-2), 36-51.

[46]

Ota, T., Kaneko, Y., 2010. Blueschists, eclogites, and subduction zone tectonics: insights from a review of Late Miocene blueschists and eclogites, and related young high-pressure metamorphic rocks. Gondwana Res. 18, 167-188.

[47]

Pearce, J.A., Ernst, R.E., Peate, D.W., Rogers, C., 2021. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos 392-393, 106068.

[48]

Pourteau, A., Scherer, E.E., Schorn, S., Bast, R., Schmidt, A., Ebert, L., 2019. Thermal evolution of an ancient subduction interface revealed by Lu-Hf garnet geochronology, Halilbag˘ı Complex (Anatolia). Geosci. Front. 10 (1), 127-148.

[49]

Qin, J.F., Lai, S.C., Li, Y.F., Ju, Y.J., Zhu, R.Z., Zhao, S.W., 2016. Early Jurassic monzogranite-tonalite association from the southern Zhangguangcai Range: implications for paleo-Pacific plate subduction along northeastern China. Lithosphere 8 (4), 396-411.

[50]

Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. Treat. Geochem. 3, 1-64.

[51]

Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59, 101-118.

[52]

Shervais, J.W., 2022. The petrogenesis of modern and ophiolitic lavas reconsidered: Ti-V and Nb-Th. Geosci. Front. 13 (2), 101319.

[53]

Shido, F., Miyashiro, A., Ewing, M., 1971. Crystallization of abyssal tholeiites. Contrib. Mineral. Petrol. 31, 251-266.

[54]

Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London Spec. Publ. 42 (1), 313-345.

[55]

Tian, Z.L., Wei, C.J., 2014. Coexistence of garnet blueschist and eclogite in South Tianshan, NW China: dependence of P-T evolution and bulk-rock composition. J. Metamorph. Geol. 32 (7), 743-764.

[56]

Tian, Y., Liang, X., Wang, G., Tang, Y., Chen, S., Gao, X., Yang, B., Guo, Z., Wang, Y., Wen, J., 2023. Protolith origin of the Lanling high-pressure metamorphic terrane in central Qiangtang, Tibet, reveals the subduction of the Permian-Triassic ocean island and abyssal submarine fan in the Paleo-Tethys Ocean. Gondwana Res. 121, 404-417.

[57]

Tsujimori, T., Ernst, W.G., 2014. Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: a review. J. Metamorph. Geol. 32, 437-454.

[58]

Vermeesch, P., 2006. Tectonic discrimination of basalts with classification trees. Geochim. Cosmochim. Acta. 70 (7), 1839-1848.

[59]

Wang, F., Liu, F., Schertl, H.P., Liu, P., Ji, L., Cai, J., Liu, L., 2019. Paleo-Tethyan tectonic evolution of Lancangjiang metamorphic complex: evidence from SHRIMP U-Pb zircon dating and 40 Ar/ 39 Ar isotope geochronology of blueschists in Xiaoheijiang-Xiayun area. Gondwana Res. 65, 142-155.

[60]

Wang, F., Xu, W.L., Xu, Y.G., Gao, F.H., Ge, W.C., 2015. Late Triassic bimodal igneous rocks in eastern Heilongjiang Province, NE China: implications for the initiation of subduction of the Paleo-Pacific Plate beneath Eurasia. J. Asian Earth Sci. 97, 406-423.

[61]

Wang, X., Zhang, J., Liu, Q., Zhou, H., Yin, C., Zhang, S., Chen, Y., Cheng, C., Guo, M., 2023. Petrogenesis and tectonic setting of Neoarchean tonalitic-trondhjemitic granodioritic gneisses in the Xiwulanbulang area of the Yinshan block. North China Craton. Geol. Soc. Am. Bull. 135 (11-12), 2922-2938.

[62]

Wei, C.J., Duan, Z.Z., 2018. Phase relations in metabasic rocks: constraints from the results of experiments, phase modelling and ACF analysis. Geol. Soc. London Spec. Publ. 474 (1), 25-45.

[63]

Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock forming minerals. Am. Mineral. 95 (1), 185-187.

[64]

White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., Green, E.C.R., 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32, 261-286.

[65]

Wilde, S.A., Zhang, X.Z., Wu, F.Y., 2000. Extension of a newly-identified 500 Ma metamorphic terrain in Northeast China: further U-Pb SHRIMP dating of the Mashan complex, Heilongjiang Province, China. Tectonophysics 328, 115-130.

[66]

Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2003. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence for igneous ages from the Mashan Complex. Precambr. Res. 122, 311-327.

[67]

Wilde, S.A., Zhou, J.B., 2015. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. J. Asian Earth Sci. 113, 909-921.

[68]

Willner, A.P., Maresch, W.V., Massonne, H.J., Sandritter, K., Willner, G., 2016. Metamorphic evolution of blueschists, greenschists, and metagreywackes in the Cretaceous Mt. Hibernia Complex (SE Jamaica). Eur. J. Mineral. 28 (6), 1059-1078.

[69]

Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 164 (12), 31-47.

[70]

Winchester, J.A., Floyd, P.A., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett. 28, 459-469.

[71]

Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., Jahn, B.M., 2007. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc 16, 156-172.

[72]

Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 41 (1), 1-30.

[73]

Xiao, W.J., Windley, B.F., Han, C.M., Yuan, C., Sun, M., Li, J.L., Sun, S., 2009. End Permian to mid-Triassic termination of the southern Central Asian Orogenic Belt. Inter. J. Earth Sci. 98, 1189-1217.

[74]

Xin, Z., Hou, H., Han, J., Liu, L., Liu, C., Wang, T., 2023. Magnetotelluric data reveals subduction polarity and reactivation of the Mudanjiang suture zone, Northeast China. Sci. China Earth Sci. 66 (6), 1309-1320.

[75]

Xu, M., Xiao, W., Liu, K., Wan, B., Mitchell, R.N., Rosenbaum, G., Wang, H., 2024. Subduction erosion revealed by exhumed lower arc crustal rocks in an accretionary complex, northeastern China. Geology 52 (6), 400-404.

[76]

Xu, W.L., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B., Wang, W., 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 74, 167-193.

[77]

Yang, H., Ge, W.C., Zhao, G.C., Bi, J.H., Wang, Z.H., Dong, Y., Xu, W.L., 2017. Zircon U-Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan region, NE China: constraints on the high-grade metamorphism and tectonic affinity of the Jiamusi-Khanka Block. Lithos 268-271, 16-31.

[78]

Yang, H., Ge, W.C., Zhao, G.C., Yu, J.J., Zhang, Y.L., 2015. Early Permian-late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications. Gondwana Res. 27, 1509-1533.

[79]

Yang, H., Ge, W.C., Dong, Y., Bi, J.H., Ji, Z., He, Y., Jing, Y., Xu, W.L., 2019. Permian subduction of the Paleo-Pacific (Panthalassic) oceanic lithosphere beneath the Jiamusi Block: geochronological and geochemical evidence from the Luobei mafic intrusions in Northeast China. Lithos 332, 207-225.

[80]

Yang, Y., Liang, C.Y., Zheng, C.Q., Xu, X.C., Zhou, J.B., Zhou, X., Cao, C.G., 2021. Metamorphic evolution of high-grade granulite-facies rocks of the Mashan Complex, Liumao area, eastern Heilongjiang Province, China: evidence from zircon U-Pb geochronology, geochemistry and phase equilibria modelling. Precambr. Res. 355, 106095.

[81]

Yang, Y., Liang, C.Y., Zheng, C.Q., Xu, X.C., Zhou, X., Hu, P.Y., 2022. The metamorphic characteristics of metapelites of the Mashan Group in Mashan area, eastern Heilongjiang Province, China: constraint on the crustal evolution of the Jiamusi Massif. Gondwana Res. 102, 299-331.

[82]

Yu, G.Y., Yang, H., Jing, J.H., Ding, X., Ji, Z., Zhang, Y.L., Dong, Y., Ge, W.C., 2023. Tectonic nature, subduction, and closure of the Mudanjiang Ocean: insights from newly discovered oceanic fragments in the Luobei Heilongjiang Complex. Lithos 446, 107141.

[83]

Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Günther, D., Wu, F.Z., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostand. Geoanal. Res. 28 (3), 353-370.

[84]

Zhao, Y.L., Liu, Y.J., Li, W.M., Wen, Q.B., Han, G.Q., 2010. High-pressure metamorphism in the Mudanjiang area, southern Jiamusi massif: petrol-and geochronological characteristics of the Heilongjiang complex, China. Geol. Bull. China 29 (2-3), 243-253 (in Chinese with English abstract).

[85]

Zhao, L.L., Zhang, X.Z., 2011. Petrological and geochronological evidences of tectonic exhumation of Heilongjiang complex in the eastern part of Heilongjiang Province, China. Acta Petrol. Sin. 27, 1227-1234.

[86]

Zhou, J.B., Cao, J.L., Wilde, S.A., Zhao, G.C., Zhang, J.J., Wang, B., 2014. Paleo-Pacific subduction-accretion: evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 33, 2444-2466.

[87]

Zhou, J.B., Li, L., 2017. The Mesozoic accretionary complex in Northeast China: evidence for the accretion history of Paleo-Pacific subduction. J. Asian Earth Sci. 145, 91-100.

[88]

Zhou, J.B., Han, J., Wilde, S.A., Guo, X.D., Zeng, W.S., Cao, J.L., 2013. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt: evidence and tectonic implications. Acta Petrol. Sin. 29 (2), 386-398.

[89]

Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J., Zhang, X.H., 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478, 230-246.

[90]

Zhou, J.B., Wilde, S.A., Zhao, G.C., Zhang, X.Z., Zheng, C.Q., Wang, H., 2010. New SHRIMP U-Pb Zircon ages from the Heilongjiang Complex in NE China: constraints on the Mesozoic evolution of NE China. Am. J. Sci. 310, 1024-1053.

[91]

Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Liu, F.L., 2011. A >1300 km late Pan-African metamorphic belt in NE China: new evidence from the Xing’an Block and its tectonic implications. Tectonophysics 509, 280-292.

[92]

Zhou, J.B., Wilde, S.A., 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res. 23, 1365-1377.

[93]

Zhou, J.B., Wilde, S.A., Zhao, G.C., Han, J., 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth Sci. Rev. 186, 76-93.

[94]

Zhu, C.Y., Zhao, G.C., Sun, M., Liu, Q., Han, Y.G., Hou, W.Z., Zhang, X.R., Eizenhofer, P. R., 2015. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 216-217, 241-253.

[95]

Zhu, C.Y., Gao, R., Zhao, G.C., 2022. Permian to Cretaceous tectonic evolution of the Jiamusi and Songliao blocks in NE China: Transition from the closure of the Paleo-Asian Ocean to the subduction of the Paleo-Pacific Ocean. Gondwana Res. 103, 371-388.

[96]

Zhu, C.Y., Zhao, G.C., Sun, M., Han, Y., Liu, Q., Eizenhöfer, P.R., Zhang, X., Hou, W., 2017. Detrital zircon U-Pb and Hf isotopic data for meta-sedimentary rocks from the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 282-283, 23-32.

AI Summary AI Mindmap
PDF (8763KB)

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/