Spatiotemporal analysis of AGB and BGB in China: Responses to climate change under SSP scenarios

Chuanmei Zhu , Yupu Li , Jianli Ding , Jiexin Rao , Yihang Xiang , Xiangyu Ge , Jinjie Wang , Jingzhe Wang , Xiangyue Chen , Zipeng Zhang

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102038

PDF (9333KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102038 DOI: 10.1016/j.gsf.2025.102038
research-article

Spatiotemporal analysis of AGB and BGB in China: Responses to climate change under SSP scenarios

Author information +
History +
PDF (9333KB)

Abstract

Aboveground biomass (AGB) and belowground biomass (BGB) are key components of carbon storage, yet their responses to future climate changes remain poorly understood, particularly in China. Understanding these dynamics is essential for global carbon cycle modeling and ecosystem management. This study integrates field observations, machine learning, and multi-source remote sensing data to reconstruct the distributions of AGB and BGB in China from 2000 to 2020. Then CMIP6 was used to predict the distribution of China under three SSP scenarios (SSP1-1.9, SSP2-4.5, SSP5-8.5) from 2020 to 2100 to fill the existing knowledge gap. The predictive accuracy for AGB (R2 = 0.85) was significantly higher than for BGB (R2 = 0.48), likely due to the greater complexity of modeling belowground dynamics. NDVI (Normalized Difference Vegetation Index) and soil organic carbon density (SOC) were identified as the primary drivers of AGB and BGB changes. During 2000-2020, AGB in China remained stable at approximately 10.69 Pg C, while BGB was around 5.06 Pg C. Forest ecosystems contributed 88.52% of AGB and 43.83% of BGB. AGB showed a relatively slow annual increase, while BGB demonstrated a significant annual growth rate of approximately 37 Tg C yr-1. Under the low-emission scenario, both AGB and BGB show fluctuations and steady growth, particularly in South China and the northwestern part of Northeast China. Under the moderate-emission scenario, AGB and BGB show significant declines and increases, respectively. In the high-emission scenario, both AGB and BGB decline significantly, particularly in the southwestern and central regions. These results provide valuable insights into ecosystem carbon dynamics under climate change, emphasizing the relatively low responsiveness of AGB and BGB to climatic variability, and offering guidance for sustainable land use and management strategies.

Keywords

Aboveground biomass / Belowground biomass / Ecosystem / Shared socioeconomic pathways / Climate change

Cite this article

Download citation ▾
Chuanmei Zhu, Yupu Li, Jianli Ding, Jiexin Rao, Yihang Xiang, Xiangyu Ge, Jinjie Wang, Jingzhe Wang, Xiangyue Chen, Zipeng Zhang. Spatiotemporal analysis of AGB and BGB in China: Responses to climate change under SSP scenarios. Geoscience Frontiers, 2025, 16(3): 102038 DOI:10.1016/j.gsf.2025.102038

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Chuanmei Zhu: Writing - original draft, Supervision, Method-ology, Conceptualization. Yupu Li: Visualization, Validation, Soft-ware. Jianli Ding: Funding acquisition. Jiexin Rao: Visualization, Validation, Software. Yihang Xiang: Visualization, Validation, Soft-ware. Xiangyu Ge: Software, Methodology. Jinjie Wang: Conceptu-alization. Jingzhe Wang: Resources, Methodology. Xiangyue Chen: Supervision, Resources. Zipeng Zhang: Supervision, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by the Tianchi Talent-Young Doctor Program of the Xinjiang Uygur Autonomous Region, the Innovation Training Program for Undergraduates at the Autonomous Region Level in 2024 (Grant No. S202410755009), the Innovation Training Program for Undergraduates at the University Level in 2024 (Grant No. XJU-SRT-24008), the National Innovation Training Program for College Students in 2024 (Grant No. 202410755009), the National Natural Science Foundation of China (Grant No. 42401065), the Basic and Applied Basic Research Program of Guangdong Province, China (Grant No. 2023A1515011273), and the Research Projects of the Department of Education of Guangdong Province (Grant No. 2023KTSCX315).

Declaration of Generative AI and AI assisted technologies in the writing process

The authors affirm that no generative artificial intelligence (AI) or AI-assisted technologies were used in the writing process.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102038.

References

[1]

Gill, R.A., Jackson, R.B., 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13-31.

[2]

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., Notarnicola, C., 2015. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 7 (12), 16398-16421.

[3]

Asner, G., Mascaro, J., 2014. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 140, 614-624.

[4]

Bera, D., Chatterjee, N.D., Ghosh, S., Dinda, S., Bera, S., 2022. Recent trends of land surface temperature in relation to the influencing factors using Google Earth Engine platform and time series products in megacities of India. J. Clean. Prod. 379, 134735.

[5]

Brilli, L., Martin, R., Argenti, G., Bassignana, M., Bindi, M., Bonet, R., Choler, P., Cremonese, E., Della Vedova, M., Dibari, C., Filippa, G., Galvagno, M., Leolini, L., Moriondo, Piccot, A., Stendardi, L., Targetti, S., Bellocchi, G., 2023. Uncertainties in the adaptation of alpine pastures to climate change based on remote sensing products and modelling. J. Environ. Manage. 336, 117575.

[6]

Cai, W., He, N., Li, M., Xu, L., Wang, L., Zhu, J., Zeng, N., Yan, P., Si, G., Zhang, X., Cen, X., Yu, G., Sun, O.J., 2022. Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies. Sci. Bull. 67 (8), 836-843.

[7]

Cairns, M., Brown, S., Helmer, E., Baumgardner, G., 1997. Root biomass allocation in the world’s upland forests. Oecologia 111, 1-11.

[8]

Cao, M., Woodward, F.I., 1998. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Change Biol. 4 (2), 185-198.

[9]

Chen, P., Wang, S., Liu, Y., Wang, Y., Song, J., Tang, Q., Yao, Y., Wang, Y., Wu, X., Wei, F., Feng, S., 2024. Spatio-temporal dynamics of aboveground biomass in China’s oasis grasslands between 1989 and 2021. Earth’s Future 12 (3), e2023EF003944.

[10]

Chen, Y., Feng, X., Fu, B., Ma, H., Zohner, C.M., Crowther, T.W., Huang, Y., Wu, X., Wei, F., 2023. Maps with 1km resolution reveal increases in above-and belowground forest biomass carbon pools in China over the past 20 years. Earth Syst. Sci. Data 15 (2), 897-910.

[11]

Djomo, A., Picard, N., Fayolle, A., Henry, M., Alfred, N., Pierre, P., McLellan, P.J., Saborowski, J., Ibrahima, A., Lejeune, P., 2016. Tree allometry for estimation of carbon stocks in African tropical forests. Forestry 89, 446-455.

[12]

El Masri, B., Xiao, J.F., 2025. Comparison of global aboveground biomass estimates from satellite observations and dynamic global vegetation models. J. Geophys. Res.-Biogeosci. 130 (1), e2024JG008305.

[13]

Fang, J., Liu, G., Xu, S., 1996. Biomass ans net production of forest vegetation in China. Acta Ecol. Sinica 5, 497-508.

[14]

Fassnacht, F.E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P., Koch, B., 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 154, 102-114.

[15]

Gao, T., Yang, X., Jin, Y., Ma, H., Li, J., Yu, H., Yu, Q., Zheng, X., Xu, B., 2013. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China. Plos ONE 8 (12), e83824.

[16]

Ge, J., Hou, M., Liang, T., Feng, Q., Meng, X., Liu, J., Bao, X., Gao, H., 2022. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 826, 154226.

[17]

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135 (2), 147-186.

[18]

Guo, W., Liu, Z., Xu, W., Wang, W., Shafron, E., Lv, Q., Li, K., Zhou, S., Guan, R., Yang, J., 2024. Spatial and temporal patterns of forest biomass carbon sink in China from 1990 to 2021. Remote Sens. 16, 3811.

[19]

Hossain, M.L., Li, J., 2023. Asymmetric response of above-and below ground biomass of C3-and C4-dominated grasslands to aridity. J. Water Clim. Change 14 (7), 2465-2478.

[20]

Huang, M., Ji, J., Cao, M., Li, K., 2006. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sinica 26 (12), 4156-4163.

[21]

Jackson, R., Mooney, H., Schulze, E., 1997. A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents. Proceedings of the National Academy of Sciences of the United States of America 94, 7362-7366.

[22]

Ji, J., Huang, M., Li, K., 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China Ser. D 51 (6), 885-898.

[23]

Jiang, X., Li, G., Lu, D., Chen, E., Wei, X., 2020. Stratification-based forest aboveground biomass estimation in a subtropical region using airborne lidar data. Remote Sens. 12, 1101.

[24]

Jobbagy, E.E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10 (2), 423-436.

[25]

John, R., Chen, J., Giannico, V., Park, H., Xiao, J., Shirkey, G., Ouyang, Z., Shao, C., Lafortezza, R., Qi, J., 2018. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 213, 34-48.

[26]

Justice, C., Belward, A., Morisette, J., Lewis, P., Privette, J., Baret, F., 2000. Developments in the ’validation’ of satellite sensor products for the study of the land surface. Int. J. Remote Sens. 21 (17), 3383-3390.

[27]

Kang, X., Huang, C., Chen, J.M., Lv, X., Wang, J., Zhong, T., Wang, H., Fan, X., Ma, Y., Yi, X., Zhang, Z., Zhang, L., Tong, Q., 2023a. The 10-m cotton maps in Xinjiang, China during 2018-2021. Sci. Data 10 (1), 688.

[28]

Kang, X., Huang, C., Zhang, L., Wang, H., Zhang, Z., Lv, X., 2023b. Regional-scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 299, 113861.

[29]

Kang, X., Huang, C., Zhang, L., Zhang, Z., Lv, X., 2022. Downscaling solar-induced chlorophyll fluorescence for field-scale cotton yield estimation by a two-step convolutional neural network. Comput. Electron.

[30]

Agric. 201, 107260. Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304 (5677), 1623-1627.

[31]

Leng, Y., Li, W., Ciais, P., Sun, M., Zhu, L., Yue, C., Chang, J., Yao, Y., Zhang, Y., Zhou, J., Li, Z., Wang, X., Xi, Y., Peng, S., 2024. Forest aging limits future carbon sink in China. One Earth 7 (5), 822-834.

[32]

Li, C., Zhuang, Y., Frolking, S., Galloway, J., Harriss, R., Schimel, D., Wang, X.-K., 2003. Modeling soil organic carbon change in croplands of China. Ecol. Appl. 13 (13), 327-336.

[33]

Li, H., Li, F., Xiao, J., Chen, J., Lin, K., Bao, G., Liu, A., Wei, G., 2024. A machine learning scheme for estimating fine-resolution grassland aboveground biomass over China with Sentinel-1/ 2 satellite images. Remote Sens. Environ. 311, 114317.

[34]

Li, H., Wu, Y., Liu, S., Xiao, J., 2021. Regional contributions to interannual variability of net primary production and climatic attributions. Agric. for. Meteorol. 303, 108384.

[35]

Liang, T., Yang, S., Feng, Q., Liu, B., Zhang, R., Huang, X., Xie, H., 2016. Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China. Remote Sens. Environ. 186, 164-172.

[36]

Liang, Z., Chen, S., Yang, Y., Zhao, R., Shi, Z., Viscarra Rossel, R.A., 2019. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980’s China. Geoderma 335, 47-56.

[37]

Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., Seneviratne, S.I., 2020. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11 (1), 4892.

[38]

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. In: Guyon I., Von Luxburg U., Bengio S., Wallach H., Fergus R., Vishwanathan S., Garnett R. (Eds.), Advances in Neural Information Processing Systems 30,4768-4777.

[39]

Lv, Z., Duan, A., Zhang, J., 2024. Influence of forest age, tree size, and climate factors on biomass and carbon storage allocation in Chinese fir forests. Ecol. Indic. 163, 112096.

[40]

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13 (3), 245-259.

[41]

Masroor, M., Sajjad, H., Rehman, S., Singh, R., Hibjur Rahaman, M., Sahana, M., Ahmed, R., Avtar, R., 2022. Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geosci. Front. 13 (2), 101312.

[42]

Matsushita, B., Yang, W., Chen, J., Onda, Y., Qiu, G., 2007. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 7, 2636-2651.

[43]

Medvigy, D., Wofsy, S.C., Munger, J.W., Hollinger, D.Y., Moorcroft, P.R., 2009. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J. Geophys. Res.-Biogeo. 114, G01002. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017.

[44]

LightGBM:a highly efficient gradient boosting decision tree. In: Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30,3149-3157.

[45]

Moeslund, J., Arge, L., Bøcher, P., Dalgaard, T., Svenning, J.-C., 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31, 129-144.

[46]

Mokany, K., Raison, R.J., Prokushkin, A., 2005. Critical analysis of root: Shoot ratios in terrestrial biomes. Global Change Biol. 12, 84-96.

[47]

Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., Nemani, R.R., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386 (6626), 698-702.

[48]

Ni, J., 2001. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Clim. Change 49, 339-358.

[49]

Osborne, J.W., 2002. Notes on the use of data transformations. PARE 8, 6.

[50]

Padarian, J., Minasny, B., McBratney, A., 2020. Machine learning and soil sciences: a review aided by machine learning tools. Soil 6, 35-52.

[51]

Pan, Y.D., Birdsey, R.A., Fang, J.Y., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.L., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world’s forests. Science 333 (6045), 988-993.

[52]

Peng, C., Apps, M.J., 1997. Contribution of China to the global carbon cycle since the last glacial maximum. Tellus B 49 (4), 393-408.

[53]

Peng, S., Ding, Y., Wen, Z., Chen, Y., Cao, Y., Ren, J., 2017. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agric. For. Meteorol. 233, 183-194.

[54]

Peng, S., Ding, Y., Liu, W., Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11, 1931-1946.

[55]

Punalekar, S.M., Verhoef, A., Quaife, T.L., Humphries, D., Bermingham, L., Reynolds, C.K., 2018. Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sens. Environ. 218, 207-220.

[56]

Qiu, Z., Feng, Z., Song, Y., Li, M., Zhang, P., 2020. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 252, 119715.

[57]

Ren, H., Li, L., Liu, Q., Wang, X., Li, Y., Hui, D., Jian, S., Wang, J., Yang, H., Lu, H., Zhou, G., Tang, X., Zhang, Q., Wang, D., Yuan, L., Chen, X., 2014. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan Island, Southern China. Plos ONE 9 (9), e108163.

[58]

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back-propagating errors. Nature 323 (6088), 533-536.

[59]

Running, S., Nemani, R., Heinsch, F., Zhao, M., Reeves, M., Hashimoto, H., 2004. A continuous satellite-derived measure of global terrestrial primary production. BioScience 54, 547-560.

[60]

Schuur, E.A.G., 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84 (5), 1165-1170.

[61]

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63 (324), 1379-1389.

[62]

Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., Wan, H., Xie, Z., Shi, X., Wu, B., Wang, G., Yan, J., Ma, K., Du, S., Li, S., Han, S., Ma, Y., Hu, H., He, N., Yang, Y., Han, W., He, H., Yu, G., Fang, J., Zhou, G., 2018. Carbon pools in China’s terrestrial ecosystems:New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. 115 (16), 4021.

[63]

Tian, L., Wu, X., Tao, Y., Li, M., Qian, C., Liao, L., Fu, W., 2023. Review of remote sensing-based methods for forest aboveground biomass estimation: progress, challenges, and prospects. Forests 14 (6), 1086.

[64]

Tian, X., Li, J., Zhang, F., Zhang, H., Jiang, M., 2024. Forest aboveground biomass estimation using multisource remote sensing data and deep learning algorithms: a case study over Hangzhou area in China. Remote Sens. 16 (6), 1074.

[65]

Titlyanova, A.A., Romanova, I.P., Kosykh, N.P., Mironycheva-Tokareva, N.P., 1999. Pattern and process in above-ground and below-ground components of grassland ecosystems. J. Veg. Sci. 10 (3), 307-320.

[66]

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18 (6), 306-314.

[67]

Urbazaev, M., Thiel, C., Cremer, F., Dubayah, R., Migliavacca, M., Reichstein, M., Schmullius, C., 2018. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manage. 13 (1), 5.

[68]

Wang, S., Xu, X., Shrestha, N., Zimmermann, N.E., Tang, Z., Wang, Z., 2017. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS ONE 12 (4), e0175742.

[69]

Warren, J., 1988. Statistical methods for environmental pollution monitoring. Technometrics 30 (3), 348.

[70]

Wulder, M., White, J., Loveland, T., Woodcock, C., Belward, A., Cohen, W., Fosnight, E., Shaw, J., Masek, J., Roy, D., 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 185, 271-283.

[71]

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., Pang, Y., Rahman, A.F., Sun, G., Yuan, W., Zhang, L., Zhang, X., 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383.

[72]

Xie, Y., Sha, Z., Yu, M., 2008. Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1 (1), 9-23.

[73]

Xu, L., He, N., Li, M., Cai, W., Yu, G., 2024. Spatiotemporal dynamics of carbon sinks in China’s terrestrial ecosystems from 2010 to 2060. Resour. Conserv. Recy. 203, 107457.

[74]

Xu, L., He, N., Yu, G., 2019. A dataset of carbon density in Chinese terrestrial ecosystems ( 2010s). China Sci. Data 4 (1), 90-96.

[75]

Yang, H., Ciais, P., Santoro, M., Huang, Y.Y., Li, W., Wang, Y.L., Bastos, A., Goll, D., Arneth, A., Anthoni, P., Arora, V.K., Friedlingstein, P., Harverd, V., Joetzjer, E., Kautz, M., Lienert, S., Nabel, J., O’Sullivan, M., Sitch, S., Vuichard, N., Wiltshire, A., Zhu, D., 2020. Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates. Global Change Biol. 26 (7), 3997-4012.

[76]

Yang, Q., Huang, X., Tang, Q., 2019. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Sci. Total Environ. 655, 652-662.

[77]

Yang, Q., Niu, C., Liu, X., Feng, Y., Ma, Q., Wang, X., Tang, H., Guo, Q., 2023. Mapping high-resolution forest aboveground biomass of China using multisource remote sensing data. Gisci. Remote Sens. 60 (1), 2203303.

[78]

Yao, L., Liu, T., Qin, J., Jiang, H., Yang, L., Smith, P., Chen, X., Zhou, C., Piao, S., 2024. Carbon sequestration potential of tree planting in China. Nat. Commun. 15 (1), 8398.

[79]

Yu, G., Li, X., Wang, Q., Li, S., 2010. Carbon storage and its spatial pattern of terrestrial ecosystem in China. J. Resour. Ecol. 1 (02), 97-109.

[80]

Yue, J., Yang, H., Yang, G., Fu, Y., Wang, H., Zhou, C., 2023. Estimating vertically growing crop above-ground biomass based on UAV remote sensing. Comput. Electron. Agric. 205, 107627.

[81]

Zhang, Y., Huang, J., Huang, H., Li, X., Jin, Y., Guo, H., Feng, Q., Zhao, Y., 2022a. Grassland aboveground biomass estimation through assimilating remote sensing data into a grass simulation model. Remote Sens. 14 (13), 3194.

[82]

Zhang, Z., Ding, J., Wang, J., Ge, X., 2020a. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena 185, 104257.

[83]

Zhang, Z., Ding, J., Zhu, C., Shi, H., Chen, X., Han, L., Wang, J., 2022b. Changes in soil organic carbon stocks from 1980-1990 and 2010-2020 in the northwest arid zone of China. Land Degrad. Dev. 33 (15), 2713-2727.

[84]

Zhang, Z., Ding, J., Zhu, C., Wang, J., Ge, X., Li, X., Han, L., Chen, X., Wang, J., 2023a. Historical and future variation of soil organic carbon in China. Geoderma 436, 116557.

[85]

Zhang, Z., Ding, J., Zhu, C., Wang, J., Li, X., Ge, X., Han, L., Chen, X., Wang, J., 2023b. Exploring the inter-decadal variability of soil organic carbon in China. Catena 230, 107242.

[86]

Zhang, Z., Ding, J., Zhu, C., Wang, J., Ma, G., Ge, X., Li, Z., Han, L., 2021a. Strategies for the efficient estimation of soil organic matter in salt-affected soils through Vis-NIR spectroscopy: Optimal band combination algorithm and spectral degradation. Geoderma 382, 114729.

[87]

Zhang, Z.J., Li, X.X., Liu, H.G., 2022c. Biophysical feedback of forest canopy height on land surface temperature over contiguous United States. Environ. Res. Lett. 17(3), 034002.

[88]

Zhang, Z.J., Zhang, F.J., Wang, L.C., Lin, A.W., Zhao, L., 2021b. Biophysical climate impact of forests with different age classes in mid- and high-latitude North America. For. Ecol. Manage. 494, 119327.

[89]

Zhang, Z.J., Zhao, L., Lin, A.W., 2020b. Evaluating the performance of Sentinel-3A OLCI land products for gross primary productivity estimation using AmeriFlux data. Remote Sens. 12 (12), 1927.

[90]

Zhao, M., Running, S., 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940-943.

[91]

Zhao, M., Yang, J., Zhao, N., Liu, Y., Wang, Y., Wilson, J.P., Yue, T., 2019. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. For. Ecol. Manage. 448, 528-534.

[92]

Zhao, X., Wu, B., Xue, J., Shi, Y., Zhao, M., Geng, X., Yan, Z., Shen, H., Fang, J., 2023. Mapping forage biomass and quality of the inner mongolia grasslands by combining field measurements and Sentinel-2 observations. Remote Sens. 15, 1973.

[93]

Zhu, C., Ding, J., Zhang, Z., Wang, J., Wang, Z., Chen, X., Wang, J., 2022. SPAD monitoring of saline vegetation based on Gaussian mixture model and UAV hyperspectral image feature classification. Comput. Electron. Agric. 200, 107236.

AI Summary AI Mindmap
PDF (9333KB)

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/