Detailed in-depth mapping of the world largest anorthositic complex: Magnetic anomalies, 2.5-3D modelling and emplacement constraints of the Kunene Complex (KC), SW Angola

T. Mochales , E. Merino-Martínez , C. Rey-Moral , A. Machadinho , J. Carvalho , P. Represas , J.L. García-Lobón , M.C. Feria , R. Martín-Banda , M.T. López-Bahut , D. Alves , E. Ramalho , J. Manuel , D. Cordeiro

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102030

PDF (252KB)
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102030 DOI: 10.1016/j.gsf.2025.102030
research-article

Detailed in-depth mapping of the world largest anorthositic complex: Magnetic anomalies, 2.5-3D modelling and emplacement constraints of the Kunene Complex (KC), SW Angola

Author information +
History +
PDF (252KB)

Abstract

The Kunene Complex (KC) represents a very large Mesoproterozoic igneous body, mainly composed of anorthosites and gabbroic rocks that extends from SW Angola to NW Namibia (outcropping 18,000 km2 , NE-SW trend, and ca. 350 km long and up to 50 km wide). Little is known about its structure at depth. Here, we use recently acquired aerogeophysical data to accurately determine its hidden extent and to unravel its morphology at depth. These data have been interpreted and modelled to investigate the unexposed KC boundaries, reconstructing the upper crustal structure (between 0 and 15 km depth) over-lain by the thin sedimentary cover of the Kalahari Basin. The modelling reveals that the KC was emplaced in the upper crust and extends in depth up to ca. 5 km, showing a lobular geometry and following a large NE-SW to NNE-SSW linear trend, presumably inherited from older Paleoproterozoic structures. The lat-eral continuation of the KC to the east (between 50 and 125 km) beneath the Kalahari Cenozoic sediments suggests an overall size three times the outcropping dimension (about 53,500 km2). This affirmation clearly reinforces the economic potential of this massif, related to the prospecting of raw materials and certain types of economic mineralization (Fe-Ti oxides, metallic sulphides or platinum group miner-als). Up to 11 lobes have been isolated with dimensions ranging from 135.5 to 37.3 km in length and 81.9 to 20.7 km in width according to remanent bodies revealed by TMI mapping. A total volume of 65,184 km3 was calculated only for the magnetically remanent bodies of the KC. A long-lasting complex contractional regime, where large strike-slip fault systems were involved, occurred in three kinematic pulses potentially related to a change of velocity or convergence angle acting on previous Paleoproterozoic inherited sutures. The coalescent magmatic pulses can be recognized by means of mag-netic anomalies, age of the bodies as well as the lineations inferred in this work: (i) Emplacement of the eastern mafic bodies and granites in a stage of significant lateral extension in a transtensional context between 1500 Ma and 1420 Ma; (ii) Migration of the mantle derived magmas westwards with deforma-tion in a complex contractional setting with shearing structures involving western KC bodies and base-ment from 1415 Ma to 1340 Ma; (iii) NNW-SSE extensional structures are relocated westwards, involving mantle magmas, negative flower structures and depression that led to the formation of late Mesoproterozoic basins from 1325 Ma to 1170 Ma. Additionally, we detect several first and second order structures to place the structuring of the KC in a craton-scale context in relation to the crustal structures detected in NW Namibia.

Keywords

Angola / Kunene Complex (KC) / Magnetic prospecting / 2.5 modelling / 3D inversion

Cite this article

Download citation ▾
T. Mochales, E. Merino-Martínez, C. Rey-Moral, A. Machadinho, J. Carvalho, P. Represas, J.L. García-Lobón, M.C. Feria, R. Martín-Banda, M.T. López-Bahut, D. Alves, E. Ramalho, J. Manuel, D. Cordeiro. Detailed in-depth mapping of the world largest anorthositic complex: Magnetic anomalies, 2.5-3D modelling and emplacement constraints of the Kunene Complex (KC), SW Angola. Geoscience Frontiers, 2025, 16(3): 102030 DOI:10.1016/j.gsf.2025.102030

登录浏览全文

4963

注册一个新账户 忘记密码

CrediT authorship contribution statement

T. Mochales: Writing - review & editing, Writing - original draft, Visualization, Software, Methodology, Formal analysis, Data curation, Conceptualization. E. Merino-Martínez: Writing - review & editing, Writing - original draft, Project administration, Methodology, Data curation, Conceptualization. C. Rey-Moral: Writing - review & editing, Writing - original draft, Software, Methodology, Conceptualization. A. Machadinho: Writing - review & editing, Writing - original draft, Visualization, Validation, Software. J. Carvalho: Writing - review & editing, Project adminis-tration, Methodology. P. Represas: Writing - review & editing, Visualization, Methodology. J.L. García-Lobón: Writing - review & editing, Supervision, Project administration, Funding acquisition, Conceptualization. M.C. Feria: Visualization. R. Martín-Banda: Writing - review & editing, Conceptualization. M.T. López-Bahut: Visualization. D. Alves: Visualization. E. Ramalho: Visualization. J. Manuel: Visualization, Project administration. D. Cordeiro: Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-cial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work is a result of the National Geological Plan of Angola (PLANAGEO) and Investigación de procesos geológicos y recursos mineros críticos para la transición energética en Angola y en España (PIE-PLANAGEO). This project was supported by the Government of the Republic of Angola and implemented by the Geological Survey of Angola (IGEO), under the oversight of the Angolan Ministry of Mineral Resources, Oil and Gas (MIREMPET). Further analytical data and isotopic results were also supported by the subsidiary programme ‘‘Ayudas Extraordinarias Menciones Excelencia Severo Ochoa” of the CN IGME-CSIC (project AECEX2021, grant 15903). We would like to express our gratitude for the assistance provided by the local staff during our fieldwork. We also highly appreciate the contribution of the staff of Impulso Industrial Alternativo to this project. The Geotransfer group (University of Zaragoza) and the staff of the Paleomagnetism laboratory (University Polytechnic of Burgos) kindly helped us with the laboratory analyses. Isabel Fanlo, Nacho Subias (Univer-sity of Zaragoza), Mario Iglesias kindly provided samples of areas with complex access that were used in this work. Part of this work was performed by T. Mochales as a Visiting Fellow at the Institute for Rock Magnetism (IRM) by funding from the University of Min-nesota and National Science Foundation (award NSF-EAR 2153786). A. Machadinho thanks the Portuguese Foundation for Science and Technology (FCT) support, Geosciences Center project UIDB/ 00073/2020 (doi:10.54499/UIDB/00073/2020), University of Coimbra and and GeoBioTec project UIDB/04035/2020 (doi:10.54 499/UIDB/04035/2020), Nova School of Science and Technology. The authors are very grateful to Dr. Geissler and an anonymous reviewers for their suggestions to improve this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gsf.2025.102030.23

References

[1]

Araújo, A.G., Guimarães, F., 1992. Geologia de Angola, Notícia explicativa da Carta Geológica à escala 1: 1 000 000. Serviço Geológico de Angola, Luanda (in Portuguese).

[2]

Ashwal, L.D., 1993. Anorthosites. Springer, Heidelberg.

[3]

Ashwal, L.D., Twist, D., 1994. The Kunene complex, Angola/Namibia: a composite massif-type anorthosite complex. Geol. Mag. 131 (5), 579-591. https://doi.org/10.1017/S0016756800012371.

[4]

Ashwal, L.D., Bybee, G.M., 2017. Crustal evolution and the temporality of anorthosites. Earth-Sci. Rev. 173, 307-330. https://doi.org/10.1016/j.earscirev.2017.09.002.

[5]

Balmino, G., Vales, N., Bonvalot, S., Briais, A., 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J. Geodesy 86, 499-520. https://doi.org/10.1007/s00190-011-0533-4.

[6]

Baxe, O.S.S., 2007. Geocronologia de Complexos máfico-ultramáficos: exemplo sa série superior do complexo de Niquelândia, Brasil e do Complexo do Kunene, Angola. Unpublished Ph.D. Thesis, Universidade de Brasilia, Instituto de Geociências, 77 p. (in Portuguese).

[7]

Blanchard, J.A., Ernst, R.E., Samson, C., 2017. Gravity and magnetic modelling of layered maficultramafic intrusions in large igneous province plume centre regions; Case studies from the: 1.27 Ga Mackenzie, 1.38 Ga Kunene-Kibaran, 0.06 Ga Deccan and 0. 13-0.08 Ga High Arctic events. Can. J. Earth Sci. 54, 290-310.

[8]

Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biancale, R., Gabalda, G., Reinquin, F. y Sarrailh, M., 2012. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris.

[9]

Brower, A.M., 2017. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological and Remote Sensing Investigation of the Kunene Complex (Angola). Unpublished PhD Dissertation, University of Witwatersrand, Johannesubrg, South Africa, 86 p.

[10]

Brandt, S., Will, T.M., Klemd, R., 2007. Ultrahigh-temperature metamorphism and anticlockwise PT paths of sapphirine-bearing orthopyroxene-sillimanite gneisses from the Proterozoic Epupa Complex, NW Namibia Precambr. Res 153 (3-4), 143-178. https://doi.org/10.1016/j.precamres.2006.11.016.

[11]

Brown, L.L., McEnroe, S.A., 2008. Magnetic properties of anorthosites: A forgotten source for planetary magnetic anomalies? Geophys. Res. Lett. 35, L02305.

[12]

Bybee, G.M., Hayes, B., Owen-Smith, T.M., Lehmann, J., Ashwal, L.D., Brower, A.M., Hill, C.M., Corfu, F., Manga, M., 2019. Proterozoic massif-type anorthosites as the archetypes of long-lived (≥100 Myr) magmatic systems—New evidence from the Kunene Anorthosite Complex (Angola). Precambrian Res. 332, 105393. https://doi.org/10.1016/j.precamres.2019.105393.

[13]

Campeny, M., Proenza, J.A., Castillo-Oliver, M., Torró L., Villanova-de-Benavent, C., Melgarejo, J.C., Gonçalves, A.O., Román-Alpiste, M.J., Blanco-Quintero, I.F., Llovet, X., Farré-de-Pablo, J., 2023. Petrology, metallogeny and U-Pb geochronology of the Paleoproterozoic mafic-ultramafic Hamutenha intrusion, Angolan Shield. J. Afr. Earth Sci. 197, 104733. https://doi.org/10.1016/ j.jafrearsci.2022.104733.

[14]

Carvalho, H., 1984. Estratigrafia do Précâmbrico de Angola. Garcia de Orta, Serie Geologia, lnstituto Investigação Científica Tropical 7 (1-2), 1-66 (in Portuguese).

[15]

Carvalho, H., Alves, P., 1990. Gabbro-Anorthosite Complex of SW Angola/NW Namibia. Comunicações Instituto de Investigação Científica Tropical (Portugal), Série de Ciências da Terra, 2, Lisboa, pp. 5-64.

[16]

Carvalho, H., Alves, P., 1993. The Precambrian of SW Angola and NW Namibia: General Remarks, Correlation Analysis, Economic Geology. Comunicações Instituto de Investigação Científica Tropical (Portugal), Série de Ciências da Terra, 4, Lisboa, 38 p.

[17]

Carvalho, H., Tassinari, C.C., Alves, P.H., Guimarães, F., Simões, M., 2000. Geochronological review of the Precambrian in western Angola: links with Brazil. J. Afr. Earth Sci. 31 (2), 383-402. https://doi.org/10.1016/S0899-5362(00) 00095-6.

[18]

Carvalho, J., Alves, D., Borges, J., Caldeira, B., Cordeiro, D., Machadinho, A., Oliveira, A., Ramalho, E., Rodrigues, J.F., Lorente, J.M., Ditutala, M., García-Lóbon, J.L., Máximo, J., Carvalho, C., Labaredas, J., Ibarra, P., Manuel, J., 2024. Depth estimation of pre-Kalahari basement in Southern Angola using seismic 1 noise measurements and drill-hole data. J. Appl. Geophys. 230, 105498. https://doi. org/10.1016/j.jappgeo.2024.105498.

[19]

Charlier, B., Namur, O., Bolle, O., Latypov, R., Duchesne, J.C., 2015. Fe-Ti-V-P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth-Sci. Rev.141,56-81.https://doi.org/10.1016/j. earscirev.2014.11.005.

[20]

Corner, B., Cartwright, J., Swart, R., 2002. Volcanic passive margin of Namibia: A potential fields perspective. Geological Society of America Special Paper 362, 203-220. https://doi.org/10.1130/0-8137-2362-0.203.

[21]

Delhal, J., Ledent, D., Cordani, U.G., 1969. Ages Pb/U, Sr/Rb et Ar/K de Formations Métamorphiques et Granitiques du Sud-Est du Brésil ( États de Rio de Janeiro et Minas Gerais). Annales De La Société Géologique De Belgique 92, 271-283 (in French).

[22]

Delhal, J., Ledent, D., Torquato, J.R., 1976. Nouvelles données géochronologiques relatives au complexe gabbro-noritique et charnockitique du bouclier du Kasai et à son prolongement en Angola. Ann. Soc. Géol. Belg., 99, 211-226 (in French).

[23]

Delor, C., Lafon, J. M., Rossi, P., Cage, M., Pato, D., Chevrel, S. Lê Metour, J., Matukov, D., Sergeev, S., 2006. Unravelling Precambrian crustal growth of central west Angola: Neoarchaean to Siderian inheritance, main Orosirian accretion and discovery of the ‘‘Angolan” Pan African Belt. Em: Abstract of the 21st Colloquium of African Geology, Maputo, Mozambique, pp. 3-5.

[24]

Dobmeier, C., 2006. Emplacement of Proterozoic massiftype anorthosite during regional shortening: Evidence from the Bolangir anorthosite complex (Eastern Ghats Province, India). Int. J. Earth Sci. 95 (4), 543-555.

[25]

Drüppel, K., Littmann, S., Romer, R.L., Okrusch, M., 2007. Petrology and isotope geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. Precambrian Res. 156, 1-31.

[26]

Duchesne, J.C., Liégeois, J.P., Vander Auwera, J., Longhi, J., 1999. The crustal tongue melting model and the origin of massive anorthosites. Terra Nova 11, 100-105.

[27]

Ellis, R.G., de Wet, B., MacLeod, I.N., 2012. Inversion of magnetic data for remanent and induced sources. ASEG Extended Abstracts 2012, 1-4.

[28]

Ernst, R.E., Pereira, E., Hamilton, M.A., Van-Dunem, M.V., Rodriques, J., Tassinari, C. C., Teixeira, W., 2014. Intraplate magmatic ‘barcode’ record of the Angola portion of the Congo craton: newly dated magmatic events at 1502 and 1109 Ma and implications for Nuna and Rodinia supercontinental reconstructions. Precambrian Res. 230, 103-118.

[29]

Escuder-Viruete, J., Gumiel, J.C., Merino-Martínez, E., Da Cruz Correia, J., Quintana, L., 2021. Carta Geológica de Angola à escala 1:250.000, Folhas Sul D-33/S e Sul D-32/Z, Namibe, e Notícia Explicativa. Ministério dos Recursos Minerais, Petróleo e Gás, UTE PLANAGEO ( IGME-LNEG-Impulso)-Instituto Geológico de Angola (IGEO), Luanda (Angola), 188 p.

[30]

Fernandez-Alonso, M., Cutten, H., De Waele, B., Tack, L., Tahona, A., Baudet, D., Barritt, S.D., 2012. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res. 216-219, 63-86.

[31]

Ferreira, E., Lehmann, J., Rodrigues, J.F., Hayes, B., Merino-Martínez, E., Milani, L., Bybee, G.M., Owen-Smith, T.M., García-Lobón, J.L., Tassinari, C.G., Ueckermann, H., Sato, K., Silva, P.B., Correia, J., Labaredas, J., Duarte, L., Molekwa, A.M., Manuel, J., da Mata, A., Victorino, L., 2024. Zircon U-Pb and Lu-Hf isotopes reveal the crustal evolution of the SW Angolan Shield (Congo Craton). Gondwana Res. 131, 317-342. https://doi.org/10.1016/j.gr.2024.03.010.

[32]

Francés, A.P., Ramalho, E.C., Monteiro Santos, F., Llorente, J.M., Mateus, T., Martin Banda, R., Cuervo, I., García Lobón, J.L., Dala, V., Ditutala, M., Famorosa, A., Victorino, A.M., 2024. Contribution of the time domain electromagnetic method to the study of the Kalahari transboundary multilayered aquifer systems in Southern Angola. Hydrogeol. J. 32, 1709-1727. https://doi.org/10.1007/s10040-024-02822-x.

[33]

Geosoft, 2013. Sharpening using Iterative Reweighting Inversion, Oasis.

[34]

Gleißner, P., Drüppel, K., Taubald, H., 2010. Magmatic evolution of anorthosites of the Kunene Intrusive Complex, NW Namibia: Evidence from oxygen isotope data and trace element zoning. J. Petrol. 51, 897-919. https://doi.org/10.1093/petrology/egq005.

[35]

Goscombe, B., Foster, D.A., Gray, D., Wade, B., Marsellos, A., Titus, J., 2017. Deformation correlations, stress field switches and evolution of an orogenic intersection: The Pan-African Kaoko-Damara orogenic junction, Namibia. Geosci. Front. 8, 1187-1232. https://doi.org/10.1016/j.gsf.2017.05.001.

[36]

Goscombe, B., Gray, D., Armstrong, R., Foster, D.A., Vogl, J., 2005. Event geochronology of the Pan-African Kaoko Belt, Namibia. Precambrian Res. 140, 103.e1-103.e41. https://doi.org/10.1016/j.precamres.2005.07.003.

[37]

Haddon, I.G., 2005. The sub-Kalahari geology and tectonic evolution of the Kalahari basin, Southern Africa. University of the Witwatersrand, Johannesburg, pp. 24-34.

[38]

Haldar, S.K., 2017. Chapter 3. Deposits of Africa. In: Haldar S.K. (Ed.), Platinum-Nickel-Chromium Deposits. Geology, Exploration and Reserve Base, Ed. Elsevier, pp. 63-96. https://doi.org/10.1016/C2014-0-00851-9.

[39]

Hanson, R.E., 2003. Proterozoic geochronology and tectonic evolution of southern Africa. Geol. Soc. London. Spec. Pub. 206, 427-463. https://doi.org/10.1144/GSL. SP.2003.206.01.20.

[40]

Jelsma, H., Perritt, S.-H., Armstrong, R.A., Ferreira, H.F., 2011. SHRIMP U-Pb zircon geochronology of basement Rocks of the Angolan Shield, western Angola. In: Proceedings of the 23rd CAG, Johannesburg. Council for Geoscience, pp. 395-409.

[41]

Jelsma, H.A., McCourt, S., Perritt, S.H., Armstrong, R.A., 2018. The Geology and Evolution of the Angolan Shield, Congo Craton. In: Siegesmund S., Basei M.A.S., Oyhantçabal P., Oriolo S. (Eds.),Geology of Southwest Gondwana, Regional Geology Reviews. Springer International Publishing, Cham, pp. 217-239. https://doi.org/10.1007/978-3-319-68920-3_9.

[42]

Korpershoek, H., 1970. Geology of the Cassinga north area; explanatory note of the 1/50,000 geological map. Companhia Mineira do Lobito (unpublished report).

[43]

Kröner, A., Rojas-Agramonte, Y., Wong, J., Wilde, S.A., 2015. Zircon reconnaissance dating of Proterozoic gneisses along the Kunene River of northwestern Namibia. Tectonophysics 662, 125-139. https://doi.org/10.1016/j.tecto.2015.04.020.

[44]

Kröner, A., Rojas-Agramonte, Y., 2017. Mesoproterozoic (Grenville-age) granitoids and supracrustal rocks in Kaokoland, northwestern Namibia. Precambrian Res. 298, 572-592. https://doi.org/10.1016/j.precamres.2017.07.008.

[45]

Labaredas, J., Correia, J., Rodrigues, J. F., 2021. Carta Geológica de Angola à escala 1:250.000, Folhas Sul E-33/A, Espinheira, e Notícia Explicativa. Ministério dos Recursos Minerais, Petróleo e Gás, UTE PLANAGEO ( IGME-LNEG-Impulso)-Instituto Geológico de Angola (IGEO), Luanda (Angola), 158 p.

[46]

Larson, T.E., 2015. Mesoproterozoic Paleomagnetism of the Southern Congo Craton. Ph.D. thesis. Yale University, p. 80.

[47]

Laske, G., Masters, G., Ma, Z. and Pasyanos, M., 2013. Update on CRUST1.0-A 1-degree Global Model of Earth’s Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013.

[48]

Lehmann, J., Bybee, G.M., Hayes, B., Owen-Smith, T.M., Belyanin, G., 2020. Emplacement of the giant Kunene AMCG complex into a contractional ductile shear zone and implications for the Mesoproterozoic tectonic evolution of SW Angola. Int. J. Earth Sci. 109, 1463-1485. https://doi.org/10.1007/s00531-020-01837-5.

[49]

Lehmann, J., Brower, A.M., Owen-Smith, T.M., Bybee, G.M., Hayes, B., 2023. Landsat 8 and Alos DEM geological mapping reveals the architecture of the giant Mesoproterozoic Kunene Complex anorthosite suite (Angola/Namibia). Geosci. Fronti. 14, 101620. https://doi.org/10.1016/j.gsf.2023.101620.

[50]

Li, H., Li, L., Zhang, Z., Santosh, M., Liu, M., Cui, Y., Yang, X., Chen, J., Yao, T., 2014. Alteration of the Damiao anorthosite complex in the northern North China Craton: implications for high-grade iron mineralization. Ore Geol. Rev. 57, 574-588.

[51]

Lowrie, W., 1997. Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK, p. 354.

[52]

Macleod, I.N., Ellis, R.G., 2013. Magnetic Vector Inversion, a Simple Approach to the Challenge of Varying Direction of Rock Magnetization. Australian Society of Exploration Geophysicists, Extended Abstracts, Melbourne, 2013, pp. 1-4.

[53]

Maier, W.D., Rasmussen, B., Fletcher, I.R., Li, C., Barnes, S.-J., Huhma, H., 2013. The Kunene anorthosite complex, Namibia, and its satellite intrusions: geochemistry, geochronology, and economic potential. Econ. Geol. 108, 953-986.

[54]

Mäkitie, H., Data, G., Isabirye, E., Mänttäri, I., Huhma, H., Klausen, M.B., Pakkanen, L., Virransalo, P., 2014. Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous profince in eastern Africa. J. Afr. Earth Sci. 97, 273-296. https://doi.org/ 10.1016/j.jafrearsci.2014.04.034.

[55]

Matmon, A., Hidy, A.J., Vainer, S., Crouvi, O., Fink, D., Erel, Y., Team, A., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., Horwitz, L.K., Chazan, M., 2015. New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation. Quat. Res. 84, 118-132. https://doi.org/10.1016/j.yqres.2015.04.009.

[56]

Maxbauer, D.P., Feinberg, J.M., Fox, D.L., 2016. MAX UnMix: A web application for unmixing magnetic coercivity distributions. Comput. Geosci. 95, 140-145. https://doi.org/10.1016/j.cageo.2016.07.009.

[57]

Mayer, A., Hofmann, A.W., Sinigoi, S., Morais, E., 2004. Mesoproterozoic Sm-Nd and U-Pb ages for the Kunene Anorthosite Complex of SW Angola. Precambrian Res. 133, 187-206. https://doi.org/10.1016/j.precamres.2004.04.003.

[58]

McCourt, S., Armstrong, R.A., Jelsma, H., Mapeo, R.B.M., 2013. New U-Pb SHRIMP ages from the Lubango region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa. J. Geol. Soc. 170, 353-363. https://doi.org/10.1144/jgs2012-059.

[59]

Merino-Martínez, E., Rodrigues, J.F., Ferreira, E., Chamizo, M., Potti, J., Labaredas, J., Francés, A., Morais, A. Oliveira, A., E. Pereira, E., 2022. Mapa Geológico de Angola à escala 1:1.000.000, e Notícia Explicativa. Zona UTE (Região Sul de Angola). Ministério dos Recursos Minerais, Petróleo e Gás, UTE PLANAGEO ( IGME-LNEG-Impulso)-Instituto Geológico de Angola (IGEO), Luanda (Angola), 105 p.

[60]

Merino-Martínez, E., Goicoechea, P.P., 2022. Mapa e Notícia Explicativa da Carta Geológica de Lubango, Folha SUL D-33/N, escala 1: 250.000. Instituto Geológico de Angola. Ministério dos Recursos Minerais, Petróleo e Gas, Luanda (Angola), 244 p.

[61]

Milani, L., Lehmann, J., Bybee, G.M., Hayes, B., Owen-Smith, T.M., Oosthuizen, L., Delport, P.W.J., Ueckermann, H., 2022. Geochemical and geochronological constraints on the Mesoproterozoic Red Granite Suite, Kunene AMCG Complex of Angola and Namibia. Precambrian Res. 379, 106821. https://doi.org/10.1016/j.precamres.2022.106821.

[62]

Milesi, J.P., Toteu, S.F., Deschamps, Y., Feybesse, J.L., Lerouge, C., Cocherie, A., Penaye, J., Tchameni, R., Moloto-A-Kenguemba, G., Kampunzu, H.A.B., Nicol, N., Duguey, E., Leistel, J.M., Saint-Martin, M., Ralay, F., Heinry, C., Bouchot, V., Doumnang Mbaigane, J.C., Kanda Kula, V., Chene, F., Monthel, J., Boutin, P., Cailteux, J., 2006. An overview of the geology and major ore deposits of Central Africa: explanatory note for the 1:4,000,000 map ‘‘Geology and major ore deposits of Central Africa”. J. Afr. Earth Sc. 44 (4-5), 571-595.

[63]

Merino-Martínez, E. Ferreira, E., Valverde-Vaquero, P., Rodrigues, J.F., Escuder-Viruete, J., García-Lobón, J.L., Beranoaguirre, A., Feria, M.C., Rey-Moral, C., Silva, P.B., González-Cuadra, P., Sousa, J.C., Potti, J., Máximo, J., Gutiérrez-Medina, M., Gumiel, J.C., Galán, G., Mochales, T., Manuel, J., Cordeiro, D., Tassinari, C., Montero, P., Sato, k., Fuenlabrada, J.M., Galindo, C., 2024. U-Pb ages in the southern Angolan Shield and implications for the evolution of the Kunene Complex during the Mesoproterozoic. Geotemas 20, 1349.

[64]

Morais, I., Batista, M. J., Represas, P., Albardeiro, L., Prazeres, C., Plastov, J. M., Sousa, J. C., Bravo, P., Sousa, P., Carvalho, J., Rodrigues, J. F., Oliveira, D., and Cordeiro, D., 2023. Metallogenetic potencial of the Paleoproterozoic mafic-ultramafic Hamutenha intrusion (SW Angola). New data from PLANAGEO project, EGU General Assembly 2023, Vienna, Austria, 23-28 Apr 2023, EGU23-15202. https://doi.org/10.5194/egusphere-egu23-15202, 2023.

[65]

Nafe, J.E., Drake, C.L., 1957. Variation with depth in shallow and deep water marine sediments of porosity, density and the velocities of compressional and shear waves. Geophysics 22, 523-552.

[66]

Otake, T., Wesolowski, D.J., Anovitz, L.M., Allard, L.F., Ohmoto, H., 2007. Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth Planet. Sci. Lett. 257 (1-2), 60-70. https://doi.org/10.1016/j.epsl.2007.02.022.

[67]

Pereira, E., Tassinari, C.G., Rodrigues, J.F., Van-Dúnen, V., 2011. New data on the deposition age of the volcano-sedimentary Chela Group and its Eburnean basement: implications to post-Eburnean crustal evolution of the SW of Angola. Comunicações Geológicas Do LNEG 98, 29-40.

[68]

Pereira, E., Rodrigues, J.F., Tassinari, C., Van-Dúnen, M.V., 2013. Geologia da região de Lubango, SW de Angola. Evolução no contexto do cratão do Congo. Laboratório Nacional de Energia e Geologia, (LNEG), Portugal. Instituto Geológico de Angola, IGEO, 164 p.

[69]

Piper, J.D.A., 1974. Magnetic properties of the Cunene Anorthosite Complex, Angola. Phys. Earth Planet. Inter. 9 (4), 353-363. https://doi.org/10.1016/0031-9201 (74)90063-6.

[70]

Pisarevsky, S., Elming, S.A., Pesonen, L., Li, Z.X., 2014. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Res. 244, 207-225. https://doi.org/10.1016/j.precamres.2013.05.014.

[71]

Ramalho, E.C., Francés, A.P., Monteiro Santos, F., da Mata, A.V., 2023. 3D electrical structure definition of aquifer systems in the Kalahari basin in Southern Angola based on legacy data reprocessing. J. Appl. Geophys. 211, 104968. https://doi. org/10.1016/j.jappgeo.2023.104968.

[72]

Rey-Moral, C., Mochales, T., Merino-Martínez, E., García Lobón, J.L., López Bahut, M. T., Martín-Banda, R., Feria, M.C., Ballesteros, D., Machadinho, A., Alves, D., 2022. Recording the largest anorthositic complex worldwide: The Kunene Complex (KC), SW Angola. Precambrian Res. 379, 106790. https://doi.org/10.1016/j. precamres.2022.106790.

[73]

Robertson, D.J., France, D.E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Int. 82, 223-234.

[74]

Rodrigues, J. F., Merino-Martínez, E., Ferreira, E., 2021. Mapa Tectónico de Angola à escala 1:1.100.000, e Notícia Explicativa. Ministério dos Recursos Minerais, Petróleo e Gás, UTE PLANAGEO ( IGME-LNEG-Impulso)-Instituto Geológico de Angola (IGEO), Luanda (Angola), 101 p.

[75]

Salminen, J., Hanson, R., Evans, D.A.D., Gong, Z., Larson, T., Walker, O., Gumsley, A., Söderlund, U., Ernst, R., 2018. Direct Mesoproterozoic connection of the Congo and Kalahari cratons in proto-Africa: Strange attractors across supercontinental cycles. Geology 46, 1011-1014. https://doi.org/10.1130/G45294.1.

[76]

Santos, L., 1969. Ocorrências de ilmenites no Sul de Angola. Bol. Serviços De Geologia e Minas De Angola 20, 8-21 (in Portuguese).

[77]

Seth, B., Armstrong, R.A., Brandt, S., Villa, I.M., Kramers, J.D., 2003. Mesoproterozoic U-Pb and Pb-Pb ages of granulites in NW Namibia: reconstructing a complete orogenic cycle. Precambrian Res. 126, 147-168. https://doi.org/10.1016/S0301-9268(03)00193-1.

[78]

Seth, B., Armstrong, R.A., Büttner, A., Villa, I.M., 2005. Time constraints for Mesoproterozoic upper amphibolite facies metamorphism in NW Namibia: a multi-isotopic approach. Earth Planet. Sci. Lett. 230, 355-378. https://doi.org/ 10.1016/j.epsl.2004.11.022.

[79]

Silva, A.F., 2005. A Geologia da República de Angola desde o Paleoarcaico ao Paleozóico Inferior. Instituto Nacional de Engenharia, Tecnologia e Inovação, IP. 44 p. (in Portuguese).

[80]

Silva, A.T.F., Torquato, J.R., Kawashita, K., 1973. Alguns dados geocronológicos pelo método K/Ar da região de Vila Paiva Couceiro, Quilengues e Chicomba (Angola). Serviço De Geol. e Minas De Angola 24, 29-46 (in Portuguese).

[81]

Silva, P.B., Oliveira, A., Duarte, L., Labaredas, J., Goicoechea, P., 2021. Carta Geológica de Angola à escala 1:250.000, Folha Sul D-33/T, Chibia, e Notícia Explicativa. Ministério dos Recursos Minerais, Petróleo e Gás, UTE PLANAGEO ( IGME-LNEG-Impulso)-Instituto Geológico de Angola (IGEO), Luanda (Angola), 255 p. (in Portuguese).

[82]

Simón, S.J., Wei, C., Ellmies, R., Yang, H., Soh Tamehe, L., 2017. New SIMS U-Pb age on zircon from the Epembe carbonatite dyke, NW Namibia: Implications for Mesoproterozoic evolution of carbonatites at the southern margin of the Congo Craton. J. Afr. Earth Sci. 135, 108-114. https://doi.org/10.1016/j.jafrearsci.2017.08.011.

[83]

Tack, L., Wingate, M.T.D., De Waele, B., Meert, J., Belousova, E., Griffin, B., Tahon, A., Fernandez-Alonso, M., 2010. The 1375 Ma Kibaran event in Central Africa: prominent emplacement of bimodal magmatism under extensional regime. Precambr. Res. 180, 63-84. https://doi.org/10.1016/j.precamres.2010.02.022.

[84]

Tegtmeyer, A., Kröner, A., 1985. U-Pb zircon ages for granitoid gneisses in northern Namibia and their significance for Proterozoic crustal evolution of southwestern Africa. Precambrian Res. 28 (3-4), 311-326. https://doi.org/ 10.1016/0301-9268(85)90036-1.

[85]

Thompson, D.T., 1982. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47, 31-37. https://doi.org/ 10.1190/1.1441278.

[86]

Torquato, J.R., 1977. Geotectonic outline of Angola. Cahiers O.R.S.T.O.M., Sér. Géol., vol. IX, num. 1/2, 15-34.

[87]

Vermaak, C.F., 1981. Kunene Anorthosite Complex. In: Hunter D.R. (Eds.),Precambrian of the Southern Hemisphere. Developments in Precambrian Geology, 2, Elsevier, Amsterdam, pp. 578-599.

[88]

Villanova-de-Benavent, C., Torró L., Castillo-Oliver, M., Campeny, M., Melgarejo, J.C., Llovet, X., Galí S., Gonçalves, A.O., 2017. Fe-Ti (-V) oxide deposits of the kunene anorthosite complex (SW Angola): Mineralogy and Thermo-Oxybarometry. Minerals 7 (12), 246. https://doi.org/10.3390/min7120246, 27 pp.

[89]

Xing, Y., Brugger, J., Etschmann, B., Tomkins, A.G., Frierdich, A.J., Fang, X., 2021. Trace element catalyses mineral replacement reactions and facilitates ore formation. Nat Commun. 12 (1), 1388. https://doi.org/10.1038/s41467-021-21684-5.

[90]

Zhao, Y., De Vries, J., van den Berg, A., Jacobs, M., van Westrenen, W., 2019. The participation of ilmenite-bearing cumulates in lunar mantle overturn. Earth Planet. Sci. Lett. 511, 1-11.

AI Summary AI Mindmap
PDF (252KB)

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/