Ocean singularity analysis and global heat flow prediction reveal anomalous bathymetry and heat flow
Yang Zhang , Qiuming Cheng , Tao Hong , Junjie Ji
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102013
Ocean singularity analysis and global heat flow prediction reveal anomalous bathymetry and heat flow
The investigations of physical attributes of oceans, including parameters such as heat flow and bathymetry, have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes. Nevertheless, classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres. Furthermore, a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking. In this study, we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry. Notably, power-law models offer distinct advantages over traditional plate cooling models, showcasing robust self-similarity, scale invariance, or scaling properties, and providing a better fit to observed data. The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model. In addition, we applied the similarity method to predict a higher resolution (0.1° × 0.1°) global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis. Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures. Finally, combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow, which deviate from traditional plate cooling models. The anomalous regions of subsidence and heat flow show different degrees of anisotropy, providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.
Heat flow / Bathymetry / Fractal density / Power-law model / Singularity analysis / Similarity method
| [1] |
A. Aghahosseini, C. Breyer. From hot rock to useful energy: A global estimate of enhanced geothermal systems potential. Appl. Energy, 279 (2020), Article 115769, |
| [2] |
Amante, C., Eakins, B.W., 2009. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. https://repository.library.noaa.gov/view/noaa/1163. |
| [3] |
Beaulieu, S.E., Szafrański, K.M., 2020. InterRidge Global Database of Active Submarine Hydrothermal Vent Fields Version 3.4. PANGAEA. https://doi.org/10.1594/PANGAEA.917894. |
| [4] |
A. Burton-Johnson, R. Dziadek, C. Martin. Review article: Geothermal heat flow in Antarctica: current and future directions. Cryosphere, 14 (2020), pp. 3843-3873, |
| [5] |
D.S. Chapman, H.N. Pollack. Global heat flow: A new look. Earth Planet. Sci. Lett., 28 (1975), pp. 23-32, |
| [6] |
Q. Cheng. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Math. Geosci., 40 (2008), pp. 503-532, |
| [7] |
Q. Cheng. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor., 122 (2012), pp. 55-70, |
| [8] |
Q. Cheng. Fractal density and singularity analysis of heat flow over ocean ridges. Sci. Rep., 6 (2016), p. 19167, |
| [9] |
Q. Cheng. Singularity of lithosphere mass density over the mid-ocean ridges and implication on floor depth and heat flow. Geosci. Front., 14 (2023), Article 101591, |
| [10] |
R.O. Christiansen, G.M. Gianni, C.A. Ballivián Justiniano, H.P.A. García, S. Wohnlich. The role of geotectonic setting on the heat flow distribution of southern South America. Geophys. J. Int., 230 (2022), pp. 1911-1927, |
| [11] |
W. Colgan, A. Wansing, K. Mankoff, M. Lösing, J. Hopper, K. Louden, J. Ebbing, F.G. Christiansen, T. Ingeman-Nielsen, L.C. Liljedahl, J.A. MacGregor, Á. Hjartarson, S. Bernstein, N.B. Karlsson, S. Fuchs, J. Hartikainen, J. Liakka, R.S. Fausto, D. Dahl-Jensen, A. Bjørk, J.-O. Naslund, F. Mørk, Y. Martos, N. Balling, T. Funck, K.K. Kjeldsen, D. Petersen, U. Gregersen, G. Dam, T. Nielsen, S.A. Khan, A. Løkkegaard. Greenland Geothermal Heat Flow Database and Map (Version 1). Earth Syst. Sci. Data, 14 (2022), pp. 2209-2238, |
| [12] |
J.H. Davies. Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst., 14 (2013), pp. 4608-4622, |
| [13] |
J.H. Davies, D.R. Davies. Earth's surface heat flux. Solid Earth, 1 (2010), pp. 5-24, |
| [14] |
E.E. Davis, C.R.B. Lister. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett., 21 (1974), pp. 405-413, |
| [15] |
Global Heat Flow Data Assessment Group et al., 2023. The Global Heat Flow Database: Release 2023. GFZ Data Services. https://doi.org/10.5880/fidgeo.2023.008. |
| [16] |
B. Goutorbe, J. Poort, F. Lucazeau, S. Raillard. Global heat flow trends resolved from multiple geological and geophysical proxies. Geophys. J. Int., 187 (2011), pp. 1405-1419, |
| [17] |
P.M. Gregg, J. Lin, M.D. Behn, L.G.J. Montési. Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature, 448 (2007), pp. 183-187, |
| [18] |
D. Hasterok. A heat flow based cooling model for tectonic plates. Earth Planet. Sci. Lett., 361 (2013), pp. 34-43, |
| [19] |
D. Hasterok, D.S. Chapman. Global heat flow: A new database and a new approach. AGU Fall Meeting Abstracts (2008) |
| [20] |
D. Hasterok, D.S. Chapman, E.E. Davis. Oceanic heat flow: Implications for global heat loss. Earth Planet. Sci. Lett., 311 (2011), pp. 386-395, |
| [21] |
D. Hasterok, J.A. Halpin, A.S. Collins, M. Hand, C. Kreemer, M.G. Gard, S. Glorie. New maps of global geological provinces and tectonic plates. Earth-Sci. Rev., 231 (2022), Article 104069, |
| [22] |
J. He, K. Li, X. Wang, N. Gao, X. Mao, L. Jia. A machine learning methodology for predicting geothermal heat flow in the Bohai Bay Basin, China. Nat. Resour. Res., 31 (2022), pp. 237-260, |
| [23] |
M.J. Hoggard, J. Winterbourne, K. Czarnota, N. White. Oceanic residual depth measurements, the plate cooling model, and global dynamic topography. J. Geophys. Res.-Solid Earth, 122 (2017), pp. 2328-2372, |
| [24] |
L. Johansson, S. Zahirovic, R.D. Mueller. The interplay between the eruption and weathering of Large Igneous Provinces and the deep-time carbon cycle. Geophys. Res. Lett., 45 (2018), pp. 5380-5389, |
| [25] |
E. Jolie, S. Scott, J. Faulds, I. Chambefort, G. Axelsson, L.C. Gutierrez-Negrin, S. Regenspurg, M. Ziegler, B. Ayling, A. Richter, M.T. Zemedkun. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ., 2 (2021), pp. 324-339, |
| [26] |
X.C. Kong, S.Z. Li, Y.H. Suo, L.L. Guo, X.Y. Li, X. Liu, I.D. Somerville, L.M. Dai, S.J. Zhao. Hot and cold subduction systems in the Western Pacific Ocean: insights from heat flows. Geol. J., 51 (2016), pp. 593-608, |
| [27] |
W.H.K. Lee. The present state of heat flow observations. Bull. Volcanol., 29 (1966), pp. 313-325, |
| [28] |
C.-F. Li, Y. Lu, J. Wang. A global reference model of Curie-point depths based on EMAG2. Sci. Rep., 7 (2017), Article 45129, |
| [29] |
M. Li, S. Huang, M. Dong, Y. Xu, T. Hao, X. Wu, Y. Deng. Prediction of marine heat flow based on the random forest method and geological and geophysical features. Mar. Geophys. Res., 42 (2021), p. 30, |
| [30] |
M. Lösing, J. Ebbing. Predicting geothermal heat flow in Antarctica with a machine learning approach. J. Geophys. Res.: Solid Earth, 126 (2021), Article e2020JB021499, |
| [31] |
F. Lucazeau. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophys. Geosyst., 20 (2019), pp. 4001-4024, |
| [32] |
P. Morgan. The thermal structure and thermal evolution of the continental lithosphere. Phys. Chem. Earth., 15 (1984), pp. 107-193, |
| [33] |
J.-A. Olive. Chapter 20 - Mid-Ocean Ridges: Geodynamics Written in the Seafloor. J.C. Duarte (Ed.), Dynamics of Plate Tectonics and Mantle Convection, Elsevier (2023), pp. 483-510 |
| [34] |
B. Parsons, J.G. Sclater. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82 (1977), pp. 803-827, |
| [35] |
H.N. Pollack, S.J. Hurter, J.R. Johnson. Heat flow from the Earth's interior: Analysis of the global data set. Rev. Geophys., 31 (1993), pp. 267-280, |
| [36] |
R.U.M. Rao, G.V. Rao, G.K. Reddy. Age dependence of continental heat flow fantasy and facts. Earth Planet. Sci. Lett., 59 (1982), pp. 288-302, |
| [37] |
S. Rezvanbehbahani, L.A. Stearns, A. Kadivar, J.D. Walker, C.J. van der Veen. Predicting the geothermal heat flux in Greenland: A machine learning approach. Geophys. Res. Lett., 44 (2017), pp. 12271-12279, |
| [38] |
S. Riley, S. Degloria, S.D. Elliot. A terrain ruggedness index that quantifies topographic heterogeneity. Internat. J. Sci., 5 (1999), pp. 23-27 |
| [39] |
F. Rolandone, F. Lucazeau, J. Poort, S. Leroy. Heat flow estimates offshore Haiti in the Caribbean plate. Terra Nova, 32 (2020), pp. 179-186, |
| [40] |
J.G. Sclater, C. Jaupart, D. Galson. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys. Space Phys., 18 (1) (1980), pp. 269-311, |
| [41] |
J.G. Sclater, D. Hasterok, B. Goutorbe, J. Hillier, R. Negrete. Marine heat flow. Encycl. Marine Geosci., 1–16 (2014), |
| [42] |
M. Seton, R.D. Müller, S. Zahirovic, S. Williams, N.M. Wright, J. Cannon, J.M. Whittaker, K.J. Matthews, R. McGirr. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosyst., 21 (2020), Article e2020GC009214, |
| [43] |
N.M. Shapiro, M.H. Ritzwoller. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223 (2004), pp. 213-224, |
| [44] |
G.A. Spinelli, R.N. Harris. Effects of the legacy of axial cooling on partitioning of hydrothermal heat extraction from oceanic lithosphere. J. Geophys. Res.-Solid Earth (2011), p. 116, |
| [45] |
T. Stål, A.M. Reading, J.A. Halpin, J.M. Whittaker. Antarctic geothermal heat flow model: Aq1. Geochem. Geophys. Geosyst., 22 (2021), Article e2020GC009428, |
| [46] |
C.A. Stein, S. Stein. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359 (1992), pp. 123-129, |
| [47] |
C.A. Stein, S. Stein. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., 99 (1994), pp. 3081-3095, |
| [48] |
C.A. Stein, S. Stein, A.M. Pelayo. Heat flow and hydrothermal circulation. S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, R.E. Thomson (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph Series, American Geophysical Union (1995), pp. 425-445, |
| [49] |
R. Styron, M. Pagani. The GEM global active faults database. Earthq. Spectra, 36 (2020), pp. 160-180, |
| [50] |
B. Tozer, D.T. Sandwell, W.H.F. Smith, C. Olson, J.R. Beale, P. Wessel. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci., 6 (2019), pp. 1847-1864, |
/
| 〈 |
|
〉 |