A critical review of hurricane risk assessment models and predictive frameworks

Sameera Maha Arachchige, Biswajeet Pradhan, Hyuck-Jin Park

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102012.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102012. DOI: 10.1016/j.gsf.2025.102012

A critical review of hurricane risk assessment models and predictive frameworks

Author information +
History +

Abstract

Hurricanes are one of the most destructive natural disasters that can cause catastrophic losses to both communities and infrastructure. Assessment of hurricane risk furnishes a spatial depiction of the interplay among hazard, vulnerability, exposure, and mitigation capacity, crucial for understanding and managing the risks hurricanes pose to communities. These assessments aid in gauging the efficacy of existing hurricane mitigation strategies and gauging their resilience across diverse climate change scenarios. A systematic review was conducted, encompassing 94 articles, to scrutinize the structure, data inputs, assumptions, methodologies, perils modelled, and key predictors of hurricane risk. This review identified key research gaps essential for enhancing future risk assessments. The complex interaction between hurricane perils may be disastrous and underestimated in the majority of risk assessments which focus on a single peril, commonly storm surge and flood, resulting in inadequacies in disaster resilience planning. Most risk assessments were based on hurricane frequency rather than hurricane damage, which is more insightful for policymakers. Furthermore, considering secondary indirect impacts stemming from hurricanes, including real estate market and business interruption, could enrich economic impact assessments. Hurricane mitigation measures were the most under-utilised category of predictors leveraged in only 5% of studies. The top six predictive factors for hurricane risk were land use, slope, precipitation, elevation, population density, and soil texture/drainage. Another notable research gap identified was the potential of machine learning techniques in risk assessments, offering advantages over traditional MCDM and numerical models due to their ability to capture complex nonlinear relationships and adaptability to different study regions. Existing machine learning based risk assessments leverage random forest models (42% of studies) followed by neural network models (19% of studies), with further research required to investigate diverse machine learning algorithms such as ensemble models. A further research gap is model validation, in particular assessing transferability to a new study region. Additionally, harnessing simulated data and refining projections related to demographic and built environment dynamics can bolster the sophistication of climate change scenario assessments. By addressing these research gaps, hurricane risk assessments can furnish invaluable insights for national policymakers, facilitating the development of robust hurricane mitigation strategies and the construction of hurricane-resilient communities. To the authors’ knowledge, this represents the first literature review specifically dedicated to quantitative hurricane risk assessments, encompassing a comparison of Multi-criteria Decision Making (MCDM), numerical models, and machine learning models. Ultimately, advancements in hurricane risk assessments and modelling stand poised to mitigate potential losses to communities and infrastructure both in the immediate and long-term future.

Keywords

Hurricanes / Risk Assessment / Hazard / Vulnerability / Machine Learning / Climate Change / Storm Surge

Cite this article

Download citation ▾
Sameera Maha Arachchige, Biswajeet Pradhan, Hyuck-Jin Park. A critical review of hurricane risk assessment models and predictive frameworks. Geoscience Frontiers, 2025, 16(3): 102012 https://doi.org/10.1016/j.gsf.2025.102012

References

M.T. Aidinidou, K. Kaparis, A.C. Georgiou. Analysis, prioritization and strategic planning of flood mitigation projects based on sustainability dimensions and a spatial/value AHP-GIS system. Expert Sys. Appl., 211 (2023), Article 118566
S.K. Aksha, L. Juran, L.M. Resler, Y. Zhang. An analysis of social vulnerability to natural hazards in nepal using a modified social vulnerability index. Int. J. Disaster Risk Sci., 10 (1) (2019), pp. 103-116,
CrossRef Google scholar
A. Alam, P. Sammonds, B. Ahmed. Cyclone risk assessment of the Cox's Bazar district and Rohingya refugee camps in southeast Bangladesh. Sci. Total Environ., 704 (2020), Article 135360,
CrossRef Google scholar
S.A. Ali, R. Khatun, A. Ahmad, S.N. Ahmad. Assessment of cyclone vulnerability, hazard evaluation and mitigation capacity for analyzing cyclone risk using GIS technique: a study on sundarban biosphere reserve. India. Earth Sys. Environ., 4 (1) (2020), pp. 71-92,
CrossRef Google scholar
A. Alipour, A. Ahmadalipour, P. Abbaszadeh, H. Moradkhani. Leveraging machine learning for predicting flash flood damage in the Southeast US. Environ. Res. Lett., 15 (2) (2020), Article 024011,
CrossRef Google scholar
A.M. Braik, M. Koliou. Automated building damage assessment and large‐scale mapping by integrating satellite imagery, GIS, and deep learning. Computer‐aided Civil Infrastr. Eng., 38 (2024), Article 2389
D.T. Bui, P. Tsangaratos, P.T.T. Ngo, T.D. Pham, B.T. Pham. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci. Total Environ., 668 (2019), pp. 1038-1054,
CrossRef Google scholar
D.T. Bui, B. Pradhan, H. Nampak, Q.T. Bui, Q.A. Tran, Q.P. Nguyen. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J. Hydrol., 540 (2016), pp. 317-330
S. Bunya, J.C. Dietrich, J.J. Westerink, B.A. Ebersole, J.M. Smith, J.H. Atkinson, R. Jensen, D.T. Resio, R.A. Luettich, C. Dawson, V.J. Cardone, A.T. Cox, M.D. Powell, H.J. Westerink, H.J. Roberts. A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. part I: model development and validation. Mon. Weather Rev., 138 (2) (2010), pp. 345-377,
CrossRef Google scholar
J.M. Burston, D. Taylor, J. Dent, J. Churchill. Australia-wide tropical cyclone multi-hazard risk assessment. Euro. Phys. Soc. (EPS) (2017), pp. 185-191
R.P. Cechet, A. Sanabria, T. Yang, W.C. Arthur, C.H. Wang, X. Wang. . An assessment of severe wind hazard and risk for Queensland's Sunshine Coast region, In Proceedings of the International Congress on Modelling and Simulation, Perth, Australia (2011)
K. Chapi, V.P. Singh, A. Shirzadi, H. Shahabi, D.T. Bui, B.T. Pham, K. Khosravi. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw., 95 (2017), pp. 229-245,
CrossRef Google scholar
W. Chen, Y. Li, W. Xue, H. Shahabi, S. Li, H. Hong, X. Wang, H. Bian, S. Zhang, B. Pradhan, B.B. Ahmad. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ., 701 (2020), Article 134979,
CrossRef Google scholar
Y.R. Chen, C.H. Yeh, B. Yu. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Nat. Hazards, 59 (3) (2011), pp. 1261-1276,
CrossRef Google scholar
A.J. Condon, Y.P. Sheng. Evaluation of coastal inundation hazard for present and future climates. Nat. Hazards, 62 (2) (2012), pp. 345-373,
CrossRef Google scholar
S.L. Cutter, C. Finch. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. U.S.A., 105 (7) (2008), pp. 2301-2306,
CrossRef Google scholar
B. Das, R. Bordoloi, L.T. Thungon, A. Paul, P.K. Pandey, M. Mishra, O.P. Tripathi. An integrated approach of GIS, RUSLE and AHP to model soil erosion in West Kameng watershed. Arunachal Pradesh. J. Earth Syst. Sci., 129 (1) (2020), p. 94,
CrossRef Google scholar
L. Dasallas, S. Lee. Topographical analysis of the 2013 Typhoon Haiyan storm surge flooding by combining the JMA storm surge model and the FLO-2D flood inundation model. Water, 11 (1) (2019), p. 144,
CrossRef Google scholar
M.M. De Brito, M. Evers. Multi-criteria decision-making for flood risk management: a survey of the current state of the art. Nat. Hazards Earth Syst. Sci., 16 (4) (2016), pp. 1019-1033,
CrossRef Google scholar
J.C. Dietrich, M. Zijlema, J.J. Westerink, L.H. Holthuijsen, C. Dawson, R.A. Luettich, R.E. Jensen, J.M. Smith, G.S. Stelling, G.W. Stone. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng., 58 (1) (2011), pp. 45-65,
CrossRef Google scholar
M. Dilley, R.S. Chen, U. Deichmann, A. Lerner-Lam, M. Arnold, J. Agwe, P. Buys, O. Kjekstad, B. Lyon, G. Yetman. Natural disaster hotspots: a global risk analysis. World Bank Disaster Risk Manag. Series. (2005), pp. 1-132
C. Do, Y. Kuleshov. Multi-Hazard tropical cyclone risk assessment for Australia. Remote Sens., 15 (3) (2023), p. 795,
CrossRef Google scholar
J. Fang, S. Sun, P. Shi, J. Wang. Assessment and mapping of potential storm surge impacts on global population and economy. Int. J. Disaster Risk Sci., 5 (4) (2014), pp. 323-331,
CrossRef Google scholar
G. Flato, J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring. Evaluation of climate models Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press (2014), pp. 741-866
C. Forbes, J. Rhome, C. Mattocks, A. Taylor. Predicting the storm surge threat of hurricane sandy with the national weather service SLOSH model. J. Mar. Sci. Eng., 2 (2) (2014), pp. 437-476,
CrossRef Google scholar
A.C. Freeman, W.S. Ashley. Changes in the US hurricane disaster landscape: the relationship between risk and exposure. Nat. Hazards, 88 (2) (2017), pp. 659-682,
CrossRef Google scholar
S. Gao, Y. Wang. Explainable deep learning powered building risk assessment model for proactive hurricane response. Risk Anal., 43 (6) (2023), pp. 1222-1234,
CrossRef Google scholar
Y. Gao, H. Wang, G. Liu, X. Sun, X. Fei, P. Wang, T. Lv, Z. Xue, Y. He. Risk assessment of tropical storm surges for coastal regions of China. J. Geophys. Res. Atmosph., 119 (9) (2014), pp. 5364-5374
E. Genovese, C. Green. Assessment of storm surge damage to coastal settlements in Southeast Florida. J. Risk Res., 18 (4) (2015), pp. 407-427,
CrossRef Google scholar
J.C. Gill, B.D. Malamud. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys., 52 (4) (2014), pp. 680-722
B. Glahn, A. Taylor, N. Kurkowski, W.A. Shaffer. The role of the SLOSH model in national weather service storm surge forecasting. Nation. Weather Digest, 33 (1) (2009), pp. 3-14
P. Godwyn-Paulson, M.P. Jonathan, P.F. Rodríguez-Espinosa, S. Abdul Rahaman, P.D. Roy, G. Muthusankar, C. Lakshumanan. Multi-hazard risk assessment of coastal municipalities of Oaxaca, Southwestern Mexico: An index based remote sensing and geospatial technique. Int. J. Disaster Risk Reduct., 77 (2022), Article 103041,
CrossRef Google scholar
T. Guo, G. Li, L. He. Risk assessment of typhoon storm surge based on a simulated annealing algorithm and the least squares method: a case study in Guangdong Province, China. Nat. Hazards Res., 2 (3) (2022), pp. 249-258,
CrossRef Google scholar
J. Ha, J.E. Kang. Assessment of flood-risk areas using random forest techniques: Busan Metropolitan City. Nat. Hazards, 111 (3) (2022), pp. 2407-2429,
CrossRef Google scholar
S.S. Hamid, J.P. Pinelli, S.C. Chen, K. Gurley. Catastrophe model-based assessment of hurricane risk and estimates of potential insured losses for the State of Florida. Nat. Hazards Rev., 12 (4) (2011), pp. 171-176,
CrossRef Google scholar
D.M.E. Haque, A. Mimi, R.K. Mazumder, A.M. Salman. Evaluation of natural hazard risk for coastal districts of Bangladesh using the INFORM approach. Int. J. Disaster Risk Reduct., 48 (2020), p. 2020,
CrossRef Google scholar
R. Hasanzadeh Nafari, T. Ngo. Predictive applications of Australian flood loss models after a temporal and spatial transfer. Geomatics. Nat. Hazards Risk, 9 (1) (2018), pp. 416-430,
CrossRef Google scholar
M.R. Hashemi, M.L. Spaulding, A. Shaw, H. Farhadi, M. Lewis. An efficient artificial intelligence model for prediction of tropical storm surge. Nat. Hazards, 82 (1) (2016), pp. 471-491,
CrossRef Google scholar
H. Hong, P. Tsangaratos, I. Ilia, J. Liu, A.X. Zhu, W. Chen. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci. Total Environ., 625 (2018), pp. 575-588,
CrossRef Google scholar
M.A.A. Hoque, S. Phinn, C. Roelfsema, I. Childs. Assessing tropical cyclone risks using geospatial techniques. Appl. Geogr., 98 (2018), pp. 22-33,
CrossRef Google scholar
M.A.A. Hoque, B. Pradhan, N. Ahmed, B. Ahmed, A.M. Alamri. Cyclone vulnerability assessment of the western coast of Bangladesh. Geomatics Nat. Hazards Risk, 12 (1) (2021), pp. 198-221,
CrossRef Google scholar
M.A.A. Hoque, B. Pradhan, N. Ahmed, S. Roy. Tropical cyclone risk assessment using geospatial techniques for the eastern coastal region of Bangladesh. Sci. Total Environ., 692 (2019), pp. 10-22,
CrossRef Google scholar
S. Hsu, A. Babin. Estimating the radius of maximum wind via satellite during Hurricane Lili (2002) over the Gulf of Mexico. Natl. Weather Assoc. Electron. J., 6 (3) (2005), pp. 1-6
X. Hu, G. Fang, Y. Ge. Joint probability analysis and mapping of typhoon-induced wind, wave, and surge hazards along southeast China. Ocean Eng., 311 (2024), Article 118844
J.L. Irish, A.E. Frey, J.D. Rosati, F. Olivera, L.M. Dunkin, J.M. Kaihatu, C.M. Ferreira, B.L. Edge. Potential implications of global warming and barrier island degradation on future hurricane inundation, property damages, and population impacted. Ocean Coast. Manage., 53 (10) (2010), pp. 645-657,
CrossRef Google scholar
Jelesnianski, C.P., 1992. SLOSH: Sea, lake, and overland surges from hurricanes (Vol. 48). US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service.
I. Jesna, C. Kurian, S.M. Bhallamudi, K.P. Sudheer. A new framework integrating flood inundation modeling and multicriteria decision-making for enhanced flood risk mapping. Nat. Hazards, 120 (14) (2024), pp. 13309-133029
R. Jena, A. Shanableh, R. Al-Ruzouq, B. Pradhan, M.B.A. Gibril, O. Ghorbanzadeh, C. Atzberger, M.A. Khalil, H. Mittal, P. Ghamisi. An integration of deep learning and transfer learning for earthquake-risk assessment in the Eurasian Region. Remote Sens., 15 (15) (2023), p. 3759,
CrossRef Google scholar
K. Jung, J. Kam, S. Lee. Tropical cyclone risk assessment reflecting the climate change trend: The case of South Korea. Nat. Hazards, 120 (6) (2024), pp. 5841-5867
L. Kantha. Time to replace the Saffir‐Simpson hurricane scale? Eos. Trans. Am. Geophys. Union, 87 (1) (2006), pp. 3-6
M.F. Karim, N. Mimura. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Global Environ. Change, 18 (3) (2008), pp. 490-500,
CrossRef Google scholar
P. Kayastha, M.R. Dhital, F. De Smedt. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput. Geosci., 52 (2013), pp. 398-408
K. Khosravi, H. Shahabi, B.T. Pham, J. Adamowski, A. Shirzadi, B. Pradhan, J. Dou, H.B. Ly, G. Gróf, H.L. Ho, H. Hong, K. Chapi, I. Prakash. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J. Hydrol., 573 (2019), pp. 311-323,
CrossRef Google scholar
J.M. Kim, K. Son, Y. Yoo, D. Lee, D.Y. Kim. Identifying risk indicators of building damage due to typhoons: focusing on cases of South Korea. Sustainability, 10 (11) (2018), p. 3947,
CrossRef Google scholar
J.M. Kim, K. Son, S.G. Yum, S. Ahn. Typhoon vulnerability analysis in South Korea utilizing damage record of typhoon Maemi. Adv. Civ. Eng., 2020 (2020), Article 8885916,
CrossRef Google scholar
K. Kim, J.W. Lee, J.L. Irish. . Probabilistic tropical cyclone surge hazard under future sea-level rise scenarios: A case study in the Chesapeake Bay Region, USA, American Society of Civil Engineers (ASCE) (2023), pp. 1284-1297
K. Kim, S.H. Yoon. Assessment of building damage risk by natural disasters in South Korea using decision tree analysis. Sustainability, 10 (4) (2018), p. 1072,
CrossRef Google scholar
T.R. Knutson, J.L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J.P. Kossin, A. Srivastava, M. Sugi. Tropical cyclones and climate change. Nat. Geosci., 3 (3) (2010), pp. 157-163
P.D. Kunte, N. Jauhari, U. Mehrotra, M. Kotha, A.S. Hursthouse, A.S. Gagnon. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques. Ocean Coast. Manage., 95 (2014), pp. 264-281,
CrossRef Google scholar
Y.Y. Kwon, J.W. Choi, J.I. Kwon. Simulation of storm surge due to the changes of typhoon moving speed in the South Coast of Korean Peninsula. J. Coast. Res., 95 (S1) (2020), pp. 1467-1472,
CrossRef Google scholar
S. Leach, S. Paal. Machine learning for predicting prehurricane structural damage. Nat. Hazards Rev., 25 (4) (2024), Article 04024044
K. Li, G.S. Li. Risk assessment on storm surges in the coastal area of Guangdong Province. Nat. Hazards, 68 (2) (2013), pp. 1129-1139,
CrossRef Google scholar
N. Lin, K.A. Emanuel, J.A. Smith, E. Vanmarcke. Risk assessment of hurricane storm surge for New York City. J. Geophys. Res. D Atmos., 115 (18) (2010), p. D18121,
CrossRef Google scholar
L. Lin, P. Pussella. Assessment of vulnerability for coastal erosion with GIS and AHP techniques case study: Southern coastline of Sri Lanka. Nat. Resour. Model, 30 (4) (2017), Article e12146,
CrossRef Google scholar
Y.A. Liou, T.V. Le. Comparative analysis of machine learning models for tropical cyclone intensity estimation. Remote Sens., 16 (17) (2024), p. 3138
R. Liu, Y. Chen, J. Wu, L. Gao, D. Barrett, T. Xu, L. Li, C. Huang, J. Yu. Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: a case study in Bowen Basin. Australia. Stoch. Environ. Res. Risk Assess., 30 (6) (2016), pp. 1575-1590,
CrossRef Google scholar
Loder, N., Cialone, M., Irish, J., Wamsley, T., 2009. Idealized marsh simulations: Sensitivity of storm surge elevation to seabed elevation, Coastal and Hydraulics Engineering Technical Note ERDC. CHL CHETN-I-78. Vicksburg, MS, US Army Engineer Research and Development Center.
Luettich, R.A., Westerink, J.J., Scheffner, N.W., 1992. ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1, Theory and methodology of ADCIRC-2DD1 and ADCIRC-3DL.
H.M. Lyu, Z.Y. Yin. Flood susceptibility prediction using tree-based machine learning models in the GBA. Sustain. Cities Soc., 97 (2023), Article 104744,
CrossRef Google scholar
M. Mahapatra, R. Ramakrishnan, A.S. Rajawat. Coastal vulnerability assessment using analytical hierarchical process for South Gujarat coast, India. Nat. Hazards, 76 (1) (2015), pp. 139-159,
CrossRef Google scholar
R.S. Mahendra, P.C. Mohanty, H. Bisoyi, T.S. Kumar, S. Nayak. Assessment and management of coastal multi-hazard vulnerability along the Cuddalore-Villupuram, east coast of India using geospatial techniques. Ocean Coast. Manage., 54 (4) (2011), pp. 302-311,
CrossRef Google scholar
F. Mallick, A. Rahman. Cyclone and tornado risk and reduction approaches in Bangladesh. Disaster Risk Reduction Approaches in Bangladesh (2013), pp. 91-102
M.C. Maloney, B.L. Preston. A geospatial dataset for US hurricane storm surge and sea-level rise vulnerability: Development and case study applications. Climate Risk Manag., 2 (2014), pp. 26-41
P. Mandal, A. Maiti, S. Paul, S. Bhattacharya, S. Paul. Mapping the multi-hazards risk index for coastal block of Sundarban, India using AHP and machine learning algorithms. Trop. Cyclone. Res. Rev., 11 (4) (2022), pp. 225-243,
CrossRef Google scholar
R. Mani Murali, M. Ankita, S. Amrita, P. Vethamony. Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Nat. Hazards Earth Syst. Sci., 13 (12) (2013), pp. 3291-3311,
CrossRef Google scholar
M.A.A. Mamun, L. Zhang, B. Chen, Z.U. Rahman, T. Mahzabin, J. Zuo, Q. Zhang, S.A. Reza. Assessment of spatial cyclone surge susceptibility through GIS-based AHP multi-criteria analysis and frequency ratio: a case study from the Bangladesh coast. Geomatics Nat. Hazards Risk, 15 (1) (2024), Article 2368071
S. Mansour, S. Darby, J. Leyland, P.M. Atkinson. Geospatial modelling of tropical cyclone risk along the northeast coast of Oman: Marine hazard mitigation and management policies. Mar. Policy, 129 (2021), Article 104544,
CrossRef Google scholar
M. Marconi, B. Gatto, M. Magni, F. Marincioni. A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050. Nat. Hazards, 81 (2016), pp. 329-346
R. Marsooli, N. Lin. Numerical modeling of historical storm tides and waves and their interactions along the US East and Gulf Coasts. J. Geophys. Res.: Oceans, 123 (5) (2018), pp. 3844-3874
J. Mazumdar, S.K. Paul. A spatially explicit method for identification of vulnerable hotspots of Odisha, India from potential cyclones. Int. J. Disaster Risk Reduct., 27 (2018), pp. 391-405,
CrossRef Google scholar
R. Mendelsohn, K. Emanuel, S. Chonabayashi, L. Bakkensen. The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2 (3) (2012), pp. 205-209
C. Meng, W. Xu, P. Su, L. Qin, X. Liao, J. Zhang. Quantitative assessment of population risk to tropical cyclones using hybrid modeling combining GAM and XGBoost: a case study of Hainan Province. Int. J. Disaster Risk Reduction, 110 (2024), Article 104650
M.M.Q. Mirza, R.A. Warrick, N.J. Ericksen. The implications of climate change on floods of the Ganges, Brahmaputra and Meghna rivers in Bangladesh. Climatic Change, 57 (3) (2003), pp. 287-318,
CrossRef Google scholar
M. Mondal, S. Haldar, A. Biswas, S. Mandal, S. Bhattacharya, S. Paul. Modeling cyclone-induced multi-hazard risk assessment using analytical hierarchical processing and GIS for coastal West Bengal, India. Reg. Stud. Mar. Sci., 44 (2021), Article 101779,
CrossRef Google scholar
M.E. Mousavi, J.L. Irish, A.E. Frey, F. Olivera, B.L. Edge. Global warming and hurricanes: The potential impact of hurricane intensification and sea level rise on coastal flooding. Clim. Change, 104 (3–4) (2011), pp. 575-597,
CrossRef Google scholar
Mulubrhan, F., Mokhtar, A.A., Muhammad, M., 2014. Comparative analysis between fuzzy and traditional analytical hierarchy process, MATEC web of conferences. EDP Sciences, p. 01006.
M.L. Museru, R. Nazari, A.N. Giglou, K. Opare, M. Karimi. Advancing flood damage modeling for coastal Alabama residential properties: a multivariable machine learning approach. Sci. Total Environ., 907 (2024), Article 167872
O.M. Nofal, K. Amini, J.E. Padgett, J.W. van de Lindt, N. Rosenheim, Y.M. Darestani, A. Enderami, E.J. Sutley, S. Hamideh, L. Duenas-Osorio. Multi-hazard socio-physical resilience assessment of hurricane-induced hazards on coastal communities. Resil. Cit. Struct., 2 (2) (2023), pp. 67-81,
CrossRef Google scholar
O.M. Nofal, J.W. Van De Lindt, T.Q. Do, G. Yan, S. Hamideh, D.T. Cox, J.C. Dietrich. Methodology for regional multihazard hurricane damage and risk assessment. J. Struct. Eng., 147 (11) (2021), Article 04021185,
CrossRef Google scholar
D. Ozturk, I. Yilmaz, U. Kirbas. Flood hazard assessment using AHP in Corum. Turkey. Tecnologia Ciencias Agua, 12 (2) (2021), pp. 1-26, 10.24850/J-TYCA-2021-02-08
Z. Pan, H. Liu. . Numerical Study of Typhoon-Induced Storm Surge in the Yangtze Estuary of China Using a Coupled 3D Model (1 ed.), Elsevier Ltd (2015), pp. 849-854
V.A. Paramygin, Y.P. Sheng, J.R. Davis. Towards the development of an operational forecast system for the Florida coast. J. Mar. Sci. Eng., 5 (1) (2017), p. 0008,
CrossRef Google scholar
R. Paulik, A. Wild, C. Zorn, L. Wotherspoon, S. Williams. Evaluation of residential building damage for the July 2021 flood in Westport, New Zealand. Geosci. Lett., 11 (1) (2024), p. 15
B. Pei, W. Pang, F.Y. Testik, N. Ravichandran, F. Liu. Mapping joint hurricane wind and surge hazards for Charleston, South Carolina. Nat. Hazards, 74 (2) (2014), pp. 375-403,
CrossRef Google scholar
M. Peng, L. Xie, L.J. Pietrafesa. A numerical study of storm surge and inundation in the Croatan-Albemarle- Pamlico Estuary System. Estuar. Coast. Shelf Sci., 59 (1) (2004), pp. 121-137,
CrossRef Google scholar
B.T. Pham, C. Luu, D. Van Dao, T. Van Phong, H.D. Nguyen, H. Van Le, J. von Meding, I. Prakash. Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowledge-Based Syst., 219 (2021), Article 106899
M.A. Quader, A.U. Khan, M. Kervyn. Assessing risks from cyclones for human lives and livelihoods in the coastal region of Bangladesh. Int. J. Environ. Res. Public Health, 14 (8) (2017), p. 0831,
CrossRef Google scholar
S. Rajakumari, A. Minnu, K.J. Sarunjith. Determination of vulnerable zones along Brahmapur coast, Odisha using AHP and GIS with validation against multiple cyclones. Environ. Monit. Assess., 194 (4) (2022), p. 278,
CrossRef Google scholar
Rana, S., Gunasekara, K., Hazarika, M.K., Samarakoon, L., Siddiquee, M., 2010. Application of Remote Sensing and GIS for cyclone disaster management in coastal area: A case study at Barguna district, Bangladesh. In: Kajiwara, K., Muramatsu, K., Ono, A., Soyama, N., Endo, T., Akatsuka, S. (Eds.). International Society for Photogrammetry and Remote Sensing, pp. 122-126.
J.L. Rego, C. Li. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett., 36 (7) (2009), p. 36953,
CrossRef Google scholar
M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature, 566 (7743) (2019), pp. 195-204,
CrossRef Google scholar
W. Rey, E.T. Mendoza, P. Salles, K. Zhang, Y.C. Teng, M.A. Trejo-Rangel, G.L. Franklin. Hurricane flood risk assessment for the Yucatan and Campeche State coastal area. Nat. Hazards, 96 (3) (2019), pp. 1041-1065,
CrossRef Google scholar
I.N. Robertson, R.H. Riggs, S.C.S. Yim, Y.L. Young. Lessons from Hurricane Katrina storm surge on bridges and buildings. J. Waterw. Port Coast. Ocean Eng., 133 (6) (2007), pp. 463-483,
CrossRef Google scholar
R.W. Saaty. The analytic hierarchy process—what it is and how it is used. Math. Model., 9 (3–5) (1987), pp. 161-176
B. Sahoo, P.K. Bhaskaran. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones – a GIS based approach for the Odisha coast. J. Environ. Manage., 206 (2018), pp. 1166-1178,
CrossRef Google scholar
B. Salarieh, I.A. Ugwu, A.M. Salman. Impact of changes in sea surface temperature due to climate change on hurricane wind and storm surge hazards across US Atlantic and Gulf coast regions. SN Appl. Sci., 5 (8) (2023), p. 205,
CrossRef Google scholar
P. Sammonds, A. Alam, S. Day, K. Stavrianaki, I. Kelman. Hurricane risk assessment in a multi-hazard context for Dominica in the Caribbean. Sci. Rep., 13 (1) (2023), p. 22954,
CrossRef Google scholar
S. Saravanan, D. Abijith, K.S.P. Sundar, N.M. Reddy, H. Almohamad, A.A. Al Dughairi, M. Al-Mutiry, H.G. Abdo. Multi-criterion analysis of cyclone risk along the Coast of Tamil Nadu, India—A geospatial approach. ISPRS Int. J. Geo-Inform., 12 (8) (2023), p. 0341,
CrossRef Google scholar
S. Saxena, R. Purvaja, M.D.G. Suganya, R. Ramesh. Coastal hazard mapping in the Cuddalore region, South India. Nat. Hazards, 66 (3) (2013), pp. 1519-1536,
CrossRef Google scholar
A. Sebastian, J. Proft, J.C. Dietrich, W. Du, P.B. Bedient, C.N. Dawson. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC model. Coast. Eng., 88 (2014), pp. 171-181,
CrossRef Google scholar
S. Sethuraman, H.M. Alshahrani, A. Tamizhselvi, A. Sujaatha. Assessment of coastal vulnerability using AHP and machine learning techniques. J. South Am. Earth Sci., 147 (2024), Article 105107
H. Shafizadeh-Moghadam, R. Valavi, H. Shahabi, K. Chapi, A. Shirzadi. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manage., 217 (2018), pp. 1-11,
CrossRef Google scholar
S.K. Sharma, J. Aryal, Q. Shao, A. Rajabifard. Characterizing topographic influences of bushfire severity using machine learning models: A case study in a hilly terrain of Victoria, Australia. IEEE J Sel. Top. Appl. Earth Obs. Remote Sens., 16 (2023), pp. 2791-2807,
CrossRef Google scholar
V.G. Shashank, S. V, H. Schüttrumpf, S.A. Sannasiraj. A new surge index with the incorporation of cyclone track approach angle information for the Bay of Bengal. Coast. Eng., 188 (2024), Article 104429,
CrossRef Google scholar
C.C. Shepard, V.N. Agostini, B. Gilmer, T. Allen, J. Stone, W. Brooks, M.W. Beck. Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Nat. Hazards, 60 (2) (2012), pp. 727-745,
CrossRef Google scholar
X.W. Shi, J.F. Qiu, B.R. Chen, X.J. Zhang, H.S. Guo, J. Wang, Z.Y. Bei. Storm surge risk assessment method for a coastal county in China: case study of Jinshan District, Shanghai. Stoch. Environ. Res. Risk Assess., 34 (5) (2020), pp. 627-640,
CrossRef Google scholar
M. Smith. Assessing climate change risks and opportunities for investors—mining and minerals processing sector. Australian National University, Canberra (2013)
A.H. Sobel, A.A. Wing, S.J. Camargo, C.M. Patricola, G.A. Vecchi, C.Y. Lee, M.K. Tippett. Tropical cyclone frequency. Earth's Future, 9 (12) (2021), Article e2021EF002275
A. Srerurngla. The Storm Surge Model Associated With Tropical Cyclone Linda In The Gulf of Thailand. Flinders University, School of the Environment (2010)
Z. Stalhandske, C.B. Steinmann, S. Meiler, I.J. Sauer, T. Vogt, D.N. Bresch, C.M. Kropf. Global multi-hazard risk assessment in a changing climate. Scient. Rep., 14 (1) (2024), p. 5875
A. Taramelli, E. Valentini, S. Sterlacchini. A GIS-based approach for hurricane hazard and vulnerability assessment in the Cayman Islands. Ocean Coast. Manage., 108 (2015), pp. 116-130,
CrossRef Google scholar
C. Tebaldi, B.H. Strauss, C.E. Zervas. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett., 7 (1) (2012), Article 014032,
CrossRef Google scholar
M. Thenmozhi, M. Sujatha, M. Kavitha, S. Senthilraja, M. Babu, V. Priya. Assessment of cyclone risk and case study of Gaja cyclone using GIS techniques and machine learning algorithms in coastal zone of Tamil Nadu, India. Environ. Res., 246 (2024), Article 118089
H. Thomson, H.B. Zeff, R. Kleiman, A. Sebastian, G.W. Characklis. Systemic financial risk arising from residential flood losses. Earth's Future, 11 (4) (2023), Article e2022EF003206
C.K. Turan, Y.P. Kinfu, M.A. Samad, A. Farhadzadeh, K. Ng. . Comparison of ADCIRC and SLOSH Model Simulations for Hurricanes Andrew and Irma near Miami, Florida, American Society of Civil Engineers (ASCE) (2018), pp. 176-187
H. Varikkodan, S. Balaji, S. Arjun, K.K. Mandal. Tropical cyclone risk assessment of Port Blair, Andaman Islands, India by using numerical modelling and geospatial techniques. J. Earth Syst. Sci., 132 (1) (2023), Article p1,
CrossRef Google scholar
K. Walker. A systematic review of the corporate reputation literature: Definition, measurement, and theory. Corp. Reputation Rev., 12 (4) (2010), pp. 357-387,
CrossRef Google scholar
J.H. Wang, G.F. Lin, Y.R. Huang, I.H. Huang, C.L. Chen. Application of hybrid machine learning model for flood hazard zoning assessments. Stoch. Environ. Res. Risk Assess., 37 (1) (2023), pp. 395-412,
CrossRef Google scholar
Z. Wang, C. Lai, X. Chen, B. Yang, S. Zhao, X. Bai. Flood hazard risk assessment model based on random forest. J. Hydrol., 527 (2015), pp. 1130-1141
P.J. Ward, M.A. Marfai, F. Yulianto, D.R. Hizbaron, J.C.J.H. Aerts. Coastal inundation and damage exposure estimation: A case study for Jakarta. Nat. Hazards, 56 (3) (2011), pp. 899-916,
CrossRef Google scholar
Wibowo, G.C.A., 2023. Tsunami vulnerability and risk assessment using machine learning and landsat 8. Ph.D thesis. Universitas Surabaya, Surabaya, Indonesia.
S.A. Woznicki, J. Baynes, S. Panlasigui, M. Mehaffey, A. Neale. Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci. Total Environ., 647 (2019), pp. 942-953,
CrossRef Google scholar
C. Wu, G. Liu, C. Huang, Q. Liu, X. Guan. Ecological vulnerability assessment based on fuzzy analytical method and analytic hierarchy process in yellow river delta. Int. J. Environ. Res. Public Health, 15 (5) (2018), p. 0855,
CrossRef Google scholar
S.Y. Wu, B. Yarnal, A. Fisher. Vulnerability of coastal communities to sea-level rise: A case study of Cape May County, New Jersey, USA. Clim. Res., 22 (3) (2002), pp. 255-270,
CrossRef Google scholar
S. Xu, F. Huang. Impacts of the two types of El Niño on Pacific tropical cyclone activity. J. Ocean Univ. China, 14 (2) (2015), pp. 191-198,
CrossRef Google scholar
K. Yang, V.A. Paramygin, Y. Peter Sheng. A rapid forecasting and mapping system of storm surge and coastal flooding. Weather Forecast., 35 (4) (2020), pp. 1663-1681,
CrossRef Google scholar
J. Yin, Z. Yin, S. Xu. Composite risk assessment of typhoon-induced disaster for China’s coastal area. Nat. Hazards, 69 (2013), pp. 1423-1434
A. Yodying, N. Mahavik, S. Tantanee, C. Kongmuang, A.K. Keteku, P. Chidburee, K. Seejata, S. Chatsudarat. A fuzzy AHP approach to assess flood hazard for area of bang rakam model 60 project in Yom River Basin, Northern Thailand. Appl. Environ. Res., 44 (1) (2022), pp. 108-125, 10.35762/AER.2021.44.1.9
J. Xu, X. Xue, B. Yang, W. Wang, W. Wu, X. Ji. Risk assessment of landfalling tropical cyclones in china based on hazard risk theory. Appl. Sci., 14 (12) (2024), p. 5126
S. Zahran, T.O.C. Shelley, L. Peek, S.D. Brody. Natural disasters and social order: Modeling crime outcomes in Florida. Int. J. Mass Emergencies Disasters, 27 (1) (2009), pp. 26-52
W. Zhang, C. Wu, L. Tang, X. Gu, L. Wang. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondwana Res., 123 (2023), pp. 41-53
M. Zhou, Y. Kuang, Z. Ruan, M. Xie. Geospatial modeling of the tropical cyclone risk in the Guangdong Province, China. Geomatics Nat. Hazards Risk, 12 (1) (2021), pp. 2931-2955,
CrossRef Google scholar
Z. Zhu, Y. Zhang. Flood disaster risk assessment based on random forest algorithm. Neural Comp. Appl., 34 (5) (2022), p. 3443
Zschau, J., 2017. Where are we with multihazards, multirisks assessment capacities? In: Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I. (Eds.). Science for disaster risk management 2017: knowing better and losing less. EUR 28034 EN, Publications Office of the European Union, Luxembourg, Chapter 2.5, doi: https://doi.org/10.2788/688605.

Accesses

Citations

Detail

Sections
Recommended

/