Warm continental subduction initiated by back-arc collapse: Evidence from remote south-west Tasmania
Dillon A. Brown, Martin Hand, Laura J. Morrissey, Justin L. Payne, Andrew W. McNeill
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102009.
Warm continental subduction initiated by back-arc collapse: Evidence from remote south-west Tasmania
The Tasmanian microcontinent, situated along the East Gondwana accretionary margin during the late Neoproterozoic and early Palaeozoic, contains an unequivocal high-pressure metamorphic record comprising key information pertaining to the geodynamics of subduction along the margin. Subduction of the Tasmanian microcontinent is interpreted by some as a response to back-arc basin inversion prior to ophiolite obduction and high-pressure metamorphism during the Cambrian Tyennan Orogeny. However, thermobarometric evidence in support of such a model from rocks once positioned on the subducting continental margin is lacking. Despite occurrences of eclogite-facies mineral assemblages in the strongly deformed Tyennan Region of western Tasmania, garnet-bearing quartzofeldspathic assemblages documented in metasedimentary lithologies from the remote south-west coast of Tasmania have been interpreted as an expression of low- to moderate-pressure metamorphism. We report a strongly overprinted chlorite-quartz-garnet-bearing assemblage from the southern Tyennan Region (Nye Bay) which shows evidence for high-pressure metamorphism. Coarse-grained garnet porphyroblasts contain inclusions of kyanite, muscovite, and rutile, and yield in-situ Lu–Hf dates of c. 520 Ma. The cm-scale garnet porphyroblasts are zoned in the major and trace elements, preserving core-rim compositional gradients reflecting garnet growth up-pressure. Aided by mineral equilibria forward modelling, the garnet rim compositions and the Zr content of Cambrian rutile constrain peak metamorphic conditions of ∼ 17.5–19 kbar and ∼ 780–820 °C, equivalent to warm subduction thermal gradients between 410–470 °C/GPa. Garnet core compositions and the Ti content of quartz inclusions in the garnet cores constrain the pressures and temperatures for garnet nucleation to ∼ 6–7 kbar and ∼ 560–580 °C, corresponding to relatively high prograde thermal gradients between 800–965 °C/GPa. The thermal gradients determined from the south-west Tasmanian metamorphic record provide a direct window into the progressive evolution of the thermal state of the Cambrian subduction system, with the physical conditions of garnet nucleation potentially reflecting those of subduction initiation. The corresponding warm thermal gradients provide evidence for subduction initiation driven by the collapse of a pre-orogenic back-arc. This interpretation is consistent with an existing tectonic model for the Tyennan Orogeny which proposes a back-arc basin origin for the protoliths to the western Tasmanian sub-ophiolitic metamorphic sole.
High-pressure metamorphism / Subduction / Back-arc / Tyennan Orogeny / East Gondwana
P. Agard, P. Yamato, L. Jolivet, E. Burov. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci. Rev., 92 (1–2) (2009), pp. 53-79,
CrossRef
Google scholar
|
J. Aitchison, M.C. Blake Jr, P.G. Flood, A.S. Jayko. Paleozoic ophiolitic assemblages within the southern New England orogen of eastern Australia: implications for growth of the Gondwana margin. Tectonics, 13 (5) (1994), pp. 1135-1149,
CrossRef
Google scholar
|
J.C. Aitchison, S. Buckman. Accordion vs. quantum tectonics: Insights into continental growth processes from the Paleozoic of eastern Gondwana. Gondwana Res., 22 (2) (2012), pp. 674-680,
CrossRef
Google scholar
|
K.L. Alessio, M. Hand, L.J. Morrissey, D.E. Kelsey, J.L. Payne. Melt reintegration modelling: testing against a subsolidus reference assemblage. Geosciences, 7 (3) (2017), p. 75,
CrossRef
Google scholar
|
G.E. Bebout. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chem. Geol., 126 (2) (1995), pp. 191-218,
CrossRef
Google scholar
|
G.E. Bebout, S.C. Penniston-Dorland. Fluid and mass transfer at subduction interfaces—the field metamorphic record. Lithos, 240–243 (2016), pp. 228-258,
CrossRef
Google scholar
|
R.F. Berry, R.M. Chmielowski, D.A. Steele, S. Meffre. Chemical U – Th – Pb monazite dating of the Cambrian Tyennan Orogeny Tasmania. Aust. J. Earth Sci., 54 (5) (2007), pp. 757-771,
CrossRef
Google scholar
|
R.F. Berry, A.J. Crawford. The tectonic significance of Cambrian allochthonous mafic‐ultramafic complexes in Tasmania. Aust. J. Earth Sci., 35 (4) (1988), pp. 523-533,
CrossRef
Google scholar
|
R.F. Berry, D.A. Steele, S. Meffre. Proterozoic metamorphism in Tasmania: implications for tectonic reconstructions. Precambrian Res., 166 (1–4) (2008), pp. 387-396,
CrossRef
Google scholar
|
L.P. Black, C.R. Calver, D.B. Seymour, A. Reed. SHRIMP U–Pb detrital zircon ages from Proterozoic and Early Palaeozoic sandstones and their bearing on the early geological evolution of Tasmania. Aust. J. Earth Sci., 51 (6) (2004), pp. 885-900,
CrossRef
Google scholar
|
L.P. Black, D.B. Seymour, K.D. Corbett, S.E. Cox, J.E. Streit, C.R. Bottrill, C.R. Calver, J.L. Everard, G.R. Green, M.P. McClenaghan, J. Pemberton, J. Taheri, N.J. Turner. Dating Tasmania's oldest geological events: Mineral Resources Tasmania. Australian Geological Survey Organisation, Canberra (1997)
|
J.D. Bradshaw. The Ross–Delamerian Orogen in the southwest Pacific and Antarctica: an active plate boundary for Gondwana in the late Neoproterozoic and Cambrian. New Zeal. J. Geol. Geophys., 66 (3) (2023), pp. 374-397,
CrossRef
Google scholar
|
D.A. Brown, M. Hand, L.J. Morrissey. Zircon petrochronology and mineral equilibria of the eclogites from western Tasmania: Interrogating the early Palaeozoic East Gondwana subduction record. Gondwana Res., 93 (2021), pp. 252-274,
CrossRef
Google scholar
|
D.A. Brown, L.J. Morrissey, M. Hand, J.A. Mulder, B. Wade, V. Barrote. The metamorphic footprint of western Laurentia preserved in subducted rocks from southern Australia. J. Metamorph. Geol., 42 (5) (2024), pp. 1-37,
CrossRef
Google scholar
|
M. Brown. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front., 5 (4) (2014), pp. 553-569,
CrossRef
Google scholar
|
M. Brown, T. Johnson. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral., 103 (2) (2018), pp. 181-196,
CrossRef
Google scholar
|
M. Brown, T. Johnson. Time's arrow, time's cycle: granulite metamorphism and geodynamics. Mineral. Mag., 83 (3) (2019), pp. 323-338,
CrossRef
Google scholar
|
M.J. Caddick, J. Konopásek, A.B. Thompson. Preservation of garnet growth zoning and the duration of prograde metamorphism. J. Petrol., 51 (11) (2010), pp. 2327-2347,
CrossRef
Google scholar
|
C.R. Calver, L.P. Black, J.L. Everard, D.B. Seymour. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32 (10) (2004), pp. 893-896,
CrossRef
Google scholar
|
P.A. Cawood. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci. Rev., 69 (3–4) (2005), pp. 249-279,
CrossRef
Google scholar
|
R.A. Cayley. Exotic crustal block accretion to the eastern Gondwanaland margin in the Late Cambrian–Tasmania, the Selwyn Block, and implications for the Cambrian–Silurian evolution of the Ross, Delamerian, and Lachlan orogens. Gondwana Res., 19 (3) (2011), pp. 628-649,
CrossRef
Google scholar
|
R.M. Chmielowski. The Cambrian Metamorphic History of Tasmania. (Doctorate). University of Tasmania, Tasmania (2009)
|
R.M. Chmielowski, R.F. Berry. The Cambrian metamorphic history of Tasmania: the Metapelites. Aust. J. Earth Sci., 59 (7) (2012), pp. 1007-1019,
CrossRef
Google scholar
|
M. Cloos. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. GSA Bulletin, 105 (6) (1993), pp. 715-737,
CrossRef
Google scholar
|
R. Compagnoni, T. Hirajima. Superzoned garnets in the coesite-bearing Brossasco-Isasca Unit, Dora-Maira massif, Western Alps, and the origin of the whiteschists. Lithos, 57 (4) (2001), pp. 219-236,
CrossRef
Google scholar
|
J.A.D. Connolly. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett., 236 (1–2) (2005), pp. 524-541,
CrossRef
Google scholar
|
J.A.D. Connolly. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst., 10 (10) (2009), Article Q10014,
CrossRef
Google scholar
|
A.J. Crawford, R.F. Berry. Tectonic implications of Late Proterozoic-Early Palaeozoic igneous rock associations in western Tasmania. Tectonophysics, 214 (1–4) (1992), pp. 37-56,
CrossRef
Google scholar
|
Cumming, G.V., Everard, J.L., Meffre, S., 2016. Age constraints and provenance of the Mount Bischoff inlier and the Luina Group: evidence from LA-ICPMS U-Pb dating of detrital zircon. Tasmanian Geological Survey Record UR2016/04, Mineral Resources Tasmania.
|
C. de Capitani, K. Petrakakis. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral., 95 (7) (2010), pp. 1006-1016,
CrossRef
Google scholar
|
G. Di Vincenzo, F. Horton, R. Palmeri. Protracted (∼ 30 Ma) eclogite-facies metamorphism in northern Victoria Land (Antarctica): Implications for the geodynamics of the Ross/Delamerian Orogen. Gondwana Res., 40 (2016), pp. 91-106,
CrossRef
Google scholar
|
G. Di Vincenzo, R. Palmeri. An 40Ar–39Ar investigation of high-pressure metamorphism and the retrogressive history of mafic eclogites from the Lanterman Range (Antarctica): evidence against a simple temperature control on argon transport in amphibole. Contrib. Mineral. Petrol., 141 (1) (2001), pp. 15-35,
CrossRef
Google scholar
|
G. Di Vincenzo, R. Palmeri, F. Talarico, P.A.M. Andriessen, C.A. Ricci. Petrology and geochronology of eclogites from the Lanterman Range Antarctica. J. Petrol., 38 (10) (1997), pp. 1391-1417
|
H.N. Dirks, I.V. Sanislav, A.S.A.A. Abu Sharib. Continuous convergence along the paleo-Pacific margin of Australia during the Early Paleozoic: insights from the Running River Metamorphics NE Queensland. Lithos, 398–399 (2021), Article 106343,
CrossRef
Google scholar
|
J.J. Donovan, H.A. Lowers, B.G. Rusk. Improved electron probe microanalysis of trace elements in quartz. Am. Mineral., 96 (2011), pp. 274-282
|
B. Dragovic, S. Angiboust, M.J. Tappa. Petrochronological close-up on the thermal structure of a paleo-subduction zone (W. Alps). Earth Planet. Sci. Lett., 547 (2020), Article 116446,
CrossRef
Google scholar
|
T.A. Dumitru. Effects of subduction parameters on geothermal gradients in forearcs, with an application to Franciscan Subduction in California. J. Geophys Res. Solid Earth, 96 (B1) (1991), pp. 621-641,
CrossRef
Google scholar
|
A. Edgar, I.V. Sanislav, P.H.G.M. Dirks, C. Spandler. Metamorphic diamond from the northeastern margin of Gondwana: paradigm shifting implications for one of Earth’s largest orogens. Science Advances, 8 (27) (2022), Article eabo2811,
CrossRef
Google scholar
|
L. Federico, L. Crispini, G. Capponi, J.D. Bradshaw. The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: a synthesis. Gondwana Res., 15 (2) (2009), pp. 188-196,
CrossRef
Google scholar
|
C.L. Fergusson, R.A. Henderson, I.W. Withnall, C.M. Fanning, D. Phillips, K.J. Lewthwaite. Structural, metamorphic, and geochronological constraints on alternating compression and extension in the Early Paleozoic Gondwanan Pacific margin, northeastern Australia. Tectonics, 26 (3) (2007), Article TC3008,
CrossRef
Google scholar
|
C.L. Fergusson, A.P. Nutman, T. Kamiichi, H. Hidaka. Evolution of a Cambrian active continental margin: The Delamerian–Lachlan connection in southeastern Australia from a zircon perspective. Gondwana Res., 24 (3–4) (2013), pp. 1051-1066,
CrossRef
Google scholar
|
J. Foden, M.A. Elburg, J. Dougherty-Page, A. Burtt. The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J. Geol., 114 (2) (2006), pp. 189-210,
CrossRef
Google scholar
|
D.A. Foster, D.R. Gray, C. Spaggiari. Timing of subduction and exhumation along the Cambrian East Gondwana margin, and the formation of Paleozoic backarc basins. Geol. Soc. Am. Bull., 117 (1) (2005), pp. 105-116,
CrossRef
Google scholar
|
T.V. Gerya, L.L. Perchuk, W.V. Maresch, A.P. Willner, D.D. Van Reenen, C.A. Smit. Thermal regime and gravitational instability of multi-layered continental crust: implications for the buoyant exhumation of high-grade metamorphic rocks. Eur. J. Mineral., 14 (4) (2002), pp. 687-699,
CrossRef
Google scholar
|
B. Ghiribelli, M.L. Frezzotti, R. Palmeri. Coesite in eclogites of the Lanterman Range (Antarctica): evidence from textural and Raman studies. Eur. J. Mineral., 14 (2) (2002), pp. 355-360,
CrossRef
Google scholar
|
G.M. Gibson, M.P. Morse, T.R. Ireland, G.K. Nayak. Arc–continent collision and orogenesis in western Tasmanides: insights from reactivated basement structures and formation of an ocean–continent transform boundary off western Tasmania. Gondwana Res., 19 (3) (2011), pp. 608-627,
CrossRef
Google scholar
|
R.A. Glen. Refining accretionary orogen models for the Tasmanides of eastern Australia. Aust. J. Earth Sci., 60 (3) (2013), pp. 315-370,
CrossRef
Google scholar
|
R.A. Glen, R.A. Cooper. Evolution of the East Gondwana convergent margin in Antarctica, southern Australia and New Zealand from the Neoproterozoic to latest Devonian. Earth-Sci. Rev., 220 (2021), Article 103687,
CrossRef
Google scholar
|
S. Glorie, M. Hand, J. Mulder, A. Simpson, B. Emo Robert, B. Kamber, N. Fernie, A. Nixon, S. Gilbert. Robust laser ablation Lu-Hf dating of apatite: an empirical evaluation Geological Society, London. Special Publications, 537 (1) (2023), pp. 165-184,
CrossRef
Google scholar
|
G. Godard, R. Palmeri. High-pressure metamorphism in Antarctica from the Proterozoic to the Cenozoic: a review and geodynamic implications. Gondwana Res., 23 (3) (2013), pp. 844-864,
CrossRef
Google scholar
|
J.W. Goodge. Latest Neoproterozoic basin inversion of the Beardmore Group, central Transantarctic Mountains Antarctica. Tectonics, 16 (4) (1997), pp. 682-701,
CrossRef
Google scholar
|
J.W. Goodge. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Res., 80 (2019), pp. 50-122,
CrossRef
Google scholar
|
J.W. Goodge, C.M. Fanning, M.D. Norman, V.C. Bennett. Temporal, isotopic and spatial relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica. J. Petrol., 53 (10) (2012), pp. 2027-2065,
CrossRef
Google scholar
|
J.W. Goodge, V.L. Hansen, S.M. Peacock. Multiple petrotectonic events in high-grade metamorphic rocks of the Nimrod Group, central Transantarctic Mountains, Antarctica. Recent Progress in Antarctic Earth Science (1992), pp. 203-209
|
Gray, D.R., Vicary, M.J., McNeill, A.W., 2022. Structure of the southwest high-grade coastal belt, southern Tyennan domain, Tasmania. Mineral Resources Tasmania, Geological Survey Paper 9.
|
D.R. Gray, M.J. Vicary, A.W. McNeill. The Tasmanian Tyennan Domain–a structural synthesis and review with tectonic and dynamic implications for continental margin subduction and exhumation. Aust. J. Earth Sci., 71 (2) (2024), pp. 153-210,
CrossRef
Google scholar
|
E.C.R. Green, R.W. White, J.F.A. Diener, R. Powell, T.J.B. Holland, R.M. Palin. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol., 34 (9) (2016), pp. 845-869,
CrossRef
Google scholar
|
M. Guiraud, R. Powell, G. Rebay. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol., 19 (4) (2001), pp. 445-454,
CrossRef
Google scholar
|
B.R. Hacker. Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust. American Geophysical Union, 337–346 (1996),
CrossRef
Google scholar
|
J.A. Halpin, T. Jensen, P. McGoldrick, S. Meffre, R.F. Berry, J.L. Everard, C.R. Calver, J. Thompson, K. Goemann, J.M. Whittaker. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: links to the Belt-Purcell Supergroup North America. Precambrian Res., 250 (2014), pp. 50-67,
CrossRef
Google scholar
|
R.A. Henderson, C.L. Fergusson, I.W. Withnall. Coeval basin formation, plutonism and metamorphism in the Northern Tasmanides: extensional Cambro-Ordovician tectonism of the Charters Towers Province. Aust. J. Earth Sci., 67 (5) (2020), pp. 663-680,
CrossRef
Google scholar
|
I.A. Henrichs, G. O'Sullivan, D.M. Chew, C. Mark, M.G. Babechuk, C. McKenna, R. Emo. The trace element and U-Pb systematics of metamorphic apatite. Chem. Geol., 483 (2018), pp. 218-238,
CrossRef
Google scholar
|
T.J.B. Holland, R. Powell. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol., 16 (3) (1998), pp. 309-343
|
T.J.B. Holland, R. Powell. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol., 145 (2003), pp. 492-501,
CrossRef
Google scholar
|
T.J.B. Holland, R. Powell. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol., 29 (3) (2011), pp. 333-383,
CrossRef
Google scholar
|
K.P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D.E. Jacob, A. Stracke, K. Birbaum, D.A. Frick, D. Günther, J. Enzweiler. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res., 35 (2011), pp. 397-429,
CrossRef
Google scholar
|
K.P. Jochum, S.A. Wilson, W. Abouchami, M. Amini, J. Chmeleff, A. Eisenhauer, E. Hegner, L.M. Iaccheri, B. Kieffer, J. Krause, W.F. McDonough, R. Mertz-Kraus, I. Raczek, R.L. Rudnick, D. Scholz, G. Steinhoefel, B. Stoll, A. Stracke, S. Tonarini, D. Weis, U. Weis, J.D. Woodhead. GSD-1G and MPI-DING reference glasses for in situ and bulk isotopic determination. Geostand. Geoanal. Res., 35 (2010), pp. 193-226,
CrossRef
Google scholar
|
T. Kim, Y. Kim, M. Cho, J.I. Lee. P–T evolution and episodic zircon growth in barroisite eclogites of the Lanterman Range, northern Victoria Land Antarctica. J. Metamorph. Geol., 37 (4) (2019), pp. 509-537,
CrossRef
Google scholar
|
T.L. Knudsen. Petrology and geothermobarometry of granulite facies metapelites from the Hisøy-Torungen area, south Norway: new data on the Sveconorvegian P–T–t path of the Bamble sector. J. Metamorph. Geol., 14 (3) (1996), pp. 267-287,
CrossRef
Google scholar
|
M.J. Kohn, A.E. Castro, B.C. Kerswell, C.R. Ranero, F.S. Spear. Shear heating reconciles thermal models with the metamorphic rock record of subduction. Proc. Nat. Acad. Sci. U.S.A., 115 (46) (2018), pp. 11706-11711,
CrossRef
Google scholar
|
M. Konrad-Schmolke, M.R. Handy, J. Babist, P.J. O’Brien. Thermodynamic modelling of diffusion-controlled garnet growth. Contrib. Mineral. Petrol., 149 (2) (2005), pp. 181-195,
CrossRef
Google scholar
|
M. Konrad-Schmolke, P.J. O'Brien, C. de Capitani, D.A. Carswell. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos, 103 (3–4) (2008), pp. 309-332,
CrossRef
Google scholar
|
E. Kooijman, M.A. Smit, K. Mezger, J. Berndt. Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J. Metamorph. Geol., 30 (4) (2012), pp. 397-412,
CrossRef
Google scholar
|
J. Kulhánek, S.W. Faryad. Compositional changes in garnet: trace element transfer during eclogite-facies metamorphism. Contrib. Mineral. Petrol., 178 (10) (2023), p. 68,
CrossRef
Google scholar
|
K. Lane. Metamorphic and geological constraints on the evolution of the Kalinjala Shear Zone, Eyre Peninsula. ((Honours).), The University of Adelaide, Australia (2011)
|
G.L. Luvizotto, T. Zack, H.P. Meyer, T. Ludwig, S. Triebold, A. Kronz, C. Münker, D.F. Stockli, S. Prowatke, S. Klemme, D.E. Jacob, H. von Eynatten. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol., 261 (3–4) (2009), pp. 346-369,
CrossRef
Google scholar
|
R.J. Manton, S. Buckman, A.P. Nutman, V.C. Bennett, E.A. Belousova. U-Pb-Hf-REE-Ti zircon and REE garnet geochemistry of the Cambrian Attunga eclogite, New England Orogen, Australia: implications for continental growth along eastern Gondwana. Tectonics, 36 (8) (2017), pp. 1580-1613,
CrossRef
Google scholar
|
B.A. Marmo, G.L. Clarke, R. Powell. Fractionation of bulk rock composition due to porphyroblast growth: effects on eclogite facies mineral equilibria, Pam Peninsula New Caledonia. J. Metamorph. Geol., 20 (1) (2002), pp. 151-165,
CrossRef
Google scholar
|
A.W. McNeill. The structure and petrology of the Nye Bay area, south west Tasmania. (B.Sc Hons). University of Tasmania, Hobart (1985)
|
S. Meffre, R.F. Berry, M. Hall. Cambrian metamorphic complexes in Tasmania: tectonic implications. Aust. J. Earth Sci., 47 (6) (2000), pp. 971-985,
CrossRef
Google scholar
|
S. Meffre, R.F. Berry, M. Hall, A.W. McNeill. The Structural Style of Cambrian Metamorphic Complexes in Tasmania: SW Tasmanian examples. Geological Society of Australia Abstracts, 64 (2001), pp. 118-120
|
S. Meffre, N.G. Direen, A.J. Crawford, V. Kamenetsky. Mafic volcanic rocks on King Island, Tasmania: evidence for 579 Ma break-up in east Gondwana. Precambrian Res., 135 (3) (2004), pp. 177-191,
CrossRef
Google scholar
|
M. Meyer, R. Klemd, T. John, J. Gao, M. Menneken. An (in-)coherent metamorphic evolution of high-P eclogites and their host rocks in the Chinese southwest Tianshan?. J. Metamorph. Geol., 34 (2) (2016), pp. 121-146,
CrossRef
Google scholar
|
L. Moresi, P.G. Betts, M.S. Miller, R.A. Cayley. Dynamics of continental accretion. Nature, 508 (7495) (2014), pp. 245-248,
CrossRef
Google scholar
|
J.K. Mortensen, J.B. Gemmell, A.W. McNeill, R.M. Friedman. High-precision U-Pb zircon chronostratigraphy of the Mount Read Volcanic Belt in Western Tasmania, Australia: implications for VHMS deposit formation. Econ. Geol., 110 (2) (2015), pp. 445-468,
CrossRef
Google scholar
|
J.A. Mulder. The Structure and Metamorphism of the Cox Bight−Red Point Area, South West Tasmania. (BSc. Hons). University of Tasmania (2013)
|
J.A. Mulder, R.F. Berry, S. Meffre, J.A. Halpin. The metamorphic sole of the western Tasmanian ophiolite: New insights into the Cambrian tectonic setting of the Gondwana Pacific margin. Gondwana Res., 38 (2016), pp. 351-369,
CrossRef
Google scholar
|
J.A. Mulder, J.L. Everard, G. Cumming, S. Meffre, R.S. Bottrill, A.S. Merdith, J.A. Halpin, A.W. McNeill, P.A. Cawood. Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania Australia. Earth-Sci. Rev., 201 (2020), Article 103041,
CrossRef
Google scholar
|
C. Münker, A.J. Crawford. Cambrian arc evolution along the SE Gondwana active margin: a synthesis from Tasmania-New Zealand-Australia-Antarctica correlations. Tectonics, 19 (3) (2000), pp. 415-432,
CrossRef
Google scholar
|
C.A. Noll, M. Hall. Structural architecture of the Owen Conglomerate, West Coast Range, western Tasmania: field evidence for Late Cambrian extension. Aust. J. Earth Sci., 52 (3) (2005), pp. 411-426,
CrossRef
Google scholar
|
A. Norris, L. Danyushevsky. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. Paper presented at the Goldschmidt, Boston (2018)
|
Z.R. Osborne, J.B. Thomas, W.O. Nachlas, R.J. Angel, C.M. Hoff, E.B. Watson. TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry. Contrib. Mineral. Petrol., 177 (3) (2022), p. 31,
CrossRef
Google scholar
|
R. Palmeri, B. Ghiribelli, G. Ranalli, F. Talarico, C.A. Ricci. Ultrahigh-pressure metamorphism and exhumation of garnet-bearing ultramafic rocks from the Lanterman Range (northern Victoria Land, Antarctica). J. Metamorph. Geol., 25 (2) (2007), pp. 225-243,
CrossRef
Google scholar
|
C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. at. Spectrom, 26 (12) (2011), p. 2508,
CrossRef
Google scholar
|
S.M. Peacock. Thermal and petrologic structure of subduction zones. American Geophysical Union (AGU) (1996), pp. 119-133,
CrossRef
Google scholar
|
S.M. Peacock. Thermal structure and metamorphic evolution of subducting slabs. J. Eiler (Ed.), Inside the Subduction Factory, American Geophysical Union (AGU) (2004), pp. 7-22
|
S.M. Peacock, J.W. Goodge. Eclogite-facies metamorphism preserved in tectonic blocks from a lower crustal shear zone, central Transantarctic Mountains Antarctica. Lithos, 36 (1) (1995), pp. 1-13,
CrossRef
Google scholar
|
S.C. Penniston-Dorland, M.J. Kohn, C.E. Manning. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet. Sci. Lett., 428 (2015), pp. 243-254,
CrossRef
Google scholar
|
G. Phillips, R. Offler, D. Rubatto, D. Phillips. High-pressure metamorphism in the southern New England Orogen: implications for long-lived accretionary orogenesis in eastern Australia. Tectonics, 34 (9) (2015), pp. 1979-2010,
CrossRef
Google scholar
|
Port, I.A., 2023. The Structural and Metamorphic History of the Eastern Tyennan Region, Lake Pedder, Tasmania. (BSc. Hons). University of Tasmania,
|
A. Råheim. Petrology of eclogites and surrounding schists from the Lyell highway—Collingwood river area. J. Geol. Soc. Aust., 23 (3) (1976), pp. 313-327,
CrossRef
Google scholar
|
S. Rocchi, L. Bracciali, G. Di Vincenzo, M. Gemelli, C. Ghezzo. Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land. Gondwana Res., 19 (3) (2011), pp. 594-607,
CrossRef
Google scholar
|
M.D. Ruiz Cruz, C. Sanz de Galdeano. Amphibole-derived evidence of medium P/T metamorphic ratio in Alpujárride and Federico “HP” units (Western Betic-Northern Rif, Spain and Morocco): possible interpretations. Int. J. Earth Sci., 101 (1) (2012), pp. 221-238,
CrossRef
Google scholar
|
A. Simpson, S. Gilbert, R. Tamblyn, M. Hand, C. Spandler, J. Gillespie, A. Nixon, S. Glorie. In-situ Lu Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chem. Geol., 577 (2021), Article 120299,
CrossRef
Google scholar
|
A. Simpson, S. Glorie, M. Hand, S.E. Gilbert, C. Spandler, M. Dmitrijeva, G. Swain, A. Nixon, J. Mulder, C. Münker. In situ apatite and carbonate Lu-Hf and molybdenite Re-Os geochronology for ore deposit research: method validation and example application to Cu-Au mineralisation. Geosci. Front., 15 (5) (2024), Article 101867,
CrossRef
Google scholar
|
A. Simpson, S. Glorie, M. Hand, C. Spandler, S. Gilbert. Garnet Lu-Hf speed dating: a novel method to rapidly resolve polymetamorphic histories. Gondwana Res., 121 (2023), pp. 215-234,
CrossRef
Google scholar
|
A. Simpson, S. Glorie, M. Hand, C. Spandler, S. Gilbert, B. Cave. In situ Lu–Hf geochronology of calcite. Geochronology, 4 (1) (2022), pp. 353-372,
CrossRef
Google scholar
|
A. Spry. The occurrence of eclogite on the Lyell Highway, Tasmania. Mineralogical Magazine and Journal of the Mineralogical Society, 33 (262) (1963), pp. 589-593,
CrossRef
Google scholar
|
R.J. Stern. Subduction zones. Rev. Geophys., 40 (4) (2002), Article 3-1–3-38,
CrossRef
Google scholar
|
E. Stump, B. Gookee, F. Talarico. Tectonic model for development of the Byrd Glacier discontinuity and surrounding regions of the Transantarctic mountains during the Neoproterozoic–Early Palaeozoic. D.K. Fűtterer, D. Damaske (Eds.), Antarctica: Contributions to Global Earth Sciences, Springer (2006), pp. 181-190
|
K. Stüwe. Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib. Mineral. Petrol., 129 (1) (1997), pp. 43-52,
CrossRef
Google scholar
|
K. Stüwe. Geodynamics of the Lithosphere: An Introduction. (2nd ed..), Springer (2007)
|
E.M. Syracuse, P.E. van Keken, G.A. Abers. The global range of subduction zone thermal models. Phys. Earth Planet. Inter., 183 (1–2) (2010), pp. 73-90,
CrossRef
Google scholar
|
R. Tamblyn, M. Hand, D. Kelsey, R. Anczkiewicz, D. Och. Subduction and accumulation of lawsonite eclogite and garnet blueschist in eastern Australia. J. Metamorph. Geol., 38 (2) (2019), pp. 157-182,
CrossRef
Google scholar
|
R. Tamblyn, M. Hand, L. Morrissey, T. Zack, G. Phillips, D. Och. Resubduction of lawsonite eclogite within a serpentinite-filled subduction channel. Contrib. Mineral. Petrol., 175 (8) (2020), p. 74,
CrossRef
Google scholar
|
J.B. Thomas, E. Bruce Watson, F.S. Spear, P.T. Shemella, S.K. Nayak, A. Lanzirotti. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib. Mineral. Petrol., 160 (5) (2010), pp. 743-759,
CrossRef
Google scholar
|
H.S. Tomkins, R. Powell, D.J. Ellis. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol., 25 (6) (2007), pp. 703-713,
CrossRef
Google scholar
|
N.J. Turner, L.P. Black, M. Kamperman. Dating of Neoproterozoic and Cambrian orogenies in Tasmania. Aust. J. Earth Sci., 45 (5) (1998), pp. 789-806,
CrossRef
Google scholar
|
N.J. Turner, R.S. Bottrill. Blue amphibole, Arthur Metamorphic Complex, Tasmania: composition and regional tectonic setting. Aust. J. Earth Sci., 48 (1) (2001), pp. 167-181,
CrossRef
Google scholar
|
P.E. van Keken, I. Wada, G.A. Abers, B.R. Hacker, K. Wang. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem. Geophys. Geosyst., 19 (9) (2018), pp. 2934-2961,
CrossRef
Google scholar
|
D. Vielzeuf, A. Baronnet, A.L. Perchuk, D. Laporte, M.B. Baker. Calcium diffusivity in alumino-silicate garnets: an experimental and ATEM study. Contrib. Mineral. Petrol., 154 (2) (2007), pp. 153-170,
CrossRef
Google scholar
|
Y. Wang, K. Wang, J. He, L. Zhang. On unusual conditions for the exhumation of subducted oceanic crustal rocks: how to make rocks hotter than models. Earth Planet. Sci. Lett., 615 (2023), Article 118213,
CrossRef
Google scholar
|
C.J. Warren, L.V. Greenwood, T.W. Argles, N.M.W. Roberts, R.R. Parrish, N.B.W. Harris. Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan. Geol. Soc. London, Spec. Pub., 478 (1) (2019), pp. 145-166,
CrossRef
Google scholar
|
E.B. Watson, D.A. Wark, J.B. Thomas. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151 (4) (2006), pp. 413-433,
CrossRef
Google scholar
|
C.J. Wheller, R. Powell. A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol., 32 (3) (2014), pp. 287-299,
CrossRef
Google scholar
|
R.W. White, R. Powell, G.L. Clarke. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol., 20 (1) (2002), pp. 41-55,
CrossRef
Google scholar
|
R.W. White, R. Powell, T.J.B. Holland, T.E. Johnson, E.C.R. Green. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol., 32 (3) (2014), pp. 261-286,
CrossRef
Google scholar
|
D.L. Whitney, B.W. Evans. Abbreviations for names of rock-forming minerals. Am. Mineral., 95 (1) (2010), pp. 185-187,
CrossRef
Google scholar
|
Williams, P.R., 1982. Geological Atlas 1:50000 Series. Sheet 91 (8011S) Davey. Explanatory Report. Geological Survey Tasmania.
|
H. Xiang, J.A.D. Connolly. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. J. Metamorph. Geol., 40 (2) (2022), pp. 243-255,
CrossRef
Google scholar
|
S. Yu, J. Zhang, P.G.D. Real. Petrology and P–T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. J. Asian Earth Sci., 42 (4) (2011), pp. 641-660,
CrossRef
Google scholar
|
T. Zack, R. Moraes, A. Kronz. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148 (4) (2004), pp. 471-488,
CrossRef
Google scholar
|
T. Zack, D.F. Stockli, G.L. Luvizotto, M.G. Barth, E.A. Belousova, M.R. Wolfe, R.W. Hinton. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol., 162 (2011), pp. 515-530,
CrossRef
Google scholar
|
Y.-F. Zheng, Y.-X. Chen. Continental versus oceanic subduction zones. Nat. Sci. Rev., 3 (4) (2016), pp. 495-519,
CrossRef
Google scholar
|
/
〈 |
|
〉 |