Warm continental subduction initiated by back-arc collapse: Evidence from remote south-west Tasmania
Dillon A. Brown , Martin Hand , Laura J. Morrissey , Justin L. Payne , Andrew W. McNeill
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102009
Warm continental subduction initiated by back-arc collapse: Evidence from remote south-west Tasmania
The Tasmanian microcontinent, situated along the East Gondwana accretionary margin during the late Neoproterozoic and early Palaeozoic, contains an unequivocal high-pressure metamorphic record comprising key information pertaining to the geodynamics of subduction along the margin. Subduction of the Tasmanian microcontinent is interpreted by some as a response to back-arc basin inversion prior to ophiolite obduction and high-pressure metamorphism during the Cambrian Tyennan Orogeny. However, thermobarometric evidence in support of such a model from rocks once positioned on the subducting continental margin is lacking. Despite occurrences of eclogite-facies mineral assemblages in the strongly deformed Tyennan Region of western Tasmania, garnet-bearing quartzofeldspathic assemblages documented in metasedimentary lithologies from the remote south-west coast of Tasmania have been interpreted as an expression of low- to moderate-pressure metamorphism. We report a strongly overprinted chlorite-quartz-garnet-bearing assemblage from the southern Tyennan Region (Nye Bay) which shows evidence for high-pressure metamorphism. Coarse-grained garnet porphyroblasts contain inclusions of kyanite, muscovite, and rutile, and yield in-situ Lu–Hf dates of c. 520 Ma. The cm-scale garnet porphyroblasts are zoned in the major and trace elements, preserving core-rim compositional gradients reflecting garnet growth up-pressure. Aided by mineral equilibria forward modelling, the garnet rim compositions and the Zr content of Cambrian rutile constrain peak metamorphic conditions of ∼ 17.5–19 kbar and ∼ 780–820 °C, equivalent to warm subduction thermal gradients between 410–470 °C/GPa. Garnet core compositions and the Ti content of quartz inclusions in the garnet cores constrain the pressures and temperatures for garnet nucleation to ∼ 6–7 kbar and ∼ 560–580 °C, corresponding to relatively high prograde thermal gradients between 800–965 °C/GPa. The thermal gradients determined from the south-west Tasmanian metamorphic record provide a direct window into the progressive evolution of the thermal state of the Cambrian subduction system, with the physical conditions of garnet nucleation potentially reflecting those of subduction initiation. The corresponding warm thermal gradients provide evidence for subduction initiation driven by the collapse of a pre-orogenic back-arc. This interpretation is consistent with an existing tectonic model for the Tyennan Orogeny which proposes a back-arc basin origin for the protoliths to the western Tasmanian sub-ophiolitic metamorphic sole.
High-pressure metamorphism / Subduction / Back-arc / Tyennan Orogeny / East Gondwana
| [1] |
P. Agard, P. Yamato, L. Jolivet, E. Burov. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci. Rev., 92 (1–2) (2009), pp. 53-79, |
| [2] |
J. Aitchison, M.C. Blake Jr, P.G. Flood, A.S. Jayko. Paleozoic ophiolitic assemblages within the southern New England orogen of eastern Australia: implications for growth of the Gondwana margin. Tectonics, 13 (5) (1994), pp. 1135-1149, |
| [3] |
J.C. Aitchison, S. Buckman. Accordion vs. quantum tectonics: Insights into continental growth processes from the Paleozoic of eastern Gondwana. Gondwana Res., 22 (2) (2012), pp. 674-680, |
| [4] |
K.L. Alessio, M. Hand, L.J. Morrissey, D.E. Kelsey, J.L. Payne. Melt reintegration modelling: testing against a subsolidus reference assemblage. Geosciences, 7 (3) (2017), p. 75, |
| [5] |
G.E. Bebout. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chem. Geol., 126 (2) (1995), pp. 191-218, |
| [6] |
G.E. Bebout, S.C. Penniston-Dorland. Fluid and mass transfer at subduction interfaces—the field metamorphic record. Lithos, 240–243 (2016), pp. 228-258, |
| [7] |
R.F. Berry, R.M. Chmielowski, D.A. Steele, S. Meffre. Chemical U – Th – Pb monazite dating of the Cambrian Tyennan Orogeny Tasmania. Aust. J. Earth Sci., 54 (5) (2007), pp. 757-771, |
| [8] |
R.F. Berry, A.J. Crawford. The tectonic significance of Cambrian allochthonous mafic‐ultramafic complexes in Tasmania. Aust. J. Earth Sci., 35 (4) (1988), pp. 523-533, |
| [9] |
R.F. Berry, D.A. Steele, S. Meffre. Proterozoic metamorphism in Tasmania: implications for tectonic reconstructions. Precambrian Res., 166 (1–4) (2008), pp. 387-396, |
| [10] |
L.P. Black, C.R. Calver, D.B. Seymour, A. Reed. SHRIMP U–Pb detrital zircon ages from Proterozoic and Early Palaeozoic sandstones and their bearing on the early geological evolution of Tasmania. Aust. J. Earth Sci., 51 (6) (2004), pp. 885-900, |
| [11] |
L.P. Black, D.B. Seymour, K.D. Corbett, S.E. Cox, J.E. Streit, C.R. Bottrill, C.R. Calver, J.L. Everard, G.R. Green, M.P. McClenaghan, J. Pemberton, J. Taheri, N.J. Turner. Dating Tasmania's oldest geological events: Mineral Resources Tasmania. Australian Geological Survey Organisation, Canberra (1997) |
| [12] |
J.D. Bradshaw. The Ross–Delamerian Orogen in the southwest Pacific and Antarctica: an active plate boundary for Gondwana in the late Neoproterozoic and Cambrian. New Zeal. J. Geol. Geophys., 66 (3) (2023), pp. 374-397, |
| [13] |
D.A. Brown, M. Hand, L.J. Morrissey. Zircon petrochronology and mineral equilibria of the eclogites from western Tasmania: Interrogating the early Palaeozoic East Gondwana subduction record. Gondwana Res., 93 (2021), pp. 252-274, |
| [14] |
D.A. Brown, L.J. Morrissey, M. Hand, J.A. Mulder, B. Wade, V. Barrote. The metamorphic footprint of western Laurentia preserved in subducted rocks from southern Australia. J. Metamorph. Geol., 42 (5) (2024), pp. 1-37, |
| [15] |
M. Brown. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front., 5 (4) (2014), pp. 553-569, |
| [16] |
M. Brown, T. Johnson. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral., 103 (2) (2018), pp. 181-196, |
| [17] |
M. Brown, T. Johnson. Time's arrow, time's cycle: granulite metamorphism and geodynamics. Mineral. Mag., 83 (3) (2019), pp. 323-338, |
| [18] |
M.J. Caddick, J. Konopásek, A.B. Thompson. Preservation of garnet growth zoning and the duration of prograde metamorphism. J. Petrol., 51 (11) (2010), pp. 2327-2347, |
| [19] |
C.R. Calver, L.P. Black, J.L. Everard, D.B. Seymour. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32 (10) (2004), pp. 893-896, |
| [20] |
P.A. Cawood. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci. Rev., 69 (3–4) (2005), pp. 249-279, |
| [21] |
R.A. Cayley. Exotic crustal block accretion to the eastern Gondwanaland margin in the Late Cambrian–Tasmania, the Selwyn Block, and implications for the Cambrian–Silurian evolution of the Ross, Delamerian, and Lachlan orogens. Gondwana Res., 19 (3) (2011), pp. 628-649, |
| [22] |
R.M. Chmielowski. The Cambrian Metamorphic History of Tasmania. (Doctorate). University of Tasmania, Tasmania (2009) |
| [23] |
R.M. Chmielowski, R.F. Berry. The Cambrian metamorphic history of Tasmania: the Metapelites. Aust. J. Earth Sci., 59 (7) (2012), pp. 1007-1019, |
| [24] |
M. Cloos. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. GSA Bulletin, 105 (6) (1993), pp. 715-737, |
| [25] |
R. Compagnoni, T. Hirajima. Superzoned garnets in the coesite-bearing Brossasco-Isasca Unit, Dora-Maira massif, Western Alps, and the origin of the whiteschists. Lithos, 57 (4) (2001), pp. 219-236, |
| [26] |
J.A.D. Connolly. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett., 236 (1–2) (2005), pp. 524-541, |
| [27] |
J.A.D. Connolly. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst., 10 (10) (2009), Article Q10014, |
| [28] |
A.J. Crawford, R.F. Berry. Tectonic implications of Late Proterozoic-Early Palaeozoic igneous rock associations in western Tasmania. Tectonophysics, 214 (1–4) (1992), pp. 37-56, |
| [29] |
Cumming, G.V., Everard, J.L., Meffre, S., 2016. Age constraints and provenance of the Mount Bischoff inlier and the Luina Group: evidence from LA-ICPMS U-Pb dating of detrital zircon. Tasmanian Geological Survey Record UR2016/04, Mineral Resources Tasmania. |
| [30] |
C. de Capitani, K. Petrakakis. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral., 95 (7) (2010), pp. 1006-1016, |
| [31] |
G. Di Vincenzo, F. Horton, R. Palmeri. Protracted (∼ 30 Ma) eclogite-facies metamorphism in northern Victoria Land (Antarctica): Implications for the geodynamics of the Ross/Delamerian Orogen. Gondwana Res., 40 (2016), pp. 91-106, |
| [32] |
G. Di Vincenzo, R. Palmeri. An 40Ar–39Ar investigation of high-pressure metamorphism and the retrogressive history of mafic eclogites from the Lanterman Range (Antarctica): evidence against a simple temperature control on argon transport in amphibole. Contrib. Mineral. Petrol., 141 (1) (2001), pp. 15-35, |
| [33] |
G. Di Vincenzo, R. Palmeri, F. Talarico, P.A.M. Andriessen, C.A. Ricci. Petrology and geochronology of eclogites from the Lanterman Range Antarctica. J. Petrol., 38 (10) (1997), pp. 1391-1417 |
| [34] |
H.N. Dirks, I.V. Sanislav, A.S.A.A. Abu Sharib. Continuous convergence along the paleo-Pacific margin of Australia during the Early Paleozoic: insights from the Running River Metamorphics NE Queensland. Lithos, 398–399 (2021), Article 106343, |
| [35] |
J.J. Donovan, H.A. Lowers, B.G. Rusk. Improved electron probe microanalysis of trace elements in quartz. Am. Mineral., 96 (2011), pp. 274-282 |
| [36] |
B. Dragovic, S. Angiboust, M.J. Tappa. Petrochronological close-up on the thermal structure of a paleo-subduction zone (W. Alps). Earth Planet. Sci. Lett., 547 (2020), Article 116446, |
| [37] |
T.A. Dumitru. Effects of subduction parameters on geothermal gradients in forearcs, with an application to Franciscan Subduction in California. J. Geophys Res. Solid Earth, 96 (B1) (1991), pp. 621-641, |
| [38] |
A. Edgar, I.V. Sanislav, P.H.G.M. Dirks, C. Spandler. Metamorphic diamond from the northeastern margin of Gondwana: paradigm shifting implications for one of Earth’s largest orogens. Science Advances, 8 (27) (2022), Article eabo2811, |
| [39] |
L. Federico, L. Crispini, G. Capponi, J.D. Bradshaw. The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: a synthesis. Gondwana Res., 15 (2) (2009), pp. 188-196, |
| [40] |
C.L. Fergusson, R.A. Henderson, I.W. Withnall, C.M. Fanning, D. Phillips, K.J. Lewthwaite. Structural, metamorphic, and geochronological constraints on alternating compression and extension in the Early Paleozoic Gondwanan Pacific margin, northeastern Australia. Tectonics, 26 (3) (2007), Article TC3008, |
| [41] |
C.L. Fergusson, A.P. Nutman, T. Kamiichi, H. Hidaka. Evolution of a Cambrian active continental margin: The Delamerian–Lachlan connection in southeastern Australia from a zircon perspective. Gondwana Res., 24 (3–4) (2013), pp. 1051-1066, |
| [42] |
J. Foden, M.A. Elburg, J. Dougherty-Page, A. Burtt. The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J. Geol., 114 (2) (2006), pp. 189-210, |
| [43] |
D.A. Foster, D.R. Gray, C. Spaggiari. Timing of subduction and exhumation along the Cambrian East Gondwana margin, and the formation of Paleozoic backarc basins. Geol. Soc. Am. Bull., 117 (1) (2005), pp. 105-116, |
| [44] |
T.V. Gerya, L.L. Perchuk, W.V. Maresch, A.P. Willner, D.D. Van Reenen, C.A. Smit. Thermal regime and gravitational instability of multi-layered continental crust: implications for the buoyant exhumation of high-grade metamorphic rocks. Eur. J. Mineral., 14 (4) (2002), pp. 687-699, |
| [45] |
B. Ghiribelli, M.L. Frezzotti, R. Palmeri. Coesite in eclogites of the Lanterman Range (Antarctica): evidence from textural and Raman studies. Eur. J. Mineral., 14 (2) (2002), pp. 355-360, |
| [46] |
G.M. Gibson, M.P. Morse, T.R. Ireland, G.K. Nayak. Arc–continent collision and orogenesis in western Tasmanides: insights from reactivated basement structures and formation of an ocean–continent transform boundary off western Tasmania. Gondwana Res., 19 (3) (2011), pp. 608-627, |
| [47] |
R.A. Glen. Refining accretionary orogen models for the Tasmanides of eastern Australia. Aust. J. Earth Sci., 60 (3) (2013), pp. 315-370, |
| [48] |
R.A. Glen, R.A. Cooper. Evolution of the East Gondwana convergent margin in Antarctica, southern Australia and New Zealand from the Neoproterozoic to latest Devonian. Earth-Sci. Rev., 220 (2021), Article 103687, |
| [49] |
S. Glorie, M. Hand, J. Mulder, A. Simpson, B. Emo Robert, B. Kamber, N. Fernie, A. Nixon, S. Gilbert. Robust laser ablation Lu-Hf dating of apatite: an empirical evaluation Geological Society, London. Special Publications, 537 (1) (2023), pp. 165-184, |
| [50] |
G. Godard, R. Palmeri. High-pressure metamorphism in Antarctica from the Proterozoic to the Cenozoic: a review and geodynamic implications. Gondwana Res., 23 (3) (2013), pp. 844-864, |
| [51] |
J.W. Goodge. Latest Neoproterozoic basin inversion of the Beardmore Group, central Transantarctic Mountains Antarctica. Tectonics, 16 (4) (1997), pp. 682-701, |
| [52] |
J.W. Goodge. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Res., 80 (2019), pp. 50-122, |
| [53] |
J.W. Goodge, C.M. Fanning, M.D. Norman, V.C. Bennett. Temporal, isotopic and spatial relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica. J. Petrol., 53 (10) (2012), pp. 2027-2065, |
| [54] |
J.W. Goodge, V.L. Hansen, S.M. Peacock. Multiple petrotectonic events in high-grade metamorphic rocks of the Nimrod Group, central Transantarctic Mountains, Antarctica. Recent Progress in Antarctic Earth Science (1992), pp. 203-209 |
| [55] |
Gray, D.R., Vicary, M.J., McNeill, A.W., 2022. Structure of the southwest high-grade coastal belt, southern Tyennan domain, Tasmania. Mineral Resources Tasmania, Geological Survey Paper 9. |
| [56] |
D.R. Gray, M.J. Vicary, A.W. McNeill. The Tasmanian Tyennan Domain–a structural synthesis and review with tectonic and dynamic implications for continental margin subduction and exhumation. Aust. J. Earth Sci., 71 (2) (2024), pp. 153-210, |
| [57] |
E.C.R. Green, R.W. White, J.F.A. Diener, R. Powell, T.J.B. Holland, R.M. Palin. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol., 34 (9) (2016), pp. 845-869, |
| [58] |
M. Guiraud, R. Powell, G. Rebay. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol., 19 (4) (2001), pp. 445-454, |
| [59] |
B.R. Hacker. Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust. American Geophysical Union, 337–346 (1996), |
| [60] |
J.A. Halpin, T. Jensen, P. McGoldrick, S. Meffre, R.F. Berry, J.L. Everard, C.R. Calver, J. Thompson, K. Goemann, J.M. Whittaker. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: links to the Belt-Purcell Supergroup North America. Precambrian Res., 250 (2014), pp. 50-67, |
| [61] |
R.A. Henderson, C.L. Fergusson, I.W. Withnall. Coeval basin formation, plutonism and metamorphism in the Northern Tasmanides: extensional Cambro-Ordovician tectonism of the Charters Towers Province. Aust. J. Earth Sci., 67 (5) (2020), pp. 663-680, |
| [62] |
I.A. Henrichs, G. O'Sullivan, D.M. Chew, C. Mark, M.G. Babechuk, C. McKenna, R. Emo. The trace element and U-Pb systematics of metamorphic apatite. Chem. Geol., 483 (2018), pp. 218-238, |
| [63] |
T.J.B. Holland, R. Powell. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol., 16 (3) (1998), pp. 309-343 |
| [64] |
T.J.B. Holland, R. Powell. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol., 145 (2003), pp. 492-501, |
| [65] |
T.J.B. Holland, R. Powell. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol., 29 (3) (2011), pp. 333-383, |
| [66] |
K.P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D.E. Jacob, A. Stracke, K. Birbaum, D.A. Frick, D. Günther, J. Enzweiler. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res., 35 (2011), pp. 397-429, |
| [67] |
K.P. Jochum, S.A. Wilson, W. Abouchami, M. Amini, J. Chmeleff, A. Eisenhauer, E. Hegner, L.M. Iaccheri, B. Kieffer, J. Krause, W.F. McDonough, R. Mertz-Kraus, I. Raczek, R.L. Rudnick, D. Scholz, G. Steinhoefel, B. Stoll, A. Stracke, S. Tonarini, D. Weis, U. Weis, J.D. Woodhead. GSD-1G and MPI-DING reference glasses for in situ and bulk isotopic determination. Geostand. Geoanal. Res., 35 (2010), pp. 193-226, |
| [68] |
T. Kim, Y. Kim, M. Cho, J.I. Lee. P–T evolution and episodic zircon growth in barroisite eclogites of the Lanterman Range, northern Victoria Land Antarctica. J. Metamorph. Geol., 37 (4) (2019), pp. 509-537, |
| [69] |
T.L. Knudsen. Petrology and geothermobarometry of granulite facies metapelites from the Hisøy-Torungen area, south Norway: new data on the Sveconorvegian P–T–t path of the Bamble sector. J. Metamorph. Geol., 14 (3) (1996), pp. 267-287, |
| [70] |
M.J. Kohn, A.E. Castro, B.C. Kerswell, C.R. Ranero, F.S. Spear. Shear heating reconciles thermal models with the metamorphic rock record of subduction. Proc. Nat. Acad. Sci. U.S.A., 115 (46) (2018), pp. 11706-11711, |
| [71] |
M. Konrad-Schmolke, M.R. Handy, J. Babist, P.J. O’Brien. Thermodynamic modelling of diffusion-controlled garnet growth. Contrib. Mineral. Petrol., 149 (2) (2005), pp. 181-195, |
| [72] |
M. Konrad-Schmolke, P.J. O'Brien, C. de Capitani, D.A. Carswell. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos, 103 (3–4) (2008), pp. 309-332, |
| [73] |
E. Kooijman, M.A. Smit, K. Mezger, J. Berndt. Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J. Metamorph. Geol., 30 (4) (2012), pp. 397-412, |
| [74] |
J. Kulhánek, S.W. Faryad. Compositional changes in garnet: trace element transfer during eclogite-facies metamorphism. Contrib. Mineral. Petrol., 178 (10) (2023), p. 68, |
| [75] |
K. Lane. Metamorphic and geological constraints on the evolution of the Kalinjala Shear Zone, Eyre Peninsula. ((Honours).), The University of Adelaide, Australia (2011) |
| [76] |
G.L. Luvizotto, T. Zack, H.P. Meyer, T. Ludwig, S. Triebold, A. Kronz, C. Münker, D.F. Stockli, S. Prowatke, S. Klemme, D.E. Jacob, H. von Eynatten. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol., 261 (3–4) (2009), pp. 346-369, |
| [77] |
R.J. Manton, S. Buckman, A.P. Nutman, V.C. Bennett, E.A. Belousova. U-Pb-Hf-REE-Ti zircon and REE garnet geochemistry of the Cambrian Attunga eclogite, New England Orogen, Australia: implications for continental growth along eastern Gondwana. Tectonics, 36 (8) (2017), pp. 1580-1613, |
| [78] |
B.A. Marmo, G.L. Clarke, R. Powell. Fractionation of bulk rock composition due to porphyroblast growth: effects on eclogite facies mineral equilibria, Pam Peninsula New Caledonia. J. Metamorph. Geol., 20 (1) (2002), pp. 151-165, |
| [79] |
A.W. McNeill. The structure and petrology of the Nye Bay area, south west Tasmania. (B.Sc Hons). University of Tasmania, Hobart (1985) |
| [80] |
S. Meffre, R.F. Berry, M. Hall. Cambrian metamorphic complexes in Tasmania: tectonic implications. Aust. J. Earth Sci., 47 (6) (2000), pp. 971-985, |
| [81] |
S. Meffre, R.F. Berry, M. Hall, A.W. McNeill. The Structural Style of Cambrian Metamorphic Complexes in Tasmania: SW Tasmanian examples. Geological Society of Australia Abstracts, 64 (2001), pp. 118-120 |
| [82] |
S. Meffre, N.G. Direen, A.J. Crawford, V. Kamenetsky. Mafic volcanic rocks on King Island, Tasmania: evidence for 579 Ma break-up in east Gondwana. Precambrian Res., 135 (3) (2004), pp. 177-191, |
| [83] |
M. Meyer, R. Klemd, T. John, J. Gao, M. Menneken. An (in-)coherent metamorphic evolution of high-P eclogites and their host rocks in the Chinese southwest Tianshan?. J. Metamorph. Geol., 34 (2) (2016), pp. 121-146, |
| [84] |
L. Moresi, P.G. Betts, M.S. Miller, R.A. Cayley. Dynamics of continental accretion. Nature, 508 (7495) (2014), pp. 245-248, |
| [85] |
J.K. Mortensen, J.B. Gemmell, A.W. McNeill, R.M. Friedman. High-precision U-Pb zircon chronostratigraphy of the Mount Read Volcanic Belt in Western Tasmania, Australia: implications for VHMS deposit formation. Econ. Geol., 110 (2) (2015), pp. 445-468, |
| [86] |
J.A. Mulder. The Structure and Metamorphism of the Cox Bight−Red Point Area, South West Tasmania. (BSc. Hons). University of Tasmania (2013) |
| [87] |
J.A. Mulder, R.F. Berry, S. Meffre, J.A. Halpin. The metamorphic sole of the western Tasmanian ophiolite: New insights into the Cambrian tectonic setting of the Gondwana Pacific margin. Gondwana Res., 38 (2016), pp. 351-369, |
| [88] |
J.A. Mulder, J.L. Everard, G. Cumming, S. Meffre, R.S. Bottrill, A.S. Merdith, J.A. Halpin, A.W. McNeill, P.A. Cawood. Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania Australia. Earth-Sci. Rev., 201 (2020), Article 103041, |
| [89] |
C. Münker, A.J. Crawford. Cambrian arc evolution along the SE Gondwana active margin: a synthesis from Tasmania-New Zealand-Australia-Antarctica correlations. Tectonics, 19 (3) (2000), pp. 415-432, |
| [90] |
C.A. Noll, M. Hall. Structural architecture of the Owen Conglomerate, West Coast Range, western Tasmania: field evidence for Late Cambrian extension. Aust. J. Earth Sci., 52 (3) (2005), pp. 411-426, |
| [91] |
A. Norris, L. Danyushevsky. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. Paper presented at the Goldschmidt, Boston (2018) |
| [92] |
Z.R. Osborne, J.B. Thomas, W.O. Nachlas, R.J. Angel, C.M. Hoff, E.B. Watson. TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry. Contrib. Mineral. Petrol., 177 (3) (2022), p. 31, |
| [93] |
R. Palmeri, B. Ghiribelli, G. Ranalli, F. Talarico, C.A. Ricci. Ultrahigh-pressure metamorphism and exhumation of garnet-bearing ultramafic rocks from the Lanterman Range (northern Victoria Land, Antarctica). J. Metamorph. Geol., 25 (2) (2007), pp. 225-243, |
| [94] |
C. Paton, J. Hellstrom, B. Paul, J. Woodhead, J. Hergt. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. at. Spectrom, 26 (12) (2011), p. 2508, |
| [95] |
S.M. Peacock. Thermal and petrologic structure of subduction zones. American Geophysical Union (AGU) (1996), pp. 119-133, |
| [96] |
S.M. Peacock. Thermal structure and metamorphic evolution of subducting slabs. J. Eiler (Ed.), Inside the Subduction Factory, American Geophysical Union (AGU) (2004), pp. 7-22 |
| [97] |
S.M. Peacock, J.W. Goodge. Eclogite-facies metamorphism preserved in tectonic blocks from a lower crustal shear zone, central Transantarctic Mountains Antarctica. Lithos, 36 (1) (1995), pp. 1-13, |
| [98] |
S.C. Penniston-Dorland, M.J. Kohn, C.E. Manning. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet. Sci. Lett., 428 (2015), pp. 243-254, |
| [99] |
G. Phillips, R. Offler, D. Rubatto, D. Phillips. High-pressure metamorphism in the southern New England Orogen: implications for long-lived accretionary orogenesis in eastern Australia. Tectonics, 34 (9) (2015), pp. 1979-2010, |
| [100] |
Port, I.A., 2023. The Structural and Metamorphic History of the Eastern Tyennan Region, Lake Pedder, Tasmania. (BSc. Hons). University of Tasmania, |
| [101] |
A. Råheim. Petrology of eclogites and surrounding schists from the Lyell highway—Collingwood river area. J. Geol. Soc. Aust., 23 (3) (1976), pp. 313-327, |
| [102] |
S. Rocchi, L. Bracciali, G. Di Vincenzo, M. Gemelli, C. Ghezzo. Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land. Gondwana Res., 19 (3) (2011), pp. 594-607, |
| [103] |
M.D. Ruiz Cruz, C. Sanz de Galdeano. Amphibole-derived evidence of medium P/T metamorphic ratio in Alpujárride and Federico “HP” units (Western Betic-Northern Rif, Spain and Morocco): possible interpretations. Int. J. Earth Sci., 101 (1) (2012), pp. 221-238, |
| [104] |
A. Simpson, S. Gilbert, R. Tamblyn, M. Hand, C. Spandler, J. Gillespie, A. Nixon, S. Glorie. In-situ Lu Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chem. Geol., 577 (2021), Article 120299, |
| [105] |
A. Simpson, S. Glorie, M. Hand, S.E. Gilbert, C. Spandler, M. Dmitrijeva, G. Swain, A. Nixon, J. Mulder, C. Münker. In situ apatite and carbonate Lu-Hf and molybdenite Re-Os geochronology for ore deposit research: method validation and example application to Cu-Au mineralisation. Geosci. Front., 15 (5) (2024), Article 101867, |
| [106] |
A. Simpson, S. Glorie, M. Hand, C. Spandler, S. Gilbert. Garnet Lu-Hf speed dating: a novel method to rapidly resolve polymetamorphic histories. Gondwana Res., 121 (2023), pp. 215-234, |
| [107] |
A. Simpson, S. Glorie, M. Hand, C. Spandler, S. Gilbert, B. Cave. In situ Lu–Hf geochronology of calcite. Geochronology, 4 (1) (2022), pp. 353-372, |
| [108] |
A. Spry. The occurrence of eclogite on the Lyell Highway, Tasmania. Mineralogical Magazine and Journal of the Mineralogical Society, 33 (262) (1963), pp. 589-593, |
| [109] |
R.J. Stern. Subduction zones. Rev. Geophys., 40 (4) (2002), Article 3-1–3-38, |
| [110] |
E. Stump, B. Gookee, F. Talarico. Tectonic model for development of the Byrd Glacier discontinuity and surrounding regions of the Transantarctic mountains during the Neoproterozoic–Early Palaeozoic. D.K. Fűtterer, D. Damaske (Eds.), Antarctica: Contributions to Global Earth Sciences, Springer (2006), pp. 181-190 |
| [111] |
K. Stüwe. Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib. Mineral. Petrol., 129 (1) (1997), pp. 43-52, |
| [112] |
K. Stüwe. Geodynamics of the Lithosphere: An Introduction. (2nd ed..), Springer (2007) |
| [113] |
E.M. Syracuse, P.E. van Keken, G.A. Abers. The global range of subduction zone thermal models. Phys. Earth Planet. Inter., 183 (1–2) (2010), pp. 73-90, |
| [114] |
R. Tamblyn, M. Hand, D. Kelsey, R. Anczkiewicz, D. Och. Subduction and accumulation of lawsonite eclogite and garnet blueschist in eastern Australia. J. Metamorph. Geol., 38 (2) (2019), pp. 157-182, |
| [115] |
R. Tamblyn, M. Hand, L. Morrissey, T. Zack, G. Phillips, D. Och. Resubduction of lawsonite eclogite within a serpentinite-filled subduction channel. Contrib. Mineral. Petrol., 175 (8) (2020), p. 74, |
| [116] |
J.B. Thomas, E. Bruce Watson, F.S. Spear, P.T. Shemella, S.K. Nayak, A. Lanzirotti. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib. Mineral. Petrol., 160 (5) (2010), pp. 743-759, |
| [117] |
H.S. Tomkins, R. Powell, D.J. Ellis. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol., 25 (6) (2007), pp. 703-713, |
| [118] |
N.J. Turner, L.P. Black, M. Kamperman. Dating of Neoproterozoic and Cambrian orogenies in Tasmania. Aust. J. Earth Sci., 45 (5) (1998), pp. 789-806, |
| [119] |
N.J. Turner, R.S. Bottrill. Blue amphibole, Arthur Metamorphic Complex, Tasmania: composition and regional tectonic setting. Aust. J. Earth Sci., 48 (1) (2001), pp. 167-181, |
| [120] |
P.E. van Keken, I. Wada, G.A. Abers, B.R. Hacker, K. Wang. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem. Geophys. Geosyst., 19 (9) (2018), pp. 2934-2961, |
| [121] |
D. Vielzeuf, A. Baronnet, A.L. Perchuk, D. Laporte, M.B. Baker. Calcium diffusivity in alumino-silicate garnets: an experimental and ATEM study. Contrib. Mineral. Petrol., 154 (2) (2007), pp. 153-170, |
| [122] |
Y. Wang, K. Wang, J. He, L. Zhang. On unusual conditions for the exhumation of subducted oceanic crustal rocks: how to make rocks hotter than models. Earth Planet. Sci. Lett., 615 (2023), Article 118213, |
| [123] |
C.J. Warren, L.V. Greenwood, T.W. Argles, N.M.W. Roberts, R.R. Parrish, N.B.W. Harris. Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan. Geol. Soc. London, Spec. Pub., 478 (1) (2019), pp. 145-166, |
| [124] |
E.B. Watson, D.A. Wark, J.B. Thomas. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151 (4) (2006), pp. 413-433, |
| [125] |
C.J. Wheller, R. Powell. A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol., 32 (3) (2014), pp. 287-299, |
| [126] |
R.W. White, R. Powell, G.L. Clarke. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol., 20 (1) (2002), pp. 41-55, |
| [127] |
R.W. White, R. Powell, T.J.B. Holland, T.E. Johnson, E.C.R. Green. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol., 32 (3) (2014), pp. 261-286, |
| [128] |
D.L. Whitney, B.W. Evans. Abbreviations for names of rock-forming minerals. Am. Mineral., 95 (1) (2010), pp. 185-187, |
| [129] |
Williams, P.R., 1982. Geological Atlas 1:50000 Series. Sheet 91 (8011S) Davey. Explanatory Report. Geological Survey Tasmania. |
| [130] |
H. Xiang, J.A.D. Connolly. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. J. Metamorph. Geol., 40 (2) (2022), pp. 243-255, |
| [131] |
S. Yu, J. Zhang, P.G.D. Real. Petrology and P–T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. J. Asian Earth Sci., 42 (4) (2011), pp. 641-660, |
| [132] |
T. Zack, R. Moraes, A. Kronz. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148 (4) (2004), pp. 471-488, |
| [133] |
T. Zack, D.F. Stockli, G.L. Luvizotto, M.G. Barth, E.A. Belousova, M.R. Wolfe, R.W. Hinton. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol., 162 (2011), pp. 515-530, |
| [134] |
Y.-F. Zheng, Y.-X. Chen. Continental versus oceanic subduction zones. Nat. Sci. Rev., 3 (4) (2016), pp. 495-519, |
/
| 〈 |
|
〉 |