Quantifying production rates of tropical granitic regolith in Hainan Island, south China: A multi-stage U-series disequilibrium study

Guodong Jia, Xu Yvon Zhang, François Chabaux, Eric Pelt, Zhiqi Zhao, Sheng Xu, Congqiang Liu

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102002.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (3) : 102002. DOI: 10.1016/j.gsf.2025.102002

Quantifying production rates of tropical granitic regolith in Hainan Island, south China: A multi-stage U-series disequilibrium study

Author information +
History +

Abstract

Regolith, widely distributed on the Earth’s surface, constitutes a significant compartment of the Critical Zone, resulting from intricate interactions among the atmosphere, lithosphere, hydrosphere, and biosphere. Regolith formation critically influences nutrient release, soil production, and long-term climate regulation. Regolith development is governed by two primary processes: production and denudation. An urgent need exists to comprehensively understand these processes to refine our understanding of Critical Zone functions. This study investigates an in-situ regolith profile developed on granitic bedrock from a tropical region (Sanya, China). We conducted geochemical analyses, encompassing major, trace elements and mineralogical compositions as well as U-series isotopes, and applied the U-series disequilibrium method to investigate the formation history of this profile. Alternatively, dividing the regolith profile into sub-weathering zones provides a better explanation for the geochemical results, and a multi-stage model based on this subdivision effectively interprets the evolution of deep regolith. Utilizing this multi-stage model, regolith production rates is derived from the “gain and loss” model, ranging from 1.27 ± 0.03 to 42.42 ± 24.24 m/Ma. The production rates first increase from surface until a maximum rate is reached at the depth of ∼ 160 cm and then decrease at further deeper horizons along the depth profile, and the variation of production rates follows a so-called “humped function”. This pioneering investigation into regolith production rates in the Chinese tropical region indicates that (1) the studied profile deviates from a steady state compared to the denudation rate derived from cosmogenic nuclides (10Be_in-situ); (2) subdividing the deep profile based on geochemical data and U-series isotopic activity ratios is imperative for accurately determining regolith production rates; and (3) the combination of U-series disequilibrium and cosmogenic nuclides robustly evaluates the quantitative evolution state of regolith over long time scales.

Keywords

U-series isotopes / Granitic regolith profile / Production rate / Humped function / Critical Zone / Weathering

Cite this article

Download citation ▾
Guodong Jia, Xu Yvon Zhang, François Chabaux, Eric Pelt, Zhiqi Zhao, Sheng Xu, Congqiang Liu. Quantifying production rates of tropical granitic regolith in Hainan Island, south China: A multi-stage U-series disequilibrium study. Geoscience Frontiers, 2025, 16(3): 102002 https://doi.org/10.1016/j.gsf.2025.102002

References

J. Ackerer, F. Chabaux, J. Van der Woerd, D. Viville, E. Pelt, E. Kali, C. Lerouge, P. Ackerer, R. di Chiara Roupert, P. Négrel. Regolith evolution on the millennial timescale from combined U–Th–Ra isotopes and in situ cosmogenic 10Be analysis in a weathering profile (Strengbach catchment, France). Earth Planet. Sci. Lett., 453 (2016), pp. 33-43,
CrossRef Google scholar
F. Ahnert. The role of the equilibrium concept in the interpretation of landforms of fluvial erosion and deposition. L’evolution Des Versants (1967), pp. 23-41
S.P. Anderson, W.E. Dietrich, G.H. Brimhall Jr.. Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Geol. Soc. Am. Bull., 114 (9) (2002), pp. 1143-1158,
CrossRef Google scholar
S.P. Anderson, F. von Blanckenburg, A.F. White. Physical and chemical controls on the critical zone. Elements, 3 (5) (2007), pp. 315-319,
CrossRef Google scholar
M.G. Babechuk, M. Widdowson, B.S. Kamber. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol., 363 (2014), pp. 56-75,
CrossRef Google scholar
C. Bosia, F. Chabaux, E. Pelt, A. Cogez, P. Stille, E. Deloule, C. France-Lanord. U-series disequilibria in minerals from Gandak River sediments (Himalaya). Chem. Geol., 477 (2018), pp. 22-34,
CrossRef Google scholar
B. Bourdon, S. Turner, G.M. Henderson, C.C. Lundstrom. Introduction to U-series geochemistry. Rev. Mineral. Geochem., 52 (1) (2003), pp. 1-21,
CrossRef Google scholar
S.L. Brantley. Understanding soil time. Science, 321 (5895) (2008), pp. 1454-1455,
CrossRef Google scholar
S.L. Brantley. Rock to regolith. Nat. Geosci., 3 (5) (2010), pp. 305-306,
CrossRef Google scholar
S.L. Brantley, M.B. Goldhaber, K.V. Ragnarsdottir. Crossing disciplines and scales to understand the critical zone. Elements, 3 (5) (2007), pp. 307-314,
CrossRef Google scholar
S.L. Brantley, M. Lebedeva. Learning to read the chemistry of regolith to understand the critical zone. Annu. Rev. Earth Planet. Sci., 39 (1) (2011), pp. 387-416
S.L. Brantley, A.F. White. Thermodynamics and Kinetics of Water-Rock Interaction. H.O. Eric, S. Jacques (Eds.), 10, De Gruyter, Approaches to Modeling Weathered Regolith (2009), pp. 435-484
S.L. Brantley, T. White, A. White. Frontiers in exploration of the Critical Zone: Report of a workshop sponsored by the National Science Foundation (NSF), October 24–26, 2005. Newark, DE (2006), p. 30
G.H. Brimhall, W.E. Dietrich. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta, 51 (3) (1987), pp. 567-587
M. Carpentier, A. Gannoun, C. Pin, O. Sigmarsson. New thorium isotope ratio measurements in silicate reference materials: A-THO, AGV-2, BCR-2, BE-N, BHVO-2 and BIR-1. Geostand. Geoanal. Res., 40 (2) (2016), pp. 239-256,
CrossRef Google scholar
Carson, M.A., Kirkby, M.J., 1972. Hillslope Form and Process. Cambridge Geographical Studies No. 3. viii. Cambridge University Press. https://doi.org/10.1017/S0016756800000546.
F. Chabaux, A.S. Cohen, R.K. Onions, J.R. Hein. 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater. Geochim. Cosmochim. Acta, 59 (3) (1995), pp. 633-638,
CrossRef Google scholar
F. Chabaux, J. Riotte, O. Dequincey. U-Th-Ra fractionation during weathering and river transport. Rev. Mineral. Geochem., 52 (1) (2003), pp. 533-576,
CrossRef Google scholar
F. Chabaux, B. Bourdon, J. Riotte. Chapter 3 U-Series Geochemistry in Weathering Profiles, River Waters and Lakes. S. Krishnaswami, J.K. Cochran (Eds.), Radioactivity in the Environment, Elsevier (2008), pp. 49-104
F. Chabaux, E. Blaes, P. Stille, R. di Chiara Roupert, E. Pelt, A. Dosseto, L. Ma, H.L. Buss, S.L. Brantley. Regolith formation rate from U-series nuclides: Implications from the study of a spheroidal weathering profile in the Rio Icacos watershed (Puerto Rico). Geochim. Cosmochim. Acta, 100 (2013), pp. 73-95,
CrossRef Google scholar
F. Chabaux, P. Stille, J. Prunier, S. Gangloff, D. Lemarchand, G. Morvan, J. Négrel, E. Pelt, M.C. Pierret, S. Rihs, A.D. Schmitt, M. Trémolières, D. Viville. Plant-soil-water interactions: Implications from U-Th-Ra isotope analysis in soils, soil solutions and vegetation (Strengbach CZO, France). Geochim. Cosmochim. Acta, 259 (2019), pp. 188-210,
CrossRef Google scholar
H. Cheng, R.L. Edwards, J. Hoff, C.D. Gallup, D.A. Richards, Y. Asmerom. The half-lives of uranium-234 and thorium-230. Chem. Geol., 169 (2000), pp. 17-33
A. Cogez, F. Herman, E. Pelt, T. Reuschle, G. Morvan, C.M. Darvill, K.P. Norton, M. Christl, L. Marki, F. Chabaux. U-Th and 10Be constraints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia. Earth Surface Dynam, 6 (2018), pp. 121-140
L.F. Cui, Y. Yang, S. Xu, Z.Q. Zhao, H.R. Mao, X.L. Zhang, C.L. Tu, Z.J. Zhang, W.J. Liu, C.Q. Liu. Denudation rates of granitic regolith along climatic gradient in Eastern China. Geomorphology, 390 (2021), Article 107872,
CrossRef Google scholar
J.L. Dixon, A.S. Hartshorn, A.M. Heimsath, R.A. DiBiase, K.X. Whipple. Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California. Earth Planet. Sci. Lett., 323–324 (2012), pp. 40-49,
CrossRef Google scholar
A. Dosseto, S.P. Turner, J. Chappell. The evolution of weathering profiles through time: New insights from uranium-series isotopes. Earth Planet. Sci. Lett., 274 (3) (2008), pp. 359-371,
CrossRef Google scholar
A. Dosseto, H.L. Buss, P.O. Suresh. Rapid regolith formation over volcanic bedrock and implications for landscape evolution. Earth Planet. Sci. Lett., 337–338 (2012), pp. 47-55,
CrossRef Google scholar
A. Dosseto, D. Menozzi, L.P.J. Kinsley. Age and rate of weathering determined using uranium-series isotopes: Testing various approaches. Geochim. Cosmochim. Acta, 246 (2019), pp. 213-233,
CrossRef Google scholar
J.I. Drever. Surface and Ground Water, Weathering, and Soils: Treatise on Geochemistry, Volume 5, 5. Elsevier (2005),
CrossRef Google scholar
D. Elmore, F.M. Phillips. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science, 236 (4801) (1987), pp. 543-550
R.L. Fleischer. Isotopic disequilibrium of uranium: Alpha-recoil damage and preferential solution effects. Science, 207 (1980), pp. 979-981
Gascoyne, M., 1992. Geochemistry of the actinides and their daughters, Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2. ed. In: M. Ivanovich, M., Harmon, R.S. (Eds.), Uranium Series Disequilibrium Applications to Earth, Marine and Environmental Science, Clarendon Press, Oxford, pp. 34-61.
G. Gilbert. Report on the geology of the Henry Mountains. US Geographical and Geological Survey, 160 (1877)
Y. Goddéris, C. Roelandt, J. Schott, M.-C. Pierret, L.M. François. Towards an integrated model of weathering, climate, and biospheric processes. Rev. Mineral. Geochem., 70 (1) (2009), pp. 411-434,
CrossRef Google scholar
A. Gontier, S. Rihs, F. Chabaux, D. Lemarchand, E. Pelt, M.-P. Turpault. Lack of bedrock grain size influence on the soil production rate. Geochim. Cosmochim. Acta, 166 (2015), pp. 146-164,
CrossRef Google scholar
M. Granet, F. Chabaux, P. Stille, A. Dosseto, C. France-Lanord, E. Blaes. U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: The case of the Himalayan rivers. Geochim. Cosmochim. Acta, 74 (10) (2010), pp. 2851-2865,
CrossRef Google scholar
D.E. Granger, N.A. Lifton, J.K. Willenbring. A cosmic trip: 25 years of cosmogenic nuclides in geology. Geol. Soc. Am. Bull., 125 (9–10) (2013), pp. 1379-1402,
CrossRef Google scholar
R.O. Hansen, P.R. Stout. Isotopic distributions of uranium and thorium in soils. Soil Sci., 105 (1) (1968), pp. 44-50
E.A. Hasenmueller, X. Gu, J.N. Weitzman, T.S. Adams, G.E. Stinchcomb, D.M. Eissenstat, P.J. Drohan, S.L. Brantley, J.P. Kaye. Weathering of rock to regolith: The activity of deep roots in bedrock fractures. Geoderma, 300 (2017), pp. 11-31,
CrossRef Google scholar
A.M. Heimsath, B.C. Burke. The impact of local geochemical variability on quantifying hillslope soil production and chemical weathering. Geomorphology, 200 (2013), pp. 75-88,
CrossRef Google scholar
A.M. Heimsath, W.E. Dietrich, K. Nishiizumi, R.C. Finkel. The soil production function and landscape equilibrium. Nature, 388 (6640) (1997), pp. 358-361,
CrossRef Google scholar
A.M. Heimsath, J. Chappell, W.E. Dietrich, K. Nishiizumi, R.C. Finkel. Soil production on a retreating escarpment in southeastern Australia. Geology, 28 (9) (2000), pp. 787-790,
CrossRef Google scholar
A.M. Heimsath, D. Fink, G.R. Hancock. The ‘humped’ soil production function: eroding Arnhem Land. Australia. Earth Surf. Proc. Land., 34 (12) (2009), pp. 1674-1684,
CrossRef Google scholar
A.M. Heimsath, R.A. DiBiase, K.X. Whipple. Soil production limits and the transition to bedrock-dominated landscapes. Nat. Geosci., 5 (3) (2012), pp. 210-214,
CrossRef Google scholar
IUSS Working Group WRB, 2015. (n.d.). World reference base for soil resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report 106. Rome, Italy: Food and Agriculture Organization of the United Nations. https://doi.org/10.1017/S0014479706394902.
A.H. Jaffey, K.F. Flynn, L.E. Glendenin, W.C. Bentley, A.M. Essling. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C, 4 (1971), pp. 1889-1906
G.D. Jia, F. Chabaux, J. Van der Woerd, E. Pelt, R. di Chiara Roupert, J. Ackerer, Z.Q. Zhao, Y. Yang, S. Xu, C.Q. Liu. Determination of regolith production rates from 238U-234U-230Th disequilibrium in deep weathering profiles (Longnan, SE China). Chem. Geol., 574 (2021), Article 120241,
CrossRef Google scholar
L.X. Jin, X. Gu, S.L. Brantley. Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory. Geochim. Cosmochim. Acta, 74 (13) (2010), pp. 3669-3691,
CrossRef Google scholar
J.H. Jin, W.B. Liao, B.S. Wang, S.L. Peng. Paleodiversification of the environment and plant community of Tertiary in Hainan Island. Acta Ecol. Sin., 22 (3) (2002), pp. 425-432
H. Kim, X. Gu, S.L. Brantley. Particle fluxes in groundwater change subsurface shale rock chemistry over geologic time. Earth Planet. Sci. Lett., 500 (2018), pp. 180-191,
CrossRef Google scholar
L.R. Kump, S.L. Brantley, M.A. Arthur. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci., 28 (1) (2000), pp. 611-667,
CrossRef Google scholar
D. Langmuir. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 42(6, Part a) (1978), pp. 547-569,
CrossRef Google scholar
D. Langmuir, J.S. Herman. The mobility of thorium in natural waters at low temperatures. Geochim. Cosmochim. Acta, 44 (11) (1980), pp. 1753-1766,
CrossRef Google scholar
I.J. Larsen, P.C. Almond, A. Eger, J.O. Stone, D.R. Montgomery, B. Malcolm. Rapid soil production and weathering in the Southern Alps. New Zealand. Science, 343 (6171) (2014), pp. 637-640,
CrossRef Google scholar
C. Lei. . Structure and Evolution of Yinggehai and Qiongdongnan basins, South China Sea: Implications for Cenozoic Tectonics in Southeast Asia, Thesis.China University of Geoscience (Wuhan) (2012)
X.H. Li, Z.X. Li, W.X. Li, Y. Wang. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. J. Geol., 114 (3) (2006), pp. 341-353,
CrossRef Google scholar
W.J. Liu, C.Q. Liu, S.L. Brantley, Z.F. Xu, T. Zhao, T.Z. Liu, C. Yu, D.S. Xue, Z.Q. Zhao, L.F. Cui, Z.J. Zhang, B.L. Fan, X. Gu. Deep weathering along a granite ridgeline in a subtropical climate. Chem. Geol., 427 (2016), pp. 17-34,
CrossRef Google scholar
L. Ma, F. Chabaux, E. Pelt, E. Blaes, L.X. Jin, S.L. Brantley. Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory. Earth Planet. Sci. Lett., 297 (1) (2010), pp. 211-225,
CrossRef Google scholar
L. Ma, F. Chabaux, N. West, E. Kirby, L.X. Jin, S.L. Brantley. Regolith production and transport in the Susquehanna Shale Hills Critical Zone Observatory, Part 1: Insights from U-series isotopes. J. Geophys. Res-Earth, 118 (2) (2013), pp. 722-740,
CrossRef Google scholar
J.L. Ma, G.J. Wei, Y.G. Xu, W.G. Long, W.D. Sun. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim. Cosmochim. Acta, 71 (13) (2007), pp. 3223-3237
R. Millot, J. Gaillardet, B. Dupré, C.J. Allègre. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett., 196 (1) (2002), pp. 83-98,
CrossRef Google scholar
D.R. Montgomery. Soil erosion and agricultural sustainability. PNAS, 104 (33) (2007), p. 13268,
CrossRef Google scholar
National Research Council. Basic Research Opportunities in Earth Science. National Academies Press (2001)
H.W. Nesbitt, G.M. Young. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885) (1982), pp. 715-717,
CrossRef Google scholar
P. Oliva, J. Viers, B. Dupré. Chemical weathering in granitic environments. Chem. Geol., 202 (3) (2003), pp. 225-256,
CrossRef Google scholar
D.W. Peate, C.J. Hawkesworth, P.W. van Calsteren, R.N. Taylor, B.J. Murton. 238U–230Th constraints on mantle upwelling and plume–ridge interaction along the Reykjanes Ridge. Earth Planet. Sci. Lett., 187 (3) (2001), pp. 259-272,
CrossRef Google scholar
E. Pelt, F. Chabaux, C. Innocent, A.K. Navarre-Sitchler, P.B. Sak, S.L. Brantley. Uranium–thorium chronometry of weathering rinds: Rock alteration rate and paleo-isotopic record of weathering fluids. Earth Planet. Sci. Lett., 276 (1) (2008), pp. 98-105,
CrossRef Google scholar
E. Pelt, F. Chabaux, P. Stille, C. Innocent, B. Ghaleb, M. Gérard, F. Guntzer. Atmospheric dust contribution to the budget of U-series nuclides in soils from the Mount Cameroon volcano. Chem. Geol., 341 (2013), pp. 147-157,
CrossRef Google scholar
S. Porder, P.M. Vitousek, O.A. Chadwick, C.P. Chamberlain, G.E. Hilley. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems, 10 (1) (2007), pp. 159-171,
CrossRef Google scholar
C.S. Riebe, J.W. Kirchner, R.C. Finkel. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim. Cosmochim. Acta, 67 (22) (2003), pp. 4411-4427
C.S. Riebe, J.W. Kirchner, R.C. Finkel. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett., 224 (3) (2004), pp. 547-562,
CrossRef Google scholar
S. Rihs, J. Prunier, B. Thien, D. Lemarchand, M.C. Pierret, F. Chabaux. Using short-lived nuclides of the U- and Th-series to probe the kinetics of colloid migration in forested soils. Geochim. Cosmochim. Acta, 75 (23) (2011), pp. 7707-7724,
CrossRef Google scholar
S. Rihs, A. Gontier, A. Voinot, F. Chabaux, E. Pelt, D. Lemarchand, M.P. Turpault. Field biotite weathering rate determination using U-series disequilibria. Geochim. Cosmochim. Acta, 276 (2020), pp. 404-420
J.N. Rosholt, B.R. Doe, M. Tatsumoto. Evolution of the isotopic composition of uranium and thorium in soil profiles. Geol. Soc. Am. Bull., 77 (9) (1966), pp. 987-1004,
CrossRef Google scholar
J. Schoonejans, V. Vanacker, S. Opfergelt, M. Granet, F. Chabaux. Coupling uranium series and 10Be cosmogenic radionuclides to evaluate steady-state soil thickness in the Betic Cordillera. Chem. Geol., 446 (2016), pp. 99-109
X.B. Shi, B. Kohn, S. Spencer, X.W. Guo, Y.M. Li, X.Q. Yang, H.C. Shi, A. Gleadow. Cenozoic denudation history of southern Hainan Island, South China Sea: Constraints from low temperature thermochronology. Tectonophysics, 504 (1) (2011), pp. 100-115,
CrossRef Google scholar
K.W.W. Sims, J.B. Gill, A. Dosseto, D.L. Hoffmann, C.C. Lundstrom, R.W. Williams, L. Ball, D. Tollstrup, S. Turner, J. Prytulak, J.J.G. Glessner, J.J. Standish, T. Elliott. An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. Geostand. Geoanal. Res., 32 (1) (2008), pp. 65-91,
CrossRef Google scholar
G. Steinhoefel, S.L. Brantley, M.S. Fantle. Lithium isotopic fractionation during weathering and erosion of shale. Geochim. Cosmochim. Acta, 295 (2021), pp. 155-177,
CrossRef Google scholar
N. Suhr, M. Widdowson, F. McDermott, B. Kamber. Th/U and U series systematics of saprolite: importance for the oceanic 234U excess. Geochem. Perspect. Let., 6 (2018), pp. 17-22,
CrossRef Google scholar
P.O. Suresh, A. Dosseto, P.P. Hesse, H.K. Handley. Soil formation rates determined from Uranium-series isotope disequilibria in soil profiles from the southeastern Australian highlands. Earth Planet. Sci. Lett., 379 (2013), pp. 26-37,
CrossRef Google scholar
P.O. Suresh, A. Dosseto, P.P. Hesse, H.K. Handley. Very long hillslope transport timescales determined from uranium-series isotopes in river sediments from a large, tectonically stable catchment. Geochim. Cosmochim. Acta, 142 (2014), pp. 442-457
D. Uhlig, J. Sohrt, F. von Blanckenburg. Imbalances in dissolved elemental export fluxes disclose “Hidden” critical zone compartments. Water Resour. Res., 60 (6) (2024), Article e2023WR035517,
CrossRef Google scholar
A.J. West, A. Galy, M. Bickle. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett., 235 (1) (2005), pp. 211-228,
CrossRef Google scholar
A.F. White, S.L. Brantley. Chemical weathering rates of silicate minerals. Rev. Mineral. Geochem., 31 (1995), pp. 1-22,
CrossRef Google scholar
R.W. Williams, K.D. Collerson, J.B. Gill, C. Deniel. High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites. Earth Planet. Sci. Lett., 111 (2) (1992), pp. 257-268,
CrossRef Google scholar
Y. Xu, P.A. Cawood, Y. Du, Z. Zhong, N.C. Hughes. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island. Tectonics, 33 (12) (2014), pp. 2490-2504,
CrossRef Google scholar
Q. Yan, I. Metcalfe, X. Shi. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution. Gondwana Res., 49 (2017), pp. 333-349,
CrossRef Google scholar
J.W. Zhang, Z.Q. Zhao, X.D. Li, Y.N. Yan, Y.C. Lang, H. Ding, L.F. Cui, J.L. Meng, C.Q. Liu. Extremely enrichment of 7Li in highly weathered saprolites developed on granite from Huizhou, southern China. Appl. Geochem., 125 (2021), Article 104825,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/