Lithium isotopes in the geothermal waters of the India–Asia continental convergent margin: Source and evolution

Yinlei Hao, Hui Zhou, Xingxing Kuang, Qinghua Gong, Yuqing Feng, Meizhuang Zhu, Nianqing Li, Xiaoyan Shi

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102001.

Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (2) : 102001. DOI: 10.1016/j.gsf.2025.102001

Lithium isotopes in the geothermal waters of the India–Asia continental convergent margin: Source and evolution

Author information +
History +

Abstract

Lithium (Li) in geothermal waters along the India–Asia continental convergent margin is a potential Li resource and plays an important role in the Li budget and Li isotopic composition (δ7Li) of rivers and oceans. However, its origins and behavior remain unclear. Here, we systematically investigated the δ7Li, water (δ18O and δ2H) and helium (3He/4He) isotopes of 21 geothermal water samples as well as a series of shallow groundwater and river water samples from southern Tibet and the Himalayas. The δ7Li values of geothermal waters vary from +1.0‰ to +14.3‰ and are negatively correlated with the Li concentration (0.006–35.0 mg/L). For geothermal water with Li concentrations >5 mg/L, Li is sourced mainly from magmatic fluids exsolving from granitic magma chambers in the crust rather than the mantle, with contributions of 49.5% ± 3.2% to 85.5% ± 1.0%. The δ7Li values of these Li-rich geothermal waters are relatively homogeneous and comparable to those of bulk granitic rocks. They are mainly controlled by the Li isotopic compositions of granitic magmatic fluids (−2.6‰ to +5.6‰), and the dissolution of primary minerals and the precipitation of secondary minerals with minimal Li isotopic fractionation during high-temperature (174 ± 5 °C to 315 ± 6 °C) water–granite interactions at deep geothermal reservoirs (4.4–7.9 km). For geothermal waters with Li concentrations <5 mg/L, Li originates primarily from water–granitic rock interactions (dominated by biotite dissolution) at 106 ± 3 °C to 207 ± 10 °C, contributing approximately 85% ± 16% of the total Li. An integrated dissolution–precipitation–mixing model suggests that high δ7Li values in Li-depleted samples result from preferential incorporation of 6Li into secondary minerals at lower reservoir temperatures within shallower reservoirs (2.7–5.2 km) and mixing of shallow groundwater during the ascent of geothermal waters. This study provides new insights into the fluid geochemistry of crustal granitic magma chambers and highlights that Li-rich geothermal waters in Tibet are controlled by the existence of crustal granitic magma chambers and the scale of faults.

Keywords

Geothermal waters / Lithium isotopes / Granitic magma chamber / India–Asia continental convergent margin / Water–rock interaction

Cite this article

Download citation ▾
Yinlei Hao, Hui Zhou, Xingxing Kuang, Qinghua Gong, Yuqing Feng, Meizhuang Zhu, Nianqing Li, Xiaoyan Shi. Lithium isotopes in the geothermal waters of the India–Asia continental convergent margin: Source and evolution. Geoscience Frontiers, 2025, 16(2): 102001 https://doi.org/10.1016/j.gsf.2025.102001

References

C.J. Allègre, M. Moreira, T. Staudacher. 4He/3He dispersion and mantle convection. Geophys. Res. Lett., 22 (1995), pp. 2325-2328,
CrossRef Google scholar
D. Alsdorf, D. Nelson. Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?. Geology, 27 (10) (1999), pp. 943-946,
CrossRef Google scholar
S. Arnórsson. Interpretation of chemical and isotopic data on fluids discharged from wells in the Momotombo geothermal field with notes on gas chromatography analysis. Rep. IAEA (Project NIC/8/008-05) (1998), p. 28
Arnórsson, S., D’Amore, F., 2000. Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation. International Atomic Energy Agency, Vienna, pp.152–212.
S. Arnórsson, E. Gunnlaugsson, H. Svavarsson. The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim. Cosmochim. Acta, 47 (3) (1983), pp. 567-577,
CrossRef Google scholar
V. Balaram, M. Santosh, M. Satyanarayanan, N. Srinivas, H. Gupta. Lithium: a review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front., 15 (2024), Article 101868,
CrossRef Google scholar
C.J. Ballentine, P.G. Burnard. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem., 47 (2002), pp. 481-538,
CrossRef Google scholar
C.J. Ballentine, R. Burgess, B. Marty. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem., 47 (2002), pp. 539-614,
CrossRef Google scholar
. . H.L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits (third ed.), Wiley, New York (1997)
G. Berger, J. Schott, C. Guy. Behavior of Li, Rb, and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: experimental investigations and modelization between 50°C and 300°C. Chem. Geol., 71 (1988), pp. 297-312,
CrossRef Google scholar
N.F. Bernal, S.A. Gleeson, A.S. Dean, X.M. Liu, P. Hoskin. The source of halogens in geothermal fluids from the Taupo Volcanic Zone North Island. Geochem. Cosmochim. Acta, 126 (2014), pp. 265-283,
CrossRef Google scholar
S. Bian, J. Gong, A.V. Zuza, R. Yang, Y. Tian, J. Ji, H. Chen, Q. Xu, L. Chen, X. Lin, X. Cheng, J. Tu, X. Yu. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen. Earth Planet. Sci. Lett., 544 (2020), Article 116383,
CrossRef Google scholar
C. Brant, L.A. Coogan, K.M. Gillis, W.E. Seyfried, N.J. Pester, J. Spence. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochim. Cosmochim. Acta, 96 (2012), pp. 272-293,
CrossRef Google scholar
L.D. Brown, W.J. Zhao, K.D. Nelson, M. Hauck, D. Alsdorf, A. Ross, M. Cogan, M. Clark, X.W. Liu, J.K. Che. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274 (1996), pp. 1688-1690,
CrossRef Google scholar
D. Cai, H. Shao, L. Gou, Z. Jin, S. Yang. Lithium isotope fractionation during submarine hydrothermal alteration processes. Geochim. Cosmochim. Acta, 371 (2024), pp. 65-77
I. Can. A new improved Na/K geothermometer by artificial neural networks. Geothermics, 31 (2002), pp. 751-760,
CrossRef Google scholar
L.H. Chan, J.M. Edmond, G. Thompson, K. Gillis. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett., 108 (1992), pp. 151-160,
CrossRef Google scholar
L.H. Chan, J.M. Edmond, G. Thompson. A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. J. Geophys. Res., Solid Earth, 98 (B6) (1993), pp. 9653-9659,
CrossRef Google scholar
L.H. Chan, J.M. Gieskes, C.F. You, J.M. Edmond. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin Gulf of California. Geochim. Cosmochim. Acta, 58 (1994), pp. 4443-4454,
CrossRef Google scholar
L.H. Chan, J.C. Alt, D.A.H. Teagle. Lithium and lithium isotope profile through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett., 201 (2002), pp. 197-201,
CrossRef Google scholar
L.H. Chan, J.M. Edmond. Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim. Cosmochim. Acta, 52 (1988), pp. 1711-1717,
CrossRef Google scholar
L.S. Chen, J.R. Booker, A.G. Jones, N. Wu, M.J. Unsworth, W.B. Wei, H.D. Tan. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science, 274 (5293) (1996), pp. 1694-1696
I. Clark, P. Fritz. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York (1997)
C. Coulon, H. Maluski, C. Bollinger, S. Wang. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar–40Ar dating, petrological characteristics and geodynamical significance. Earth Planet. Sci. Lett., 79 (1986), pp. 281-302
H. Craig. Isotopic variations in meteor weaters. Science, 133 (1961), pp. 1702-1703,
CrossRef Google scholar
T.J. Craig, A. Copley, J. Jackson. Thermal and tectonic consequences of India underthrusting Tibet. Earth Planet. Sci. Lett., 353 (2012), pp. 231-239,
CrossRef Google scholar
T.J. Craig, P.B. Kelemen, B.R. Hacker, A. Copley. Reconciling geophysical and petrological estimates of the thermal structure of southern Tibet. Geochem. Geophys. Geosys., 21 (2020), Article e2019GC008837,
CrossRef Google scholar
J.T. Cullen, S. Hurwitz, J.D. Barnes, J.C. Lassiter, S. Penniston-Dorland, A. Meixner, F. Wilckens, S.A. Kasemann, R. Blaine McCleskey. The systematics of chlorine, lithium, and boron and δ37Cl, δ7Li, and δ11B in the hydrothermal system of the Yellowstone Plateau volcanic field. Geochem. Geophy. Geosy., 22 (2021), Article e2020GC009589,
CrossRef Google scholar
Cullen, J.T., 2020. Chemistry-isotopes-Yellowstone. Texas Data Repository. Retrieved from https://doi.org/10.18738/T8/ULLRE3.
W. Dansgaard. Stable isotopes in precipitation. Tellus, 16 (1964), pp. 436-468,
CrossRef Google scholar
J.M.D. Day, P.H. Barry, D.R. Hilton, R. Burgess, D.G. Pearson, L.A. Taylor. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere. Geochim. Cosmochim. Acta, 153 (2015), pp. 116-133,
CrossRef Google scholar
P.G. DeCelles, P. Kapp, G.E. Gehrels, L. Ding. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33 (2014), pp. 824-849,
CrossRef Google scholar
J. Dor. The basic characteristics of the Yangbajing geothermal field–a typical high temperature geothermal system. Eng. Sci., 5 (1) (2003), pp. 42-47
K. Drüppel, I. Stober, J.C. Grimmer, R. Mertz-Kraus. Experimental alteration of granitic rocks: Implications for the evolution of geothermal brines in the Upper Rhine Graben Germany. Geothermics, 88 (2020), Article 101903,
CrossRef Google scholar
C. Dupuis, R. Hébert, V. Dubois-Côté, C. Guilmette, C.S. Wang, Y.L. Li, Z.J. Li. The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): New insights from geochemistry of ultramafic rocks. J. Asian Earth Sci., 25 (2005), pp. 937-960,
CrossRef Google scholar
C. Fouillac, G. Michard. Sodium/Lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10 (1981), pp. 55-70,
CrossRef Google scholar
R.O. Fournier. Chemical geothermometers and mixing models for geothermal systems. Geothermics., 5 (1–4) (1977), pp. 41-50,
CrossRef Google scholar
R.O. Fournier. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hotspring systems. J. Volcanol. Geotherm. Res., 5 (1979), pp. 1-16,
CrossRef Google scholar
R.O. Fournier, R.W. Potter. An equation correlating the solubility of quartz in water from 25 to 900 ℃ at pressures up to 10,000 bars. Geochim. Cosmochim. Acta, 46 (10) (1982), pp. 1969-1973,
CrossRef Google scholar
R.O. Fournier, A.H. Truesdell. An empirical Na-K-Ca geothermometer for natural waters. Geochem. Cosmochim. Acta., 37 (1973), pp. 1255-1275,
CrossRef Google scholar
D.I. Foustoukos, R.H. James, M.E. Berndt, W.E.J. Seyfried. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chem. Geol., 212 (2004), pp. 17-26,
CrossRef Google scholar
F. Gaillard, B. Scaillet, M. Pichavant. Evidence for present-day leucogranite pluton growth in Tibet. Geology, 32 (9) (2004), pp. 801-804,
CrossRef Google scholar
Y.-K. Ge, J.-G. Dai, C.-S. Wang, Y.-L. Li, G.-Q. Xu, M. Danisik. Cenozoic thermo-tectonic evolution of the Gangdese batholith constrained by low-temperature thermochronology. Gondwana Res., 41 (2017), pp. 451-462,
CrossRef Google scholar
U.S. Geological Survey. Mineral Commodity Summaries 2023. USGS: Reston, VA, USA, 2023, 200p. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-lithium.pdf.
W.F. Giggenbach. Geothermal solute equilibria. Dervivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta., 52 (12) (1988), pp. 2749-2765,
CrossRef Google scholar
W.F. Giggenbach. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett., 113 (1992), pp. 495-510,
CrossRef Google scholar
L.A. Gil-Alana, M. Monge. Lithium: Production and estimated consumption. Evidence of Persistence. Resour. Policy, 60 (2019), pp. 198-202,
CrossRef Google scholar
L.V. Godfrey, L.H. Chan, R.N. Alonso, T.K. Lowenstein, W.F. McDonough, J. Houston, J. Li, A. Bobst, T.E. Jordan. The role of climate in the accumulation of lithium-rich brine in the Central Andes. Appl. Geochem., 38 (2013), pp. 92-102,
CrossRef Google scholar
Q. Guo, Y. Wang, W. Liu. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet China. J. Volcanol. Geotherm. Res., 166 (3–4) (2007), pp. 255-268,
CrossRef Google scholar
Q. Guo, Y. Wang, W. Liu. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet China. Environ. Earth Sci., 59 (7) (2010), pp. 1589-1597,
CrossRef Google scholar
Q. Guo, M. Liu, L. Luo, K. Yan, W. Guo, G. Wu, W. Yan, Y. Wang. Geochemical controls on magnesium and its speciation in various types of geothermal waters from typical felsic-rock-hosted hydrothermal systems in China. Geothermics, 81 (2019), pp. 185-197,
CrossRef Google scholar
Z. Guo, M. Wilson, M.L. Zhang, Z.H. Cheng, L.H. Zhang. Postcollisional ultrapotassic mafic magmatism in south Tibet: products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. J. Petrol., 56 (2015), pp. 1365-1406
Z.F. Guo, M. Wilson. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet. Geology, 47 (2019), pp. 776-780,
CrossRef Google scholar
J.H. Guynn, P. Kapp, A. Pullen, M. Heizler, G. Gehrels, L. Ding. Tibetan basement rocks near Amdo reveal ‘‘missing’’ Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34 (2006), pp. 505-508
C. Hamelin, H.M. Seitz, J.A. Barrat, L. Dosso, R. Maury, M. Chaussidon. A low δ7Li lower crustal component: evidence from an alkalic intraplate volcanic series (Chaîne des Puys, French Massif Central). Chem. Geol., 266 (2009), pp. 205-217,
CrossRef Google scholar
Y. Hao, X. Kuang, Y. Feng, Y. Wang, H. Zhou, C. Zheng. Discovery and genesis of helium‐rich geothermal fluids along the India–Asia continental convergent margin. Geochem. Cosmochim. Acta., 360 (2023), pp. 175-191,
CrossRef Google scholar
Y. Hao, Q. Gong, X. Kuang, Y. Feng, H. Zhou, C. Zheng. Degassing of mantle‐derived helium from hot springs along the India‐Asia continental collision settings: origins, migration velocity and flux. Geochem. Geophy. Geosy., 25 (2024), Article e2023GC011297,
CrossRef Google scholar
M.Y. He, C.G. Luo, H. Lu, Z.D. Jin, L. Deng. Measurements of lithium isotopic compositions in coal using MC–ICP–MS. J. Anal. At. Spectrom., 34 (2019), pp. 1773-1778,
CrossRef Google scholar
M.Y. He, C.G. Luo, H.J. Yang, F.C. Kong, Y.L. Li, L. Deng, X.Y. Zhang, K.Y. Yang. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: evidence from Li isotopes. Ore Geol. Rev., 117 (2020), Article 103277,
CrossRef Google scholar
S. Henchiri, C. Clergue, M. Dellinger, J. Gaillardet, P. Louvat, J. Bouchez. The influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas. Proc. Earth Planet. Sci., 10 (2014), pp. 223-230,
CrossRef Google scholar
Hetényi, G., Vergne, J., Bollinger, L., Cattin, R., 2015. Discontinuous low-velocity zones in southern Tibet question the viability of the channel flow model. In: Gloaguen, R., Ratschbacher, L. (Eds.), Growth and Collapse of the Tibetan Plateau. Geological Society, London, Special Publications, 353, 99–108.
D.R. Hilton. The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley caldera (California, U.S.A.). Chem. Geol., 127 (1996), pp. 269-295,
CrossRef Google scholar
Z.Q. Hou, Y.C. Zheng, L.S. Zeng, L.E. Gao, K.X. Huang, W. Li, Q.Y. Li, Q. Fu, W. Liang, Q.Z. Sun. Eocene–oligocene granitoids in southern Tibet: constraints on crustal anatexis and tectonic evolution of the Himalayan orogeny. Earth Planet. Sci. Lett., 349 (2012), pp. 38-52,
CrossRef Google scholar
Z. Hu, H. Gao, H. Wan, S. Zhang, W. Hao, R. Wu, X. Hu, L. Song. Temperature Characteristics of Hydrothermal Alteration in Yangbajain Geothermal Field Tibet. World Nuclear Geoscience, 39 (4) (2022), pp. 722-732,
CrossRef Google scholar
R.H. James, M.D. Rudnicki, M.R. Palmer. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system. Earth Planet. Sci. Lett., 171 (1999), pp. 157-169,
CrossRef Google scholar
R.H. James, D.E. Allen, W.E.J. Seyfried. An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350°C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta, 67 (2003), pp. 681-691,
CrossRef Google scholar
T.T. Ji, X.W. Jiang, L.F. Gou, Z.D. Jin, H. Zhang, L. Wan, G.L. Han, H.M. Guo, X.S. Wang. Behaviors of lithium and its isotopes in groundwater with different concentrations of dissolved CO2. Geochim. Cosmochim. Acta, 326 (2022), pp. 313-327,
CrossRef Google scholar
W.Q. Ji, F.Y. Wu, S.L. Chung, J.X. Li, C.Z. Liu. Zircon U–Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet. Chem. Geol., 262 (2009), pp. 229-245,
CrossRef Google scholar
W.Q. Ji, F.Y. Wu, C.Z. Liu, S.L. Chung. Early Eocene crustal thickening in southern Tibet: new age and geochemical constraints from the Gangdese batholith. J. Asian Earth Sci., 53 (2012), pp. 82-95,
CrossRef Google scholar
S. Jin, Y. Sheng, M.J. Comeau, M. Becken, W. Wei, G. Ye, H. Dong, L. Zhang. Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese terrane (southern Tibet) based on a 3-D electrical model. J. Geophys Res. Solid Earth, 127 (2022), Article e2022JB024318,
CrossRef Google scholar
E. Jolie, S. Scott, J. Faulds, I. Chambefort, G. Axelsson, L.C. Gutiérrez-Negrín, S. Regenspurg, M. Ziegler, B. Ayling, A. Richter, M.T. Zemedkun. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ., 2 (2021), pp. 324-339
W. Kang, D. Li, J. Bai. Geothermal geology of the Yangbajing geothermal field in Tibet. Chinese Geomech. Res. Acad. Geol. Sci., 06 (1985), pp. 17-79
P. Kapp, P.G. DeCelles. Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci., 319 (2019), pp. 159-254
S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev., 48 (2012), pp. 55-69,
CrossRef Google scholar
Y.K. Kharaka, M.S. Lico, L.M. Law. Chemical geothermometers applied to formation waters, Gulf of Mexico and California Basins (abstract). Am. Ass. Petrol. Geol. Bull., 66 (5) (1982), pp. 588-589,
CrossRef Google scholar
Y.K. Kharaka, R.H. Mariner. Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins. N.D. Naeser, T.H. McCulloh (Eds.), Thermal History of Sedimentary Basins, Springer-Verlag, New York (1989), pp. 99-117
R. Kind, J. Ni, W. Zhao, J. Wu, X. Yuan, L. Zhao, E. Sandvol, C. Reese, J. Nabelek, T. Hearn. Evidence from earthquake data for partially molten crustal layer in southern Tibet. Science, 274 (1996), pp. 1692-1694,
CrossRef Google scholar
S.L. Klemperer, P. Zhao, C.J. Whyte, T.H. Darrah, L.J. Crossey, K.E. Karlstrom, T. Liu, C. Winn, D.R. Hilton, L. Ding. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. Proc. Natl. Acad. Sci. USA, 119 (12) (2022), Article e2113877119,
CrossRef Google scholar
Z. Li, M.Y. He, B. Li, X. Wen, J. Zhou, Y. Cheng, N. Zhang, L. Deng. Multi-isotopic composition (Li and B isotopes) and hydrochemistry characterization of the Lakko Co Li-rich salt lake in Tibet, China: origin and hydrological processes. J. Hydrol., 630 (2024), Article 130714,
CrossRef Google scholar
Y.L. Li, W.L. Miao, M.Y. He, C.Z. Li, H.E. Gu, X.Y. Zhang. Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: evidence from hydrogeochemistry and lithium isotopes. Ore Geol. Rev., 155 (2023), Article 105356,
CrossRef Google scholar
J. Li, G. Sagoe, X. Wang, Z. Yang. Assessing the suitability of lithium-related geothermometers for estimating the temperature of felsic rock reservoirs. Geothermics, 89 (2021), Article 101950,
CrossRef Google scholar
J. Li, X. Wang, C. Ruan, G. Sagoe, J. Li. Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China. J. Hydrol., 612 (2022), Article 128022,
CrossRef Google scholar
Liao, Z., 2018. Thermal Springs and Geothermal Energy in the Qinghai-Tibetan Plateau and the Surroundings. Springer Hydrogeology. Springer, Singapore, p. 311.
J. Lin, Y. Liu, Z. Hu. Accurate determination of lithium isotope ratios by MC–ICP–MS without strict matrix-matching by using a novel washing method. J. Anal. At. Spectrom., 31 (2016), pp. 390-397
Liu, Z., Wang, J., 1988. Strontium and oxygen isotopes of granites and paired granite belts in the southern Qinghai-Xizang (Tibet) plateau. In: Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, Vol. 19, 1–17 (in Chinese with English abstract).
C.Y. Liu, D.J. Wilson, E.C. Hathorne, A. Xu, P.A.E. Pogge von Strandmann. The influence of river-derived particles on estuarine and marine elemental cycles: evidence from lithium isotopes. Geochim. Cosmochim. Acta, 361 (2023), pp. 183-199,
CrossRef Google scholar
Z.-C. Liu, F.-Y. Wu, L. Ding, X.-C. Liu, J.-G. Wang, W.-Q. Ji. Highly fractionated Late Eocene (∼35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240–243 (2016), pp. 337-354
W.C. Luth, R.H. Jahns, O.F. Tuttle. The granite system at pressure of 4 to 10 kilobars. J. Geophys. Res., 69 (1964), pp. 759-773,
CrossRef Google scholar
T. Ma, M. Weynell, S.L. Li, Y. Liu, B. Chetelat, J. Zhong, S. Xu, C.Q. Liu. Lithium isotope compositions of the Yangtze River headwaters: weathering in high-relief catchments. Geochim. Cosmochim. Acta, 280 (2020), pp. 46-65,
CrossRef Google scholar
Magenheim, A.J., Spivack, A.J., Alt, J.C., Bayhurst, G., Chan, L.H., Zuleger, E., Gieskes, J.M., 1995. Borehole fluid chemistry in hole 504B, leg 137: formation water or in situ reaction? In Proceedings of the Ocean Drilling Program, Scientific Results, 137/140, 141–152.
Y. Makovsky, S.L. Klemperer, L. Ratschbacher, L.D. Brown, M. Li, W.J. Zhao, F.L. Meng. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal Bright Spots in Tibet. Science, 274 (1996), pp. 1690-1691
K. Metcalf, P. Kapp. History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet. Geological Society, London, Special Publications, 483 (1) (2019), pp. 517-554,
CrossRef Google scholar
G. Michard. Behaviour of major elements and some trace elements (Li, Rb, Cs, Fe, Mn, W, F) in deep hot waters from granitic areas. Chem. Geol., 89 (1990), pp. 117-134,
CrossRef Google scholar
R. Millot, C. Guerrot, N. Vigier. Accurate and high-precision measurement of lithium isotopes in two reference materials by MC–ICP–MS. Geostand. Geoanal. Res., 28 (2004), pp. 153-159,
CrossRef Google scholar
R. Millot, A. Hegan, O. Négrel. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Appl. Geochem., 27 (2012), pp. 677-688,
CrossRef Google scholar
R. Millot, P. Négrel. Multi-isotopic tracing (δ7Li, δ11B, 87Sr/86Sr) and chemical geothermometry: evidence from hydrogeothermal systems in France. Chem. Geol., 244 (2007), pp. 664-678,
CrossRef Google scholar
R. Millot, Ph. Négrel. Chemical weathering of granitic rocks: an experimental approach and Pb-Li isotopes tracing. Proc. Earth Planet. Sci., 7 (2013), pp. 590-593,
CrossRef Google scholar
R. Millot, P. Négrel, E. Petelet-Giraud. Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France). Appl. Geochem., 22 (2007), pp. 2307-2325,
CrossRef Google scholar
R. Millot, B. Scaillet, B. Sanjuan. Lithium isotopes in island arc geothermal systems: guadeloupe, martinique (French West Indies) and experimental approach. Geochim. Cosmochim. Acta, 74 (2010), pp. 1852-1871,
CrossRef Google scholar
R. Millot, C. Guerrot, C. Innocent, P. Negrel, B. Sanjuan. Chemical, multi-isotopic (Li–B–Sr–U–H–O) and thermal characterization of Triassic formation waters from the Paris Basin. Chem. Geol., 283 (2011), pp. 226-241,
CrossRef Google scholar
J. Nábělek, G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, B.-S. Huang, t.H.-C. Team. Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325 (2009), pp. 1371-1374
P.I. Nabelek, J.R. O'Neil, J.J. Papike. Vapor phase exsolution as a controlling factor in hydrogen isotope variation in granitic rocks: the Notch Peak granitic stock. Utah. Earth Planet. Sci. Lett., 66 (1983), pp. 137-150,
CrossRef Google scholar
R. Négrel, R. Millot. Behaviour of Li isotopes during regolith formation on granite (Massif Central, France): controls on the dissolved load in water, saprolite, soil and sediment. Chem. Geol., 523 (2019), pp. 121-132,
CrossRef Google scholar
D. Nieva, R. Nieva. Developments in geothermal energy in Mexico-part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recovery Systems and CHP, 7 (1987), pp. 243-258,
CrossRef Google scholar
J.R. O'Neil, B.W. Chappell. Oxygen and hydrogen isotope relations in the Berridale batholith. J. Geol. Soc. London, 133 (1977), pp. 559-571,
CrossRef Google scholar
D.A. Orme, B. Carrapa, P. Kapp. Sedimentology provenance and geochronology of the Upper Cretaceous–Lower Eocene Western Xigaze Forearc Basin Southern Tibet. Basin Res., 27 (2015), pp. 387-411,
CrossRef Google scholar
D.A. Orme, A.K. Laskowski, M.F. Zilinsky, W. Chao, X. Guo, F. Cai, L. Ding. Sedimentology and provenance of newly identified Upper Cretaceous trench basin strata, Dênggar, southern Tibet: implications for development of the Eurasian margin prior to India–Asia collision. Basin Res., 33 (2021), pp. 1454-1473,
CrossRef Google scholar
Z.H. Pang, M. Reed. Theoretical chemical thermometry on geothermal waters: problems and methods. Geochimi. Cosmochim. Acta, 62 (1998), pp. 1083-1091,
CrossRef Google scholar
S. Penniston-Dorland, X.M. Liu, R.L. Rudnick. Lithium isotope geochemistry. Rev. Mineral. Geochem., 82 (1) (2017), pp. 165-217,
CrossRef Google scholar
J.S. Pistiner, G.M. Henderson. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett., 214 (2003), pp. 327-339,
CrossRef Google scholar
P.A.E. Pogge von Strandmann, K.W. Burton, R.H. James, P. van Calsteren, S.R. Gíslason, F. Mokadem. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth Planet. Sci. Lett., 251 (1–2) (2006), pp. 134-147,
CrossRef Google scholar
P.A.E. Pogge von Strandmann, G.M. Henderson. The Li isotope response to mountain uplift. Geology, 43 (1) (2015), pp. 67-70,
CrossRef Google scholar
P.A.E. Pogge von Strandmann, K.W. Burton, R.H. James, P. van Calsteren, S.R. Gìslason. Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chem. Geol., 270 (2010), pp. 227-239,
CrossRef Google scholar
P.A.E. Pogge von Strandmann, K.W. Burton, S. Opfergelt, E.S. Eiríksdόttir, M.J. Murphy, A. Einarsson, S.R. Gislason. The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn Iceland. Chem. Geol., 445 (2016), pp. 4-13,
CrossRef Google scholar
S. Rad, K. Rivé, B. Vittecoq, O. Cerdan, C.J. Allègre. Chemical weathering and erosion rates in the Lesser Antilles: an overview in Guadeloupe, Martinique and Dominica. J. South Am. Earth Sci., 45 (2013), pp. 331-344,
CrossRef Google scholar
Reed, M., Spycher, N., Palandri, J., 2010. Manual of SOLVEQ-XPT: A Computer Program for Computing Aqueous-mineral-gas Equilibria. Lawrence Berkeley Laboratory, Department of Energy, Berkeley, California, pp. 41.
M. Reed, N. Spycher. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta, 48 (1984), pp. 1479-1492,
CrossRef Google scholar
R.L. Romer, A. Meixner, H.-J. Förster. Lithium and boron in late-orogenic granites – isotopic fingerprints for the source of crustal melts?. Geochim. Cosmochim. Acta, 131 (2014), pp. 98-114,
CrossRef Google scholar
B. Sanjuan, R. Millot, R. Asmundsson, M. Brach, N. Giroud. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. Chem. Geol., 389 (2014), pp. 60-81,
CrossRef Google scholar
B. Sanjuan, B. Gourcerol, R. Millot, D. Rettenmaier, E. Jeandel, A. Rombaut. Lithium-rich geothermal brines in Europe: An update about geochemical characteristics and implications for potential Li resources. Geothermics, 101 (2022), Article 102385,
CrossRef Google scholar
Y. Sano, T.P. Fischer. The analysis and interpretation of noble gases in modern geothermal systems. P. Burnard (Ed.), The Noble Gases as Geochemical Tracers, Springer-verlag, Berlin Heidelberg (2013), pp. 249-317
Y. Sano, H. Wakita. Geographical distribution of 3He/4He ratios in Japan: Implications for arc tectonics and incipient magmatism. J. Geophys. Res., 90 (1985), pp. 8729-8741,
CrossRef Google scholar
F. Scholz, C. Hensen, L.G.J. De, M. Haeckel, V. Liebetrau, A. Meixner, A. Reitz, R.L. Romer. Lithium isotope geochemistry of marine pore waters—insights from cold seep fluids. Geochim. Cosmochim. Acta, 74 (2010), pp. 3459-3475,
CrossRef Google scholar
W.E.J. Seyfried, X. Chen, L.H. Chan. Trace element mobility and Li isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350°C, 500 bars. Geochim. Cosmochim. Acta, 62 (1998), pp. 949-960,
CrossRef Google scholar
P. Song, R. Xiang. Utilization and exploitation of lithium resources in salt lakes and suggestions for development of Li industries of China. Acta Geologica Sinica (English Edition), 88 (s1) (2014), p. 371,
CrossRef Google scholar
M. Steele-MacInnis, C.E. Manning. Hydrothermal properties of geologic fluids. Elements, 16 (6) (2020), pp. 375-380,
CrossRef Google scholar
Suud, E.M., Suryantini, Mubarok, M.Z., 2023. Lithium extraction method from geothermal brine to find suitable method for geothermal fields in Indonesia: a review. IOP Conf. Ser. Earth Environ. Sci. 1159. .
H.B. Tan, Y.F. Zhang, W.J. Zhang, N. Kong, Q. Zhang, J.Z. Huang. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Appl. Geochem., 51 (2014), pp. 23-32,
CrossRef Google scholar
H.P. Taylor Jr.. . Geochemistry of Hydrothermal Ore Deposits, Wiley, New York (1968), pp. 236-277
H.P. Taylor Jr.. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69 (1974), pp. 843-883,
CrossRef Google scholar
B.E. Taylor, J.C. Eichelberger, H.R. Westrich. Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature, 306 (5943) (1983), pp. 541-545,
CrossRef Google scholar
M. Taylor, A. Yin. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5 (2009), pp. 199-214,
CrossRef Google scholar
E.H. Temizel, F. Gültekin, A.F. Ersoy, R.K. Gülbay. Multi-isotopic (O, H, C, S, Sr, B, Li) characterization of waters in a low-enthalpy geothermal system in Havza (Samsun) Turkey. Geothermics, 97 (2021), Article 102240
F.-Z. Teng, W.F. McDonough, R.L. Rudnick, C. Dalpé, P.B. Tomascak, B.W. Chappell, S. Gao. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta, 68 (2004), pp. 4167-4178,
CrossRef Google scholar
F.-Z. Teng, W.F. McDonough, R.L. Rudnick, R. Walker, M.-L.-C. Sirbescu. Lithium isotopic systematics of granites and pegmatites from the Back Hills, South Dakota. Am. Mineral., 91 (2006), pp. 1488-1498,
CrossRef Google scholar
F.-Z. Teng, R.L. Rudnick, W.F. McDonough, F.-Y. Wu. Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem. Geol., 262 (2009), pp. 370-379,
CrossRef Google scholar
S.H. Tian, Y. Zhao, Z.Q. Hou, Y.H. Tian, K.J. Hou, X.F. Li, Z.S. Yang, W.J. Hu, X.X. Mo, Y.C. Zheng. Lithium isotopic composition and concentration of Himalayan leucogranites and the Indian lower continental crust. Lithos, 284–285 (2017), pp. 416-428,
CrossRef Google scholar
S.H. Tian, Z.Q. Hou, Y.H. Tian, Y. Zhao, K.J. Hou, X.F. Li, Y.J. Zhang, W.J. Hu, X.X. Mo, Z.S. Yang, Z.Q. Li, M. Zhao. Lithium content and isotopic composition of the juvenile lower crust in southern Tibet. Gondwana Res., 62 (2018), pp. 198-211,
CrossRef Google scholar
Tilmann, F., Ni, J., INDEPTH III Seismic Team., 2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science 300, 1424–1427. https://www.science.org/doi/10.1126/science.1082777.
A.-L. Toba, R.T. Nguyen, C. Cole, G. Neupane, M.P. Paranthaman. U.S. lithium resources from geothermal and extraction feasibility. Resour. Conserv. Recycl., 169 (2021), Article 105514,
CrossRef Google scholar
A.-L. Toba, R.T. Nguyen, C. Cole, G. Neupane, M.P. Paranthaman. U.S. lithium resources from geothermal and extraction feasibility. Resour. Conserv. Recycl., 179 (2022), Article 106119,
CrossRef Google scholar
P.B. Tomascak, N.G. Hemming, S.R. Hemming. The lithium isotopic composition of waters of the Mono Basin California. Geochim. Cosmochim. Acta, 67 (2003), pp. 601-611,
CrossRef Google scholar
P.B. Tomascak, C.H. Langmuir, P.J. Le Roux, S.B. Shirey. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta, 72 (2008), pp. 1626-1637,
CrossRef Google scholar
P.B. Tomascak, T. Magna, R. Dohmen. Advances in Lithium Isotope Geochemistry. J. Hoefs (Ed.), Advances in Isotope Geochemistry, Springer International Publishing, Cham, Switzerland (2016),
CrossRef Google scholar
Tonani, F., 1980. Some remarks on the application of geochemical techniques in geothermal exploration. Proc. Adv. Eur. Geoth. Res., 2nd Symp. Strasbourg, 428–443.
W. Tong, Z. Liao, S. Liu, Z. Zhang, M. You, M. Zhang. Thermal Springs in Tibet. Science Press, Beijing (in Chinese) (2000)
Truesdell, A.H., 1976. Summary of section III. Geochemical techniques in exploration. Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, 53–79.
S.P. Verma, E. Santoyo. New improved equations for NaK, NaLi and SiO2 geothermometers by outlier detection and rejection. J. Volcanol. Geotherm. Res., 79 (1) (1997), pp. 9-23,
CrossRef Google scholar
A. Verney-Carron, N. Vigier, R. Millot. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering. Geochim. Cosmochim. Acta, 75 (2011), pp. 3452-3468,
CrossRef Google scholar
N. Vigier, A. Decarreau, R. Millot, J. Carignan, S. Petit, C. France-Lanord. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta, 72 (2008), pp. 780-792,
CrossRef Google scholar
N. Vigier, Y. Goddéris. A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate. Clim. Past., 11 (4) (2015), pp. 635-645,
CrossRef Google scholar
Q.L. Wang, B. Chetelat, Z.Q. Zhao, H. Ding, S.L. Li, B.L. Wang, J. Li, X.L. Liu. Behavior of lithium isotopes in the Changjiang River system: sources effects and response to weathering and erosion. Geochim. Cosmochim. Acta, 151 (2015), pp. 117-132,
CrossRef Google scholar
W. Wang, S.-Y. Jiang, Y. Xiao. Fluid–rock interaction effects on Li isotope behavior in continental geothermal systems. Chem. Geol., 631 (2023), Article 121525,
CrossRef Google scholar
C. Wang, X. Li, Z. Liu, Y. Li, L. Jansa, J. Dai, Y. Wei. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Res., 22 (2) (2012), pp. 415-433,
CrossRef Google scholar
Y. Wang, L. Li, H. Wen, Y. Hao. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet. J. Hydrol., 604 (2022), Article 127243,
CrossRef Google scholar
M. Wang, H. Zhang, L. Liang, Z. Zhu, A. Zhang. Constraining the properties of the heat sources of high-temperature hydrogeothermal systems: evidence from the lithium concentrations of geothermal waters. J. Hydrol., 640 (2024), Article 131696,
CrossRef Google scholar
Q. Wang, Z. Zhao, H. Liu. Separation and isotopic determination of lithium in natural samples. Chin. J. Anal. Chem., 34 (6) (2006), pp. 764-768
C. Wang, M. Zheng, X. Zhang, Q. Wu, X. Liu, J. Ren, S. Chen. Geothermal-type Lithium Resources in Southern Xizang China. Acta Geologica Sinica, 95 (3) (2021), pp. 860-872,
CrossRef Google scholar
W. Wei, M. Unsworth, A. Jones, J. Booker, H. Tan, D. Nelson, L. Chen, S. Li, K. Solon, P. Bedrosian, S. Jin, M. Deng, J. Ledo, D. Kay, B. Roberts. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292 (5517) (2001), pp. 716-719,
CrossRef Google scholar
R.F. Weiss. Solubility of helium and neon in water and seawater. J. Chem. Eng. Data, 16 (1971), pp. 235-241
M. Weynell, U. Wiechert, C. Zhang. Chemical and isotopic (O, H, C) composition of surface waters in the catchment of Lake Donggi Cona (NW China) and implications for paleoenvironmental reconstructions. Chem. Geol., 435 (2016), pp. 92-107,
CrossRef Google scholar
M. Weynell, U. Wiechert, J.A. Schuessler. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau. Geochim. Cosmochim. Acta, 213 (2017), pp. 155-177,
CrossRef Google scholar
B. Wunder, A. Meixner, R.L. Romer, A. Feenstra, G. Schettler, W. Heinrich. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem. Geol., 238 (2007), pp. 277-290,
CrossRef Google scholar
Y.K. Xiao, H.P. Qi, Y.H. Wang. Lithium isotopic compositions of brine, sediments and source water in DaQaidam Lake, Qinghai, China. Geochimica, 23 (1994), pp. 329-338
J. Xu. A historical review of active volcano monitoring and research in China. City and Disaster Reduction, 5 (2018), pp. 54-59
G. Xue, W. Chen, P. Zhao, W. Ren, Y. He, P. Lv, K. Lei, Y. Zhao. Three-dimensional electrical structure model of the Yangbajain geothermal field in Tibet: evidence obtained from magnetotelluric data. Science China Earth Sciences, 66 (8) (2023), pp. 1839-1852,
CrossRef Google scholar
Z.-Y. Yang, Q. Wang, J.-H. Yang, W. Dan, X.-Z. Zhang, L. Ma, Y. Qi, J. Wang, P. Sun. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: crust-derived magma mixing and melt extraction. Lithos, 350–351 (2019), Article 105199,
CrossRef Google scholar
A. Yin. Mode of Cenozoic east–west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J. Geophys. Res Solid Earth, 105 (2000), pp. 21745-21759
A. Yin. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth. Sci. Rev., 76 (2006), pp. 1-131,
CrossRef Google scholar
A. Yin, T.M. Harrison. Geological evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 211-280
T. Yokoyama, S. Nakai, H. Wakita. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. J. Volcanol. Geotherm. Res., 88 (1999), pp. 99-107,
CrossRef Google scholar
F. Yu, Y. Yu, D.H. Wang, J.Q. Guo, C.H. Wang, W.M. Guo. Application of Li isotope in geothermal fluid–rock interaction: a case study of modern Li-rich geothermal water in western Sichuan. Acta Petrologica Sinca, 38 (2) (2022), pp. 472-482
Zhang, M., Lin, W.j., Liu, Z., Liu, Z.M., Hu, X.C., Wang, G.L., 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition) 41(3), 382–392 (in Chinese with English abstract).
J.W. Zhang, J.L. Meng, Z.Q. Zhao, C.Q. Liu. Accurate determination of lithium isotopic compositions in geological samples by multicollector inductively coupled plasma–mass spectrometry. Chin. J. Anal. Chem., 47 (3) (2019), pp. 415-422,
CrossRef Google scholar
J.W. Zhang, Y.N. Yan, Z.Q. Zhao, X.M. Liu, X.D. Li, D. Zhang, H. Ding, J.L. Meng, C.Q. Li. Spatiotemporal variation of Li isotopes in the Yarlung Tsangpo River basin (upper reaches of the Brahmaputra River): source and process. Earth Planet. Sci. Lett., 600 (2022), Article 117875,
CrossRef Google scholar
H. Zhou, X. Kuang, Y. Hao, C. Wang, Y. Feng, Y. Zou, M. Zhu, C. Zheng. Magmatic fluid input controlling the geochemical and isotopic characteristics of geothermal waters along the Yadong-Gulu rift, southern Tibetan Plateau. J. Hydrol., 619 (2023), Article 129196,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/