Inter-basin groundwater flow in the Ordos Basin: Evidence of environmental isotope and hydrological investigations
Yitong Zhang , Jiaqi Chen , Jiansheng Chen , Wang Wang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101967
Inter-basin groundwater flow in the Ordos Basin: Evidence of environmental isotope and hydrological investigations
The Ordos Basin, located in arid and semi-arid region of China, is famous for its abundant groundwater resources and artesian features. The source of groundwater recharge, whether from local precipitation or external sources, has been debated. This study aims to elucidate the groundwater circulation mechanism in the Ordos Basin through scientific expedition, environmental isotope method, and hydrological drilling exploration, providing valuable insights for other artesian basins. Comprehensive analysis indicates that groundwater in the Ordos Basin is recharged by modern precipitation, primarily from high-elevation areas outside the basin. Deep groundwater from these external sources ascends to the aquifer through basement fault zones. Evidence from hydrogen and oxygen isotopes, hydraulic gradients, and water quantities suggests that the Tibetan Plateau is the most potential recharge source. Based on the distribution of Cenozoic basalt and data from seismic observation wells, we propose that leakage water from the Tibetan Plateau rift valley is transported to the Ordos Basin through fast channels, possibly lava tubes, and then upwelling through basement fault zones. This work provides a new perspective on the mechanism of inter-basin groundwater circulation.
Groundwater circulation / Ordos Basin / Artesian basins / Deep-circulating groundwater
| [1] |
K. Abdelmohsen, M. Sultan, H. Save, A.Z. Abotalib, E. Yan. What can the GRACE seasonal cycle tell us about lake-aquifer interactions?. Earth-Sci. Rev., 211 (2020), |
| [2] |
C.J. Ballentine, P.G. Burnard. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem., 47 (1) (2002), pp. 481-538, |
| [3] |
E.E. Brodsky. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res., 108 (B8) (2003), |
| [4] |
M.X. Chen, C.H. Ji, C.R. Sun. Classification and distribution of artesian basins in China. Hydrogeol. Eng. Geol., 07 (1959), pp. 13-16, 10.16030/j.cnki.issn.1000-3665.1959.07.003 (in Chinese with English abstract) |
| [5] |
J.S. Chen, Q.N. Jiang. Research progress of ground water deep circulation. Water Resour. Prot., 31 (06) (2015), pp. 8-17, |
| [6] |
Z. Chen, Y. Li, Z.F. Liu, H.Y. He, G. Martinelli, C. Lu, Z.H. Gao. Geochemical and geophysical effects of tectonic activity in faulted areas of the North China Craton. Chem. Geol., 609 (2022), |
| [7] |
J.S. Chen, Q.Q. Wang. A discussion of groundwater recharge sources in arid areas of North China. Water Resour. Prot., 28 (03) (2012), p. 641, |
| [8] |
J.S. Chen, T. Wang, X.X. Chen, X.Y. Liu. Discussion on the origin of groundwater in the Orods Basin. Geol. Rev., 59 (5) (2013), pp. 900-908 |
| [9] |
B. Cheng, S.Y. Cheng, G.W. Zhang, D.P. Zhao. Seismic structure of the Helan-Liupan-Ordos western margin tectonic belt in North-Central China and its geodynamic implications. J. Asian Earth Sci., 87 (2014), pp. 141-156, |
| [10] |
J.X. Dai, Y.Y. Ni, S.F. Qin, S.P. Huang, D.Y. Gong, D. Liu, Z.Q. Feng, W.L. Peng, W.X. Han, C.C. Fang. Geochemical characteristics of He and CO2 from the Ordos (cratonic) and Bohaibay (rift) basins in China. Chem. Geol., 469 (2017), pp. 192-213, |
| [11] |
H. Dong, W.B. Wei, G.F. Ye, S. Jin, A.G. Jones, J. Jing, L.T. Zhang, C.L. Xie, F. Zhang, H. Wang. Three-dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification. Geochem. Geophys. Geosyst., 15 (6) (2014), pp. 2414-2425, |
| [12] |
M.M. Feng, W.G. Zhang, S.Q. Zhang, Z.Y. Sun, Y. Li, Y.Q. Huang, W.J. Wang, P. Qi, Y.C. Zou, M. Jiang. The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes. J. Hydrol., 604 (2022), |
| [13] |
X.W. Gao. Study on hydrogeochemical characteristics of Tarangaole mine area for coordinated mining between coal and uranium. Coal Technol., 37 (02) (2018), pp. 209-211, 10.13301/j.cnki.ct.2018.02.078 (in Chinese with English abstract) |
| [14] |
J. Ge, J.S. Chen, L. Ge, T. Wang, C. Wang, Y.F. Chen. Isotopic and hydrochemical evidence of groundwater recharge in the Hopq Desert, NW China. J. Radioanal. Nucl. Chem., 310 (2) (2016), pp. 761-775, |
| [15] |
D.W. Graham. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Rev. Mineral. Geochem., 47 (1) (2002), pp. 247-317, |
| [16] |
C. Guo, Y. Qin, C.F. Wu, L.L. Lu. Hydrogeological control and productivity modes of coalbed methane commingled production in multi-seam areas: A case study of the Bide-Santang Basin, western Guizhou, South China. J. Pet. Sci. Eng., 189 (2020), |
| [17] |
H.W. Guo, G.F. Zhu, Y.Q. He, J.J. Zhou, H.X. Pan, X.G. Ma, Y. Zhang, M.H. Huang, J. Xiang. Dynamic characteristics and influencing factors of precipitation δ18O. China. Theor. Appl. Clim., 138 (1–2) (2019), pp. 899-910, |
| [18] |
P.F. Han, X.S. Wang, Y.X. Zhou, Z. Yang, L. Wan, J.S. Chen, X.W. Jiang. Three-dimensional inter-basin groundwater flow toward a groundwater-fed stream: Identification, partition, and quantification. J. Hydrol., 629 (2024), |
| [19] |
D.R. Hilton. The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studiesat Long Valley caldera (California, U.S.A.). Chem. Geol., 127 (4) (1996), pp. 269-295, |
| [20] |
P.J. Hooker, R.K. O'nions, E.R. Oxburgh. Helium isotopes in North Sea gas fields and the Rhine rift. Nature, 318 (6043) (1985), pp. 273-275, |
| [21] |
Z.M. Hou, L. Huang, S.W. Zhang, X. Han, J. Xu, Y.N. Li. Identification of groundwater hydrogeochemistry and the hydraulic connections of aquifers in a complex coal mine. J. Hydrol., 628 (2024), |
| [22] |
G.C. Hou, M.S. Zhang, Y.H. Wang, Z.H. Zhao, Y.P. Liang, Z.P. Tao, Y.C. Yang, Q. Li, L.H. Yin, X.Y. Wang, D. Wang, Y. Li. Groundwater resources of the Ordos Basin and its development and utilization. Northwest. Geol., 40 (1) (2007), pp. 7-34 |
| [23] |
G.C. Hou, Y.P. Liang, L.H. Yin, Z.P. Tao, Z.H. Zhao, Y.C. Yang, X.Y. Wang. Groundwater systems and water resources potential in the Ordos Basin. Hydrogeol. Eng. Geol., 36 (1) (2009), pp. 18-34, |
| [24] |
G.C. Hou, L.H. Yin, D.D. Xu. Hydrogeology of the Ordos Basin, China. J. Groundwater Sci. Eng., 5 (2) (2017), pp. 104-115 |
| [25] |
S.B. Hu, L.J. He, J. Wang. Compilation of heat flow data in the continental area of China (3th edition). Chin. J. Geophys., 44 (05) (2001), pp. 611-626, |
| [26] |
T.M. Huang, B.Q. Ma, Y. Long, Z.H. Pang. The role of unsaturated zone in estimating groundwater recharge in arid and semiarid areas as depicted by geochemical tracers. O. Chudaev, Y. Kharaka, R. Harmon, R. Millot, O. ShouakarStash (Eds.), 16th International Symposium on Water-Rock Interaction. E3S Web of Conferences. (2019) |
| [27] |
T.M. Huang, B.Q. Ma, Z.H. Pang, Z. Li, Z.B. Li, Y. Long. How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. J. Hydrol., 583 (2020), |
| [28] |
S.H. Hung, W.P. Chen, L.Y. Chiao. A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet. J. Geophys. Res., 116 (B6) (2011), |
| [29] |
S. Jasechko. Global isotope hydrogeology-review. Rev. Geophys., 57 (3) (2019), pp. 835-965, |
| [30] |
T.T. Ji, X.W. Jiang, G.L. Han, X.Q. Li, L. Wan, Z.Z. Wang, H.M. Guo, Z.D. Jin. Contrasting behavior of K isotopes in modern and fossil groundwater: Implications for K cycle and subsurface weathering. Earth Planet. Sci. Lett., 626 (2024), |
| [31] |
F.H. Jia, Z.X. Qin, Z.Y. Han. Basic characteristics of groundwater in basalt of China. Hydrogeol. Eng. Geol., 4 (1993), pp. 30-32, 10.16030/j.cnki.issn.1000-3665.1993.04.010 (in Chinese with English abstract) |
| [32] |
W.H. Jia, L. Yin, M.S. Zhang, X.X. Zhang, J. Zhang, X.P. Tang, J.Q. Dong. Quantification of groundwater recharge and evapotranspiration along a semi-arid wetland transect using diurnal water table fluctuations. J. Arid Land, 13 (5) (2021), pp. 455-469, |
| [33] |
S.Y. Jiang, W.B. Rao, L.F. Han, K.T. Meredith. Study of groundwater recharge using combined unsaturated-and saturated-zone chloride mass balance methods. Hydrol. Process., 37 (6) (2023), |
| [34] |
X.W. Jiang, L. Wan, X.S. Wang, D. Wang, H. Wang, J.Z. Wang, H. Zhang, Z.Y. Zhang, K.-Y. Zhao. A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China. Hydrogeol. J., 26 (5) (2018), pp. 1657-1668, |
| [35] |
W. Jiang, G. Wang, Y. Sheng, Z. Shi, H. Zhang. Isotopes in groundwater (2H, 18O, 14C) revealed the climate and groundwater recharge in the Northern China. Sci. Total Environ., 666 (2019), pp. 298-307, |
| [36] |
S. Jin, Y. Sheng, M.J. Comeau, M. Becken, W.B. Wei, G.F. Ye, H. Dong, L.T. Zhang. Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese Terrane (Southern Tibet) based on a 3-D electrical model. J. Geophys. Res.-Solid Earth, 127 (11) (2022), |
| [37] |
S. Karato, H. Jung. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett., 157 (3–4) (1998), pp. 193-207, |
| [38] |
H. Kooi. Groundwater flow as a cooling agent of the continental lithosphere. Nat. Geosci., 9 (3) (2016), pp. 227-230, |
| [39] |
L. Li, C.N. Garzione. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction. Earth Planet. Sci. Lett., 460 (2017), pp. 302-314, |
| [40] |
S.H. Li, X.M. Huang, H.J. Zhu, K.P. Zhu, Z.Y. Zhang, J. Yang. Characterization of groundwater circulation in the Jungar coalfield based on water chemistry and environmental isotopes. South-to-North Water Transfers Water Sci. Technol., 19 (03) (2021), pp. 561-571, 10.13476/j.cnki.nsbdqk.2021.0059 (in Chinese with English abstract) |
| [41] |
X.D. Li, H. Masuda, M. Ono, M. Kusakabmm, F. Yanagisawa, H.A. Zeng. Contribution of atmospheric pollutants into groundwater in the northern Sichuan Basin, China. Geochem. J., 40 (2006), pp. 103-119, |
| [42] |
P.Y. Li, H. Qian, J.H. Wu, Y.Q. Zhang, H.B. Zhang. Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ., 32 (3) (2013), pp. 195-206, |
| [43] |
M.Y. Li, Y.Q. Xie, Y.H. Dong, L.H. Wang, Z.Y. Zhang. Review: Recent progress on groundwater recharge research in arid and semiarid areas of China. Hydrogeol. J., 32 (1) (2024), pp. 9-30, |
| [44] |
Y.P. Liang, X.R. Han, J. Shi, L.H. Yin. The Karst groundwater system in the Peripheral area of Ordos Basin: Its patterns and characteristics. Acta Geosci. Sin., 4 (2005), pp. 365-369, |
| [45] |
X.M. Liu, J.Q. Chen, Q.W. Zhang, X. Zhang, E. Wei, N. Wang, Q.W. Wang, J.H. Wang, J.S. Chen. Floating on groundwater: Insight of multi-source remote sensing for Qaidam basin. J. Environ. Manage., 365 (2024), |
| [46] |
M. Liu, X.J. Cui, F.T. Liu. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo–Asian collision?. Tectonophysics, 393 (1–4) (2004), pp. 29-42, |
| [47] |
J.R. Liu, X.F. Song, G.F. Yuan, X.M. Sun, L.H. Yang. Stable isotopic compositions of precipitation in China. Tellus B, 66 (1) (2014), |
| [48] |
F. Liu, X. Song, L. Yang, Y. Zhang, D. Han, Y. Ma, H. Bu. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China. Hydrol. Earth Syst. Sci., 19 (1) (2015), pp. 551-565, |
| [49] |
F.T. Liu, X.S. Su, G.C. Hou, X.Y. Lin, S.P. Yi, W.H. Dong. Application of CFCs methods in dating shallow groundwater in the Ordos Cretaceous Groundwater Basin. J. Jilin Univ. Earth Sci. Ed., 37 (2) (2007), pp. 298-302, 10.13278/j.cnki.jjuese.2007.02.017 (in Chinese with English abstract) |
| [50] |
F.Y. Ma, J.S. Chen, L.C. Zhan, T. Wang, J.H. Yan, X. Zhang. Coastal upward discharge of deep basalt groundwater through developed faults: A case study of the Subei Basin, China. J. Environ. Manage., 306 (2022), |
| [51] |
H. Ma, Q. Yang, L. Yin, X. Wang, J. Zhang, C. Li, J. Dong. Paleoclimate interpretation in northern Ordos Basin: Evidence from isotope records of groundwater. Quat. Int., 467 (2018), pp. 204-209, |
| [52] |
E. Marti, S. Leray, D. Villela, J. Maringue, G. Yáñez, E. Salazar, F. Poblete, J. Jimenez, G. Reyes, G. Poblete, Z. Huamán, R. Figueroa, J.A. Vargas, J. Sanhueza, M. Muñoz, R. Charrier, G. Fernández. Unravelling geological controls on groundwater flow and surface water-groundwater interaction in mountain systems: A multi-disciplinary approach. J. Hydrol., 623 (2023), |
| [53] |
B. Marty, M.-F. Le Cloarec. Helium-3 and CO2 fluxes from subaerial volcanoes estimated from polonium-210 emissions. J. Volcanol. Geotherm. Res., 53 (1–4) (1992), pp. 67-72, |
| [54] |
G. Min, H.L. Yuan, X.B. Wang, K.P. Wang, C.T. Li, K. Liu, S.H. Hu. Crustal and upper mantle electrical structure and uplift mechanism of the Liupanshan orogenic belt in the NE Tibetan Plateau. Tectonophysics, 853 (2023), |
| [55] |
M. Ozima, F.A. Podosek. Noble Gas Geochemistry. Cambridge University Press (2002) |
| [56] |
W.L. Peng, et al.. The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China. Sci. China: Earth Sci., 65 (5) (2022), pp. 874-881, |
| [57] |
D.J. Qin, J.V. Turner, L.F. Han, Z.H. Pang. Inferring young groundwater from deep geothermal water using CFCs and isotope data: implication for circulation of groundwater in the Xi’an geothermal field, Shaanxi Province, China. Proceedings World Geothermal Congress, Antalya, Turkey (April 2005), pp. 24-29 |
| [58] |
O.S. Schilling, K. Nagaosa, T.U. Schilling, M.S. Brennwald, R. Sohrin, Y. Tomonaga, P. Brunner, R. Kipfer, K. Kato. Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers. Nat. Water, 1 (1) (2023), pp. 60-73, |
| [59] |
R.R. Seal, W.C. Shanks. Oxygen and hydrogen isotope systematics of Lake Baikal, Siberia: Implications for paleoclimate studies. Limnol. Oceanogr., 43 (6) (1998), pp. 1251-1261, |
| [60] |
H.B. Tan, Z.H. Liu, W.B. Rao, B. Jin, Y.D. Zhang. Understanding recharge in soil-groundwater systems in high loess hills on the Loess Plateau using isotopic data. CATENA, 156 (2017), pp. 18-29, |
| [61] |
T. Wang, J.S. Chen, J. Ge, L.C. Zhan. Isotopic evidence of allogenic groundwater recharge in the Northern Ordos Basin. J. Radioanal. Nucl. Chem., 314 (3) (2017), pp. 1595-1606, |
| [62] |
T. Wang, J.S. Chen, C.M. Zhang, L.C. Zhan, L. Li. 14C-dating model for groundwater affected by CO2 inputs from deep underground formations. Water Resour. Res., 56 (3) (2020), |
| [63] |
W. Wang, J.Q. Chen, J.S. Chen, L.C. Zhan, T. Wang, Y.T. Zhang, D.W. Huang. Basalt and dune: Critical factors in desert water resource development. ACS ES&T Water, 4 (8) (2024), pp. 3190-3199, |
| [64] |
H.C. Wang, X.H. Fu, X.Y. Zhang, Q.H. Niu, Y.Y. Ge, J.J. Tian, X.Q. Cheng, N. Chen, X.L. Hou, H. Du. Source, age, and evolution of coal measures water in Central-South Qinshui Basin, China. Energy Fuels, 32 (7) (2018), pp. 7358-7373, |
| [65] |
R.F. Weiss. Solubility of helium and neon in water and seawater. J. Chem. Eng. Data, 16 (2) (1971), pp. 235-241, |
| [66] |
C. Wu, C. Fang, X. Wu, G. Zhu, Y.Z. Zhang. Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area, Ordos Basin, NW China. Geosci. Front., 12 (2) (2021), pp. 781-790, |
| [67] |
Q. Xiao, Y.J. Jiang, L.C. Shen, D.X. Yuan. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance. Appl. Geochem., 89 (2018), pp. 49-58, |
| [68] |
S.Y. Yang. The Study on the Exploring and Usingof the Karst Water in Qipanjing Area. M.S. thesis, Jilin University (2010) |
| [69] |
Y.C. Yang, Z.L. Shen, D.G. Weng, G.C. Hou, Z.H. Zhao, D. Wang, Z.H. Pang. Oxygen and hydrogen isotopes of waters in the ordos basin, China: Implications for recharge of groundwater in the North of Cretaceous Groundwater Basin. Acta Geol. Sin. (Engl. Ed.), 83 (1) (2009), pp. 103-113, |
| [70] |
I. Yatsevich, M. Honda. Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res.-Solid Earth, 102 (B5) (1997), pp. 10291-10298, |
| [71] |
L.H. Yin, G.C. Hou, X.S. Su, D. Wang, J.Q. Dong, Y.H. Hao, X.Y. Wang. Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol. J., 19 (2) (2011), pp. 429-443, |
| [72] |
B. Yong, C.-Y. Wang, J.S. Chen, J.Q. Chen, D.A. Barry, T. Wang, L. Li. Missing water from the Qiangtang Basin on the Tibetan Plateau. Geology, 49 (7) (2021), pp. 867-872, |
| [73] |
Y. Yu, C.Y. Feng, J.M. Cheng, S.B. Liu, H. Yao. Critical depths of the vertical transition zone between modern infiltration water and fossil groundwater in China. J. Hydrol., 636 (2024), |
| [74] |
L.V. Zamana. Isotopes of hydrogen and oxygen in nitrogen hot springs of Baikal Rift Zone in terms of interaction in the water-rock system. Dokl. Earth Sci., 442 (1) (2012), pp. 81-85, |
| [75] |
H. Zang, X. Zheng, Z. Qin, Z. Jia. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China. Isotopes Environ. Health Stud., 51 (2) (2015), pp. 271-284, |
| [76] |
X. Zhang. Chemical Characteristics and Dynamic Field Analysis of CBM Produced Water in the Southern Qinshui Basin. Ms thesis, Henan Polytechnic University (2012) |
| [77] |
S.H. Zhang, S.H. Tang, Z.C. Li, Q.L. Guo, Z.J. Pan. Stable isotope characteristics of CBM co-produced water and implications for CBM development: The example of the Shizhuangnan block in the southern Qinshui Basin, China. J. Nat. Gas Sci. Eng., 27 (2015), pp. 1400-1411, |
| [78] |
K.Y. Zhao, X.W. Jiang, X.S. Wang, L. Wan. Restriction of groundwater recharge and evapotranspiration due to a fluctuating water table: a study in the Ordos Plateau, China. Hydrogeol. J., 29 (2) (2021), pp. 567-577, |
| [79] |
J. Zhao, G. Li, Z.Y. Zhu, Y.H. Hao, H.Q. Hao, J.Q. Yao, T. Bao, Q. Liu, T.C.J. Yeh. Analysis of the spatiotemporal variation of groundwater storage in Ordos Basin based on GRACE gravity satellite data. J. Hydrol., 632 (2024), |
/
| 〈 |
|
〉 |