Magmatic initial and saturated water thresholds determine copper endowments: Insights from apatite F-Cl-OH compositions
Yingcai Sun , Qiushi Zhou , Rui Wang , Madeleine C.S. Humphreys
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101962
Magmatic initial and saturated water thresholds determine copper endowments: Insights from apatite F-Cl-OH compositions
Magmatic volatiles (H2O, F, Cl), especially water, are critical in the formation of porphyry copper deposit, for its significance as a carrier for metals. However, accurately quantifying the water contents of deep ore-forming magma remain a challenge. Here, we used apatite and forward modelling methods to reconstruct magmatic water evolution histories, with special concern on the control of initial magmatic H2O contents and water saturation threshold to porphyry mineralization. Samples investigated include granitoid rocks and apatite from highly copper-mineralized and barren localities. Generally, our research suggested that both ore-related and ore-barren magma systems are hydrous, the modeled magmatic water contents vary significantly among systems whether mineralized or not, and the major difference lies in the threshold of water saturation (6.0 wt.% for barren, and up to 10.0 wt.% for highly mineralized). Combined with whole rock geochemistry data (high K2O and Sr/Y contents) and modeling result (high modeled water thresholds), we think the ore-related magmas are stored at deeper depth with higher water solubility. In conclusion, we propose that the level of magmatic water saturation plays a crucial role in the formation of porphyry copper systems. Fertile magma has higher water solubility to which deeper storage depth is a critical contributing factor, and can get significantly water enriched upon saturation.
Porphyry copper deposit / Magmatic water threshold / Apatite / Gangdese belt
| [1] |
D.R. Baker, M. Alletti. Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth-Sci. Rev., 114 (2012), pp. 298-324, |
| [2] |
H. Balcone-Boissard, A. Michel, B. Villemant. Simultaneous determination of fluorine, chlorine, bromine and iodine in six geochemical reference materials using pyrohydrolysis, ion chromatography and inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res., 33 (2009), pp. 477-485, |
| [3] |
H. Behrens, V. Misiti, C. Freda, F. Vetere. Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am. Mineral., 94 (2009), pp. 105-120, |
| [4] |
E.A. Bell, P. Boehnke, M.D. Hopkins-Wielicki, T.M. Harrison. Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos, 234–235 (2015), pp. 15-26, |
| [5] |
J. Brenan. Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite. Chem. Geol., 110 (1993), pp. 195-210 |
| [6] |
W. Cao, J. Yang, A.V. Zuza, W.-Q. Ji, X.-X. Ma, X. Chu, Q.P. Burgess. Crustal tilting and differential exhumation of Gangdese Batholith in southern Tibet revealed by bedrock pressures. Earth Planet. Sci. Lett., 543 (2020), Article 116347, |
| [7] |
I. Chambefort, J.H. Dilles, A.A. Longo. Amphibole geochemistry of the Yanacocha volcanics, Peru: evidence for diverse sources of magmatic volatiles related to gold ores. J. Petrol., 54 (2013), pp. 1017-1046, |
| [8] |
M. Chiaradia. How much water in basaltic melts parental to porphyry copper deposits?. Front. Earth Sci., 8 (2020), p. 138, |
| [9] |
M. Chiaradia, L. Caricchi. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Sci. Rep., 7 (2017), p. 44523, |
| [10] |
D.R. Cooke, P. Hollings, J.L. Walshe. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ. Geol., 100 (2005), pp. 801-818 |
| [11] |
J. Dai, C. Wang, J. Hourigan, Z. Li, G. Zhuang. Exhumation history of the Gangdese batholith, Southern Tibetan Plateau: evidence from apatite and zircon (U-Th)/He thermochronology. J. Geol., 121 (2013), pp. 155-172, |
| [12] |
B. Goldoff, J.D. Webster, D.E. Harlov. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am. Mineral., 97 (2012), pp. 1103-1115, |
| [13] |
A.E. Goltz, M.J. Krawczynski, M. Gavrilenko, N.V. Gorbach, P. Ruprecht. Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano, Kamchatka. Contrib. Mineral. Petrol., 175 (2020), p. 115, |
| [14] |
K.C. Hill, R.D. Kendrick, P.V. Crowhurst, P.A. Gow. Copper‐gold mineralisation in New Guinea: tectonics, lineaments, thermochronology and structure. Aust. J. Earth Sci., 49 (2002), pp. 737-752, |
| [15] |
Z. Hou, Y. Gao, X. Qu, Z. Rui, X. Mo. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett., 220 (2004), pp. 139-155, |
| [16] |
Z. Hou, R. Wang. Fingerprinting metal transfer from mantle. Nat. Commun., 10 (2019), p. 3510, |
| [17] |
M.C.S. Humphreys, V.C. Smith, J.P. Coumans, J.M. Riker, M.J. Stock, J.C.M. de Hoog, R.A. Brooker. Rapid pre-eruptive mush reorganisation and atmospheric volatile emissions from the 12.9 ka Laacher See eruption, determined using apatite. Earth Planet. Sci. Lett., 576 (2021), Article 117198, |
| [18] |
D.A. Ionov, W.L. Griffin, S.Y. O’Reilly. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol., 141 (1997), pp. 153-184, |
| [19] |
T.N. Irvine, W.R.A. Baragar. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8 (1971), pp. 523-548, |
| [20] |
A.A. Iveson, J.D. Webster, M.C. Rowe, O.K. Neill. Major element and halogen (F, Cl) mineral–melt–fluid partitioning in hydrous rhyodacitic melts at shallow crustal conditions. J. Petrol., 58 (2017), pp. 2465-2492, |
| [21] |
W.-Q. Ji, F.-Y. Wu, S.-L. Chung, J.-X. Li, C.-Z. Liu. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol., 262 (2009), pp. 229-245, |
| [22] |
L.A. Kendall-Langley, A.I.S. Kemp, C.J. Hawkesworth, EIMF, J. Craven, C. Talavera, R. Hinton, M.P. Roberts. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon. Contrib. Mineral. Petrol., 176 (2021), p. 58, |
| [23] |
Y. Li, M.B. Allen, X.-H. Li. Millennial pulses of ore formation and an extra-high Tibetan Plateau. Geology, 50 (2022), pp. 665-669, |
| [24] |
W. Li, F. Costa. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim. Cosmochim. Acta, 269 (2020), pp. 203-222, |
| [25] |
H. Li, J. Hermann. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: a new experimentally derived thermodynamic model. Am. Mineral., 102 (2017), pp. 580-594, |
| [26] |
C. Lormand, M.C.S. Humphreys, D.J. Colby, J.P. Coumans, C. Chelle-Michou, W. Li. Volatile budgets and evolution in porphyry-related magma systems, determined using apatite. Lithos, 480–481 (2024), Article 107623, |
| [27] |
R.R. Loucks. Distinctive composition of copper-ore-forming arc magmas. Aust. J. Earth Sci., 61 (2014), pp. 5-16, |
| [28] |
Y.-J. Lu, R.R. Loucks, M.L. Fiorentini, Z.-M. Yang, Z.-Q. Hou. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology, 43 (2015), pp. 583-586, |
| [29] |
E.A.K. Middlemost. Naming materials in the magma/igneous rock system. Earth-Sci. Rev., 37 (1994), pp. 215-224, |
| [30] |
O. Müntener, P.B. Kelemen, T.L. Grove. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol., 141 (2001), pp. 643-658, |
| [31] |
J.-W. Park, I.H. Campbell, M. Chiaradia, H. Hao, C.-T. Lee. Crustal magmatic controls on the formation of porphyry copper deposits. Nat. Rev. Earth Environ., 2 (2021), pp. 542-557, |
| [32] |
A. Peccerillo, S.R. Taylor. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., 58 (1976), pp. 63-81, |
| [33] |
A.R. Philpotts, J.J. Ague. Principles of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge, UK (2009), p. 667 |
| [34] |
P.M. Piccoli, P.A. Candela. Apatite in igneous systems. Rev. Mineral. Geochem., 48 (2002), pp. 255-292, |
| [35] |
T. Plank, K.A. Kelley, M.M. Zimmer, E.H. Hauri, P.J. Wallace. Why do mafic arc magmas contain ∼4 wt.% water on average?. Earth Planet. Sci. Lett., 364 (2013), pp. 168-179, |
| [36] |
R.-G. Popa, P. Tollan, O. Bachmann, V. Schenker, B. Ellis, J.M. Allaz. Water exsolution in the magma chamber favors effusive eruptions: application of Cl-F partitioning behavior at the Nisyros-Yali volcanic area. Chem. Geol., 570 (2021), Article 120170, |
| [37] |
J.P. Richards. A shake-up in the porphyry world?. Econ. Geol., 113 (2018), pp. 1225-1233, |
| [38] |
J.P. Richards. Porphyry copper deposit formation in arcs: What are the odds?. Geosphere, 18 (2022), pp. 130-155, |
| [39] |
J.P. Richards, T. Spell, E. Rameh, A. Razique, T. Fletcher. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and Eastern Iran and Western Pakistan. Econ. Geol., 107 (2012), pp. 295-332, |
| [40] |
F. Ridolfi, A. Renzulli, M. Puerini. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol., 160 (2010), pp. 45-66, |
| [41] |
H.R. Rollinson. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge (2014) |
| [42] |
D. Schiller, F. Finger. Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contrib. Mineral. Petrol., 174 (2019), p. 51, |
| [43] |
T. Shen, G. Wang, M. Bernet, A. Replumaz, K. Ai, B. Song, K. Zhang, P. Zhang. Long-term exhumation history of the Gangdese magmatic arc: Implications for the evolution of the Kailas Basin, western Tibet. Geol. J., 55 (2020), pp. 7239-7250, |
| [44] |
Y. Shen, Y.-C. Zheng, Z.-Q. Hou, A.-P. Zhang, J.M. Huizenga, Z.-X. Wang, L. Wang. Petrology of the Machangqing Complex in Southeastern Tibet: Implications for the genesis of potassium-rich adakite-like intrusions in collisional zones. J. Petrol., 62 (2021), p. egab066, |
| [45] |
Y. Sheng, S. Jin, L. Lei, H. Dong, L. Zhang, W. Wei, G. Ye, B. Li, Z. Lu. Deep thermal state on the eastern margin of the Lhasa-Gangdese belt and its constraints on tectonic dynamics based on the 3-D electrical model. Tectonophysics, 793 (2020), Article 228606, |
| [46] |
S. Signorelli, M.R. Carroll. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim. Cosmochim. Acta, 64 (2000), pp. 2851-2862, |
| [47] |
R.H. Sillitoe. Porphyry copper systems. Econ. Geol., 105 (2010), pp. 3-41, |
| [48] |
M.J. Stock, M.C.S. Humphreys, V.C. Smith, R. Isaia, R.A. Brooker, D.M. Pyle. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J. Petrol., 59 (2018), pp. 2463-2492, |
| [49] |
X. Sun, Y.-J. Lu, T.C. McCuaig, Y.-Y. Zheng, H.-F. Chang, F. Guo, L.-J. Xu. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol., 59 (2018), pp. 341-386, |
| [50] |
G. Van den Bleeken, K.T. Koga. Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F–Cl cycling through subduction zones. Geochim. Cosmochim. Acta, 171 (2015), pp. 353-373, |
| [51] |
X. Wang, M. Sun, R.F. Weinberg, K. Cai, G. Zhao, X. Xia, P. Li, X. Liu. Adakite generation as a result of fluid-fluxed melting at normal lower crustal pressures. Earth Planet. Sci. Lett., 594 (2022), Article 117744, |
| [52] |
R. Wang, R.F. Weinberg, W.J. Collins, J.P. Richards, D. Zhu. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sci. Rev., 181 (2018), pp. 122-143, |
| [53] |
R. Wang, C.-H. Luo, W. Xia, W. He, B. Liu, M.-L. Huang, Z. Hou, D. Zhu. Role of alkaline magmatism in formation of porphyry deposits in Nonarc settings: Gangdese and Sanjiang Metallogenic Belts. SEG Spec. Publ., 22 (2021), pp. 205-229, |
| [54] |
Z. Wang, Y. Zheng, B. Xu, Z. Hou, Y. Shen, A. Zhang, L. Wang, C. Wu, Q. Guo. Mechanisms of fluid degassing in shallow magma chambers control the formation of porphyry deposits. Am. Mineral. (2024), |
| [55] |
J.D. Webster, P.M. Piccoli. Magmatic apatite: a powerful, yet deceptive, mineral. Elements, 11 (2015), pp. 177-182, |
| [56] |
Williams-Jones, A.E., Migdisov, A.A. 2014, Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems, in Building Exploration Capability for the 21st Century, Society of Economic Geologists, doi:10.5382/SP.18.05. |
| [57] |
C. Wu, M. Chiaradia, G. Tang, H. Chen. Crustal control on the petrogenesis of adakite-like rocks. Chem. Geol., 632 (2023), Article 121548, |
| [58] |
L. Xu, J. Zhu, M. Huang, L. Pan, R. Hu, X. Bi. Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China. Mineral. Deposita, 58 (2023), pp. 161-196, |
| [59] |
Yang, Z., Cooke, D.R. 2019. Porphyry Copper Deposits in China. SEG Special Publications, Society of Economic Geologists, 22, 133-187. doi:10.5382/SP.22.05. |
| [60] |
Z.-M. Yang, Z.-Q. Hou, N.C. White, Z. Chang, Z. Li, Y. Song. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol. Rev., 36 (2009), pp. 133-159 |
| [61] |
Z. Yang, Z. Hou, Z. Chang, Q. Li, Y. Liu, H. Qu, M. Sun, B. Xu. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245 (2016), pp. 243-257, |
| [62] |
Z.-M. Yang, Y.-J. Lu, Z.-Q. Hou, Z.-S. Chang. High-Mg diorite from Qulong in Southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol., 56 (2015), p. 27 |
| [63] |
A. Yin, T.M. Harrison. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 211-280, |
| [64] |
Y. Zheng, Z. Zhao, Y. Chen. Continental subduction channel processes: Plate interface interaction during continental collision. Chin. Sci. Bull., 58 (2013), pp. 4371-4377, |
| [65] |
D.-C. Zhu, Z.-D. Zhao, Y. Niu, X.-X. Mo, S.-L. Chung, Z.-Q. Hou, L.-Q. Wang, F.-Y. Wu. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett., 301 (2011), pp. 241-255, |
| [66] |
D.-C. Zhu, Z.-D. Zhao, Y. Niu, Y. Dilek, Z.-Q. Hou, X.-X. Mo. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res., 23 (2013), pp. 1429-1454, |
| [67] |
D.-C. Zhu, Q. Wang, P.A. Cawood, Z.-D. Zhao, X.-X. Mo. Raising the Gangdese mountains in southern Tibet. J. Geophys Res. Solid Earth, 122 (2017), pp. 214-223, |
| [68] |
D.-C. Zhu, Q. Wang, S.-L. Chung, P.A. Cawood, Z.-D. Zhao. Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geol. Soc. Lond., SP, 483 (2019), pp. 583-604, |
| [69] |
M.M. Zimmer, T. Plank, E.H. Hauri, G.M. Yogodzinski, P. Stelling, J. Larsen, B. Singer, B. Jicha, C. Mandeville, C.J. Nye. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J. Petrol., 51 (2010), pp. 2411-2444, |
/
| 〈 |
|
〉 |