Magmatic initial and saturated water thresholds determine copper endowments: Insights from apatite F-Cl-OH compositions
Yingcai Sun, Qiushi Zhou, Rui Wang, Madeleine C.S. Humphreys
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101962.
Magmatic initial and saturated water thresholds determine copper endowments: Insights from apatite F-Cl-OH compositions
Magmatic volatiles (H2O, F, Cl), especially water, are critical in the formation of porphyry copper deposit, for its significance as a carrier for metals. However, accurately quantifying the water contents of deep ore-forming magma remain a challenge. Here, we used apatite and forward modelling methods to reconstruct magmatic water evolution histories, with special concern on the control of initial magmatic H2O contents and water saturation threshold to porphyry mineralization. Samples investigated include granitoid rocks and apatite from highly copper-mineralized and barren localities. Generally, our research suggested that both ore-related and ore-barren magma systems are hydrous, the modeled magmatic water contents vary significantly among systems whether mineralized or not, and the major difference lies in the threshold of water saturation (6.0 wt.% for barren, and up to 10.0 wt.% for highly mineralized). Combined with whole rock geochemistry data (high K2O and Sr/Y contents) and modeling result (high modeled water thresholds), we think the ore-related magmas are stored at deeper depth with higher water solubility. In conclusion, we propose that the level of magmatic water saturation plays a crucial role in the formation of porphyry copper systems. Fertile magma has higher water solubility to which deeper storage depth is a critical contributing factor, and can get significantly water enriched upon saturation.
Porphyry copper deposit / Magmatic water threshold / Apatite / Gangdese belt
D.R. Baker, M. Alletti. Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth-Sci. Rev., 114 (2012), pp. 298-324,
CrossRef
Google scholar
|
H. Balcone-Boissard, A. Michel, B. Villemant. Simultaneous determination of fluorine, chlorine, bromine and iodine in six geochemical reference materials using pyrohydrolysis, ion chromatography and inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res., 33 (2009), pp. 477-485,
CrossRef
Google scholar
|
H. Behrens, V. Misiti, C. Freda, F. Vetere. Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am. Mineral., 94 (2009), pp. 105-120,
CrossRef
Google scholar
|
E.A. Bell, P. Boehnke, M.D. Hopkins-Wielicki, T.M. Harrison. Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos, 234–235 (2015), pp. 15-26,
CrossRef
Google scholar
|
J. Brenan. Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite. Chem. Geol., 110 (1993), pp. 195-210
|
W. Cao, J. Yang, A.V. Zuza, W.-Q. Ji, X.-X. Ma, X. Chu, Q.P. Burgess. Crustal tilting and differential exhumation of Gangdese Batholith in southern Tibet revealed by bedrock pressures. Earth Planet. Sci. Lett., 543 (2020), Article 116347,
CrossRef
Google scholar
|
I. Chambefort, J.H. Dilles, A.A. Longo. Amphibole geochemistry of the Yanacocha volcanics, Peru: evidence for diverse sources of magmatic volatiles related to gold ores. J. Petrol., 54 (2013), pp. 1017-1046,
CrossRef
Google scholar
|
M. Chiaradia. How much water in basaltic melts parental to porphyry copper deposits?. Front. Earth Sci., 8 (2020), p. 138,
CrossRef
Google scholar
|
M. Chiaradia, L. Caricchi. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Sci. Rep., 7 (2017), p. 44523,
CrossRef
Google scholar
|
D.R. Cooke, P. Hollings, J.L. Walshe. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ. Geol., 100 (2005), pp. 801-818
|
J. Dai, C. Wang, J. Hourigan, Z. Li, G. Zhuang. Exhumation history of the Gangdese batholith, Southern Tibetan Plateau: evidence from apatite and zircon (U-Th)/He thermochronology. J. Geol., 121 (2013), pp. 155-172,
CrossRef
Google scholar
|
B. Goldoff, J.D. Webster, D.E. Harlov. Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am. Mineral., 97 (2012), pp. 1103-1115,
CrossRef
Google scholar
|
A.E. Goltz, M.J. Krawczynski, M. Gavrilenko, N.V. Gorbach, P. Ruprecht. Evidence for superhydrous primitive arc magmas from mafic enclaves at Shiveluch volcano, Kamchatka. Contrib. Mineral. Petrol., 175 (2020), p. 115,
CrossRef
Google scholar
|
K.C. Hill, R.D. Kendrick, P.V. Crowhurst, P.A. Gow. Copper‐gold mineralisation in New Guinea: tectonics, lineaments, thermochronology and structure. Aust. J. Earth Sci., 49 (2002), pp. 737-752,
CrossRef
Google scholar
|
Z. Hou, Y. Gao, X. Qu, Z. Rui, X. Mo. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett., 220 (2004), pp. 139-155,
CrossRef
Google scholar
|
Z. Hou, R. Wang. Fingerprinting metal transfer from mantle. Nat. Commun., 10 (2019), p. 3510,
CrossRef
Google scholar
|
M.C.S. Humphreys, V.C. Smith, J.P. Coumans, J.M. Riker, M.J. Stock, J.C.M. de Hoog, R.A. Brooker. Rapid pre-eruptive mush reorganisation and atmospheric volatile emissions from the 12.9 ka Laacher See eruption, determined using apatite. Earth Planet. Sci. Lett., 576 (2021), Article 117198,
CrossRef
Google scholar
|
D.A. Ionov, W.L. Griffin, S.Y. O’Reilly. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol., 141 (1997), pp. 153-184,
CrossRef
Google scholar
|
T.N. Irvine, W.R.A. Baragar. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8 (1971), pp. 523-548,
CrossRef
Google scholar
|
A.A. Iveson, J.D. Webster, M.C. Rowe, O.K. Neill. Major element and halogen (F, Cl) mineral–melt–fluid partitioning in hydrous rhyodacitic melts at shallow crustal conditions. J. Petrol., 58 (2017), pp. 2465-2492,
CrossRef
Google scholar
|
W.-Q. Ji, F.-Y. Wu, S.-L. Chung, J.-X. Li, C.-Z. Liu. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol., 262 (2009), pp. 229-245,
CrossRef
Google scholar
|
L.A. Kendall-Langley, A.I.S. Kemp, C.J. Hawkesworth, EIMF, J. Craven, C. Talavera, R. Hinton, M.P. Roberts. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon. Contrib. Mineral. Petrol., 176 (2021), p. 58,
CrossRef
Google scholar
|
Y. Li, M.B. Allen, X.-H. Li. Millennial pulses of ore formation and an extra-high Tibetan Plateau. Geology, 50 (2022), pp. 665-669,
CrossRef
Google scholar
|
W. Li, F. Costa. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochim. Cosmochim. Acta, 269 (2020), pp. 203-222,
CrossRef
Google scholar
|
H. Li, J. Hermann. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: a new experimentally derived thermodynamic model. Am. Mineral., 102 (2017), pp. 580-594,
CrossRef
Google scholar
|
C. Lormand, M.C.S. Humphreys, D.J. Colby, J.P. Coumans, C. Chelle-Michou, W. Li. Volatile budgets and evolution in porphyry-related magma systems, determined using apatite. Lithos, 480–481 (2024), Article 107623,
CrossRef
Google scholar
|
R.R. Loucks. Distinctive composition of copper-ore-forming arc magmas. Aust. J. Earth Sci., 61 (2014), pp. 5-16,
CrossRef
Google scholar
|
Y.-J. Lu, R.R. Loucks, M.L. Fiorentini, Z.-M. Yang, Z.-Q. Hou. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology, 43 (2015), pp. 583-586,
CrossRef
Google scholar
|
E.A.K. Middlemost. Naming materials in the magma/igneous rock system. Earth-Sci. Rev., 37 (1994), pp. 215-224,
CrossRef
Google scholar
|
O. Müntener, P.B. Kelemen, T.L. Grove. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol., 141 (2001), pp. 643-658,
CrossRef
Google scholar
|
J.-W. Park, I.H. Campbell, M. Chiaradia, H. Hao, C.-T. Lee. Crustal magmatic controls on the formation of porphyry copper deposits. Nat. Rev. Earth Environ., 2 (2021), pp. 542-557,
CrossRef
Google scholar
|
A. Peccerillo, S.R. Taylor. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., 58 (1976), pp. 63-81,
CrossRef
Google scholar
|
A.R. Philpotts, J.J. Ague. Principles of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge, UK (2009), p. 667
|
P.M. Piccoli, P.A. Candela. Apatite in igneous systems. Rev. Mineral. Geochem., 48 (2002), pp. 255-292,
CrossRef
Google scholar
|
T. Plank, K.A. Kelley, M.M. Zimmer, E.H. Hauri, P.J. Wallace. Why do mafic arc magmas contain ∼4 wt.% water on average?. Earth Planet. Sci. Lett., 364 (2013), pp. 168-179,
CrossRef
Google scholar
|
R.-G. Popa, P. Tollan, O. Bachmann, V. Schenker, B. Ellis, J.M. Allaz. Water exsolution in the magma chamber favors effusive eruptions: application of Cl-F partitioning behavior at the Nisyros-Yali volcanic area. Chem. Geol., 570 (2021), Article 120170,
CrossRef
Google scholar
|
J.P. Richards. A shake-up in the porphyry world?. Econ. Geol., 113 (2018), pp. 1225-1233,
CrossRef
Google scholar
|
J.P. Richards. Porphyry copper deposit formation in arcs: What are the odds?. Geosphere, 18 (2022), pp. 130-155,
CrossRef
Google scholar
|
J.P. Richards, T. Spell, E. Rameh, A. Razique, T. Fletcher. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and Eastern Iran and Western Pakistan. Econ. Geol., 107 (2012), pp. 295-332,
CrossRef
Google scholar
|
F. Ridolfi, A. Renzulli, M. Puerini. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol., 160 (2010), pp. 45-66,
CrossRef
Google scholar
|
H.R. Rollinson. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge (2014)
|
D. Schiller, F. Finger. Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contrib. Mineral. Petrol., 174 (2019), p. 51,
CrossRef
Google scholar
|
T. Shen, G. Wang, M. Bernet, A. Replumaz, K. Ai, B. Song, K. Zhang, P. Zhang. Long-term exhumation history of the Gangdese magmatic arc: Implications for the evolution of the Kailas Basin, western Tibet. Geol. J., 55 (2020), pp. 7239-7250,
CrossRef
Google scholar
|
Y. Shen, Y.-C. Zheng, Z.-Q. Hou, A.-P. Zhang, J.M. Huizenga, Z.-X. Wang, L. Wang. Petrology of the Machangqing Complex in Southeastern Tibet: Implications for the genesis of potassium-rich adakite-like intrusions in collisional zones. J. Petrol., 62 (2021), p. egab066,
CrossRef
Google scholar
|
Y. Sheng, S. Jin, L. Lei, H. Dong, L. Zhang, W. Wei, G. Ye, B. Li, Z. Lu. Deep thermal state on the eastern margin of the Lhasa-Gangdese belt and its constraints on tectonic dynamics based on the 3-D electrical model. Tectonophysics, 793 (2020), Article 228606,
CrossRef
Google scholar
|
S. Signorelli, M.R. Carroll. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim. Cosmochim. Acta, 64 (2000), pp. 2851-2862,
CrossRef
Google scholar
|
R.H. Sillitoe. Porphyry copper systems. Econ. Geol., 105 (2010), pp. 3-41,
CrossRef
Google scholar
|
M.J. Stock, M.C.S. Humphreys, V.C. Smith, R. Isaia, R.A. Brooker, D.M. Pyle. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J. Petrol., 59 (2018), pp. 2463-2492,
CrossRef
Google scholar
|
X. Sun, Y.-J. Lu, T.C. McCuaig, Y.-Y. Zheng, H.-F. Chang, F. Guo, L.-J. Xu. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol., 59 (2018), pp. 341-386,
CrossRef
Google scholar
|
G. Van den Bleeken, K.T. Koga. Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F–Cl cycling through subduction zones. Geochim. Cosmochim. Acta, 171 (2015), pp. 353-373,
CrossRef
Google scholar
|
X. Wang, M. Sun, R.F. Weinberg, K. Cai, G. Zhao, X. Xia, P. Li, X. Liu. Adakite generation as a result of fluid-fluxed melting at normal lower crustal pressures. Earth Planet. Sci. Lett., 594 (2022), Article 117744,
CrossRef
Google scholar
|
R. Wang, R.F. Weinberg, W.J. Collins, J.P. Richards, D. Zhu. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sci. Rev., 181 (2018), pp. 122-143,
CrossRef
Google scholar
|
R. Wang, C.-H. Luo, W. Xia, W. He, B. Liu, M.-L. Huang, Z. Hou, D. Zhu. Role of alkaline magmatism in formation of porphyry deposits in Nonarc settings: Gangdese and Sanjiang Metallogenic Belts. SEG Spec. Publ., 22 (2021), pp. 205-229,
CrossRef
Google scholar
|
Z. Wang, Y. Zheng, B. Xu, Z. Hou, Y. Shen, A. Zhang, L. Wang, C. Wu, Q. Guo. Mechanisms of fluid degassing in shallow magma chambers control the formation of porphyry deposits. Am. Mineral. (2024),
CrossRef
Google scholar
|
J.D. Webster, P.M. Piccoli. Magmatic apatite: a powerful, yet deceptive, mineral. Elements, 11 (2015), pp. 177-182,
CrossRef
Google scholar
|
Williams-Jones, A.E., Migdisov, A.A. 2014, Experimental Constraints on the Transport and Deposition of Metals in Ore-Forming Hydrothermal Systems, in Building Exploration Capability for the 21st Century, Society of Economic Geologists, doi:10.5382/SP.18.05.
|
C. Wu, M. Chiaradia, G. Tang, H. Chen. Crustal control on the petrogenesis of adakite-like rocks. Chem. Geol., 632 (2023), Article 121548,
CrossRef
Google scholar
|
L. Xu, J. Zhu, M. Huang, L. Pan, R. Hu, X. Bi. Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China. Mineral. Deposita, 58 (2023), pp. 161-196,
CrossRef
Google scholar
|
Yang, Z., Cooke, D.R. 2019. Porphyry Copper Deposits in China. SEG Special Publications, Society of Economic Geologists, 22, 133-187. doi:10.5382/SP.22.05.
|
Z.-M. Yang, Z.-Q. Hou, N.C. White, Z. Chang, Z. Li, Y. Song. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol. Rev., 36 (2009), pp. 133-159
|
Z. Yang, Z. Hou, Z. Chang, Q. Li, Y. Liu, H. Qu, M. Sun, B. Xu. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245 (2016), pp. 243-257,
CrossRef
Google scholar
|
Z.-M. Yang, Y.-J. Lu, Z.-Q. Hou, Z.-S. Chang. High-Mg diorite from Qulong in Southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol., 56 (2015), p. 27
|
A. Yin, T.M. Harrison. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 28 (2000), pp. 211-280,
CrossRef
Google scholar
|
Y. Zheng, Z. Zhao, Y. Chen. Continental subduction channel processes: Plate interface interaction during continental collision. Chin. Sci. Bull., 58 (2013), pp. 4371-4377,
CrossRef
Google scholar
|
D.-C. Zhu, Z.-D. Zhao, Y. Niu, X.-X. Mo, S.-L. Chung, Z.-Q. Hou, L.-Q. Wang, F.-Y. Wu. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett., 301 (2011), pp. 241-255,
CrossRef
Google scholar
|
D.-C. Zhu, Z.-D. Zhao, Y. Niu, Y. Dilek, Z.-Q. Hou, X.-X. Mo. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res., 23 (2013), pp. 1429-1454,
CrossRef
Google scholar
|
D.-C. Zhu, Q. Wang, P.A. Cawood, Z.-D. Zhao, X.-X. Mo. Raising the Gangdese mountains in southern Tibet. J. Geophys Res. Solid Earth, 122 (2017), pp. 214-223,
CrossRef
Google scholar
|
D.-C. Zhu, Q. Wang, S.-L. Chung, P.A. Cawood, Z.-D. Zhao. Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geol. Soc. Lond., SP, 483 (2019), pp. 583-604,
CrossRef
Google scholar
|
M.M. Zimmer, T. Plank, E.H. Hauri, G.M. Yogodzinski, P. Stelling, J. Larsen, B. Singer, B. Jicha, C. Mandeville, C.J. Nye. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J. Petrol., 51 (2010), pp. 2411-2444,
CrossRef
Google scholar
|
/
〈 |
|
〉 |