Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China
Yanning Pan, Yunhua Liu, Zengqian Hou, Qiang Sun, Nianzhi Jiao, Guochen Dong, Jihua Liu, Gaoxue Yang, Huiting Zhang, Hailiang Jia, Hao Huang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101961.
Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China
Against the background of realizing the goal of “carbon peaking and carbon neutrality”, using basaltic rocks for carbon mineralization is one of the most promising approaches to reduce the rise in atmospheric CO2 concentrations. This study conducted a series of experiments to assess carbon mineralization in nine basalt samples from the main terrestrial basalt reservoirs in China within CO2-H2O/brine-rock systems at low temperatures (≤35 °C). The results indicate that the secondary carbonates formed in the CO2-H2O/brine-basalt system are predominantly calcite rather than Mg-carbonate minerals at low temperatures (≤35 °C). Hence, at low temperatures (≤35 °C), basalt rich in Ca-bearing minerals promotes the formation of stable carbonate minerals more effectively than basalt containing Mg-bearing minerals. Furthermore, under conditions of low temperatures (≤35 °C) and pressures of approximately 3 MPa, the results suggest that alkaline olivine basalt, with a higher content of Ca-minerals and typical alkaline minerals (nepheline and Na-sanidine), exhibits the highest pH value and the highest amount of calcite. Hence, the alkaline minerals, nepheline and Na-sanidine, serve as pH buffers to increase the pH and promote the precipitation of calcite within CO2-H2O– basalt systems at low temperatures (≤35 °C). Among the nine evaluated basalts, basalt from the Shandong Linqu-Changle volcanic basin exhibits the highest rate of carbon mineralization at low temperatures (≤35 °C). Hence, Cenozoic alkaline olivine basalt from Shandong Linqu-Changle volcanic basin is one of the most promising basalt reservoirs in China for future in- situ carbonation. As for ex- situ carbonation, compared with olivine, diopside or Ca-plagioclase may be more appropriate for increasing ocean negative emissions.
Basalt / Calcite / CO2 storage / Mineral carbonation / Negative emissions
A. Al-Yaseri, M. Ali, M. Ali, R. Taheri, D. Wolff-Boenisch. Western Australiabasalt-CO2-brine wettability at geo-storage conditions. J. Colloid Interface Sci., 603 (2021), pp. 165-171,
CrossRef
Google scholar
|
D.J. Beerling, J.R. Leake, S.P. Long, J.D. Scholes, J. Ton, P.N. Nelson, M. Bird, E. Kantzas, L.L. Taylor, B. Sarkar, M. Kelland, E. DeLucia, I. Kantola, C. Muller, G.H. Rau, J. Hansen. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants, 4 (3) (2018), pp. 138-147,
CrossRef
Google scholar
|
P.V. Brady, S.R. Gíslason. Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta, 61 (5) (1997), pp. 965-973,
CrossRef
Google scholar
|
A. Chen, Z. Chen, Z. Qiu, L. Lin. Experimentally-calibrated estimation of CO2 removal potentials of enhanced weathering. Sci. Total Environ., 900 (2023), Article 165766,
CrossRef
Google scholar
|
Y. Chen, T. Wu, X. Xu, S. Zhang. Discovery of mantle xenoliths bearing Miocene potassium-rich olivine basalt and its significance in Siziwangqi Area, Inner Mongolia. Geological Journal of China Universities, 10 (4) (2004), pp. 586-593
|
D.E. Clark, I.M. Galeczka, K. Dideriksen, M.J. Voigt, D. Wolff-Boenisch, S.R. Gislason. Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50 °C. Int. J. Greenh. Gas Control, 89 (2019), pp. 9-19,
CrossRef
Google scholar
|
M.E.P. De Souza, I.M. Cardoso, A.M.X. de Carvalho, A.P. Lopes, I. Jucksch, A. Janssen. Rock powder can improve vermicompost chemical properties and plant nutrition: an on-farm experiment. Commun. Soil Sci. Plant Anal., 49 (1) (2018), pp. 1-12,
CrossRef
Google scholar
|
S. Delerce, P. Bénézeth, J. Schott, E.H. Oelkers. The dissolution rates of naturally altered basalts at pH 3 and 120 °C: Implications for the in-situ mineralization of CO2 injected into the subsurface. Chem. Geol., 621 (2023), Article 121353,
CrossRef
Google scholar
|
D.P. Edwards, F. Lim, R.H. James, C.R. Pearce, J. Scholes, R.P. Freckleton, D.J. Beerling. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol. Lett., 13 (4) (2017), pp. 1-7,
CrossRef
Google scholar
|
S. Erol, T. Akın, A. Baser, Ö. Saraçoğlu, S. Akın. Fluid-CO2 injection impact in a geothermal reservoir: evaluation with 3-D reactive transport modeling. Geothermics, 98 (2022), Article 102271,
CrossRef
Google scholar
|
R.L. Frost, H. Ruan. Dehydration and dehydroxylation of nontronites and ferruginous smectite. Thermochim. Acta, 346 (2000), pp. 63-72,
CrossRef
Google scholar
|
G. Gadikota, J. Matter, P. Kelemen, A.H. Park. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys., 16 (10) (2014), pp. 4679-4693,
CrossRef
Google scholar
|
I. Galeczka, D. Wolff-Boenisch, S. Gislason. Experimental studies of basalt-H2O-CO2 interaction with a high pressure column flow reactor: the mobility of metals. Energy Procedia, 37 (2013), pp. 5823-5833,
CrossRef
Google scholar
|
S.J. Gerdemann, W.K. O’Connor, D.C. Dahlin, L.R. Penner, H. Rush. Ex situ aqueous mineral carbonation. Environ. Sci. Technol., 41 (7) (2007), pp. 2587-2593,
CrossRef
Google scholar
|
R. Gholami, A. Raza, S. Iglauer. Leakage risk assessment of a CO2 storage site: a review. Earth Sci. Rev., 223 (2021), Article 103849,
CrossRef
Google scholar
|
S.R. Gislason, E.H. Oelkers. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta, 67 (20) (2003), pp. 3817-3832,
CrossRef
Google scholar
|
S.R. Gislason, E.H. Oelkers. Carbon storage in basalt. Science, 344 (6182) (2014), pp. 373-374,
CrossRef
Google scholar
|
Z. Guo, H. Zou. Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling. Geosci. Front., 14 (2023), p. 10149,
CrossRef
Google scholar
|
H. He, C. Deng, Y. Pan, D. Tao, Y. Luo, J. Sun, R. Zhu. New 40Ar/39Ar dating results from the Shanwang Basin, eastern China: Constraints on the age of the Shanwang Formation and associated biota. Phys. Earth Planet. Inter., 187 (2011), pp. 66-75,
CrossRef
Google scholar
|
IPCC, 2021. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
|
R.S. Jayne, H. Wu, R.M. Pollyea. A probabilistic assessment of geomechanical reservoir integrity during CO2 sequestration in flood basalt formations. Greenh. Gases: Sci. Technol., 9 (5) (2019), pp. 979-998,
CrossRef
Google scholar
|
N. Jiao, G.J. Herndl, D.A. Hansell, R. Benner, G. Kattner, S.W. Wilhelm, D.L. Kirchman, M.G. Weinbauer, T. Luo, F. Chen, F. Azam. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol., 8 (2010), pp. 593-599,
CrossRef
Google scholar
|
N. Jiao, J. Liu, B. Edwards, Z. Lv, R. Cai, Y. Liu, X. Xiao, J. Wang, F. Jiao, R. Wang, X. Huang, B. Guo, J. Sun, R. Zhang, Y. Zhang, K. Tang, Q. Zheng, F. Azam, J. Batt, W.-J. Cai, C. He, G.J. Herndl, P. Hill, D. Hutchins, J. LaRoche, M. Lewis, H. MacIntyre, L. Polimene, C. Robinson, Q. Shi, C.A. Suttle, H. Thomas, D. Wallace, L. Legendre. Correcting a major error in assessing organic carbon pollution in natural waters. Sci. Adv., 7 (2022), Article eabc7318,
CrossRef
Google scholar
|
N.C. Johnson, B. Thomas, K. Maher, R.J. Rosenbauer, D. Bird, G.E. Brown. Olivine dissolution and carbonation under conditions relevant for in situ carbon storage. Chem. Geol., 373 (2014), pp. 93-105,
CrossRef
Google scholar
|
I.B. Kantola, M.D. Masters, D.J. Beerling, S.P. Long, E.H. DeLucia. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett., 13 (2017), pp. 1-7,
CrossRef
Google scholar
|
P. Kelemen, S.M. Benson, H. Pilorǵe, P. Psarras, J. Wilcox. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Climate, 1 (2019), p. 9,
CrossRef
Google scholar
|
S. Kikuchi, J. Wang, O. Dandar, M. Uno, N. Watanabe, N. Hirano, N. Tsuchiya. NaHCO3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt. Front. Environ. Sci., 11 (2023), Article 1138007,
CrossRef
Google scholar
|
C. Klein, C.S. Hurlbut Jr. Manual of mineralogy (21st edition). John Wiley and Sons Inc., New York (1993), p. 596
|
P. Köhler, J.F. Abrams, C. Völker, J. Hauck, D.A. Wolf-Gladrow. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environ Res Lett., 8 (2013), Article 014009,
CrossRef
Google scholar
|
K.P. Koltermann, V. Gouretski, K. Jancke. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). National Oceanography Centre, Southampton (2011)
|
K.S. Lackner. Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Energy Environ., 27 (2002), pp. 193-232,
CrossRef
Google scholar
|
K.S. Lackner, C.H. Wendt, D.P. Butt, E.L. Joyce, D.H. Sharp. Carbon dioxide disposal in carbonate minerals. Energy, 20 (1995), pp. 1153-1170,
CrossRef
Google scholar
|
P. Lu, A. John, G. Zhang, A. Gysi, C. Zhu. Knowledge gaps and research needs for modeling CO2 mineralization in the basalt-CO2-water system: A review of laboratory experiments. Earth Sci. Rev., 254 (2024), Article 104813,
CrossRef
Google scholar
|
A.J. Luhmann, B.M. Tutolo, C. Tan, B.M. Moskowitz, M.O. Saar, W.E. Seyfried Jr.. Whole rock basalt alteration from CO2-rich brine during flow-through experiments at 150 °C and 150 bar. Chem. Geol., 453 (2017), pp. 92-110,
CrossRef
Google scholar
|
C. Marieni, J.M. Matter, D.A.H. Teagle. Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochim. Cosmochim. Acta, 272 (2020), pp. 259-275,
CrossRef
Google scholar
|
J.M. Matter, M. Stute, S.Ó. Snæbjörnsdóttir, E.H. Oelkers, S.R. Gislason, E.S. Aradottir, B. Sigfusson, I. Gunnarsson, H. Sigurdardottir, E. Gunnlaugsson. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352 (6291) (2016), pp. 1312-1314,
CrossRef
Google scholar
|
B.P. McGrail, H.T. Schaef, F.A. Spane, J.A. Horner, A.T. Owen, J.B. Cliff, O. Qafoku, C.J. Thompson, E.C. Sullivan. Wallula basalt pilot demonstration project: Post-injection results and conclusions. Energy Procedia., 114 (2017), pp. 5783-5790,
CrossRef
Google scholar
|
F. Montserrat, P. Renforth, J. Hartmann, M. Leermakers, P. Knops, F.J.R. Meysman. Olivine dissolution in seawater: Implications for CO2 sequestration through enhanced weathering in coastal environments. Environ. Sci. Technol., 51 (7) (2017), pp. 3960-3972,
CrossRef
Google scholar
|
N. Morimoto. Nomenclature of Pyroxene. Acta Mineralogica, 8 (4) (1988), pp. 289-305
|
E.H. Oelkers, S.R. Gislason, J. Matter. Carbon dioxide sequestration: mineral carbonation of CO2. Elements, 5 (2008), pp. 333-337,
CrossRef
Google scholar
|
A.H.A. Park, L.S. Fan. CO2 mineral sequestration: Physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci., 59 (2004), pp. 5241-5247,
CrossRef
Google scholar
|
R. Pereira, D. Gamboa. In situ carbon storage potential in a buried volcano. Geology, 51 (9) (2023), pp. 803-907,
CrossRef
Google scholar
|
O.S. Pokrovsky, J. Schott. Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochim. Cosmochim. Acta, 68 (2004), pp. 31-45,
CrossRef
Google scholar
|
I.M. Power, J. McCutcheon, A.L. Harrison, S.A. Wilson, G.M. Dipple, S. Kelly, C. Southam, G. Southam. Strategizing carbon-neutral mines: A case for pilot project. Minerals, 4 (2014), pp. 399-436,
CrossRef
Google scholar
|
Rasool, M.H., Ahmad, M., 2023. Reactivity of basaltic minerals for CO2 sequestration via in situ mineralization: A review. Minerals 13, 1154. https://doi.org/
CrossRef
Google scholar
|
A. Raza, G. Glatz, R. Gholami, M. Mahmoud, S. Alafnan. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth Sci. Rev., 229 (2022), Article 104036,
CrossRef
Google scholar
|
H. Ren, Y. Hu, J. Liu, Z. Zhang, L. Mou, Y. Pan, Q. Zheng, G. Li, N. Jiao. Response of a coastal microbial community to olivine addition in the Muping Marine Ranch, Yantai. Front. Microbiol., 12 (2022), Article 805361,
CrossRef
Google scholar
|
P. Renforth, P.A.E. Pogge von Strandmann, G.M. Henderson. The dissolution of olivine added to soil: Implications for enhanced weathering. Appl. Geochem., 61 (2015), pp. 109-118,
CrossRef
Google scholar
|
I. Rigopoulos, A.L. Harrison, A. Delimitis, I. Ioannou, A.M. Efstathiou, T. Kyratsi, E.H. Oelkers. Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Appl. Geochem., 91 (2018), pp. 197-207,
CrossRef
Google scholar
|
T. Rinder, V.C. Hagke. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-Insights from a regional assessment. J. Clean. Prod., 315 (2021), Article 128178,
CrossRef
Google scholar
|
M.P. Rosenqvist, M.W.J. Meakins, S. Planke, J.M. Millett, H.J. Kjoll, M.J. Voigt, B. Jamtveit. Reservoir properties and reactivity of the Faroe Islands Basalt Group: Investigating the potential for CO2 storage in the North Atlantic Igneous Province. Int. J. Greenh. Gas Control, 123 (2023), Article 103838,
CrossRef
Google scholar
|
E. Saffou, A. Raza, R. Gholami, C. Aci, J.V.B. Donker, S. Salem, U. Zimmermann, M. Opuwari, L. Croukamp, W.R. Elingou. Full-scale simulation of a nearly depleted gas field in South Africa for carbon utilization and storage. Greenh. Gases: Sci. Technol., 12 (4) (2022), pp. 486-507,
CrossRef
Google scholar
|
G.D. Saldi, G. Jordan, J. Schott, E.H. Oelkers. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200 °C as a function of pH, aqueous solution composition and chemical affinity. Geochim. Cosmochim. Acta, 83 (2012), pp. 93-109,
CrossRef
Google scholar
|
H.S. Santos, H. Nguyen, F. Venancio, D. Ramteke, R. Zevenhoven, P. Kinnunen. Mechanisms of Mg carbonates precipitation and implications for CO2 capture and utilization/ storage. Inorg. Chem. Front., 10 (2023), Article 2507,
CrossRef
Google scholar
|
R.D. Schuiling, P. Krijgsman. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change, 74 (2006), pp. 349-354,
CrossRef
Google scholar
|
Seifritz, W., 1990. CO2 disposal by means of silicates. Nature 345 (6275), 486. https://doi.org/10. 1038/345486b0.
|
T. Shibuya, M. Yoshizaki, Y. Masaki, K. Suzuki, K. Takai, M.J. Russell. Reactions between basalt and CO2-rich seawater at 250 and 350 ℃, 500 bars: implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem. Geol., 359 (2013), pp. 1-9,
CrossRef
Google scholar
|
S.Ó. Snæbjörnsdóttir, S.R. Gislason. CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia, 86 (2016), pp. 371-380,
CrossRef
Google scholar
|
S.Ó. Snæbjörnsdóttir, F. Wiese, T. Fridriksson, H. Ármansson, G.M. Einarsson, S.R. Gislason. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia, 63 (2014), pp. 4585-4600,
CrossRef
Google scholar
|
S.Ó. Snæbjörnsdóttir, S.R. Gislason, I.M. Galeczka, E.H. Oelkers. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochim. Cosmochim. Acta, 220 (2018), pp. 348-366,
CrossRef
Google scholar
|
S.Ó. Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S.R. Gislason, E.H. Oelkers. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ., 1 (2) (2020), pp. 90-102,
CrossRef
Google scholar
|
S. Sun, M. Ao, K. Geng, J. Chen, T. Deng, J. Li, Z. Guan, B. Mo, T. Liu, W. Yang, Y. Tang, R. Qiu. Enrichment and speciation of chromium during basalt weathering: Insights from variably weathered profiles in the Leizhou Peninsula, South China. Sci. Total Environ., 822 (2022), Article 153304,
CrossRef
Google scholar
|
P. Swoboda, T.F. Doring, M. Hamer. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ., 807 (2022), Article 150976,
CrossRef
Google scholar
|
Y. Tang, H. Zhang, J. Ying. Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem. Geol., 233 (2006), pp. 309-327,
CrossRef
Google scholar
|
Taylor, L.L., Quirk, J., Thorley, R.M.S., Kharecha, P.A., Hansen, J., Ridgwell, A., Lomas, M.R., Banwart, S.A., Beerling, D.J., 2016. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Chang. 6, 402–406. https://doi. org/10.1038/nclimate2882.
|
J.G.M. Thom, G.M. Dipple, I.M. Power, A.L. Harrison. Chrysotile dissolution rates: implications for carbon sequestration. Appl. Geochem., 35 (2013), pp. 244-254,
CrossRef
Google scholar
|
B.M. Tutolo, A. Awolayo, C. Brown. Alkalinity generation constraints on basalt carbonation for carbon dioxide removal at the gigaton-per-year scale. Environ. Sci. Technol., 55 (17) (2021), pp. 11906-11915,
CrossRef
Google scholar
|
T.H. Van Pham, P. Aagaard, H. Hellevang. On the potential for CO2 mineral storage in continental flood basalts–PHREEQC batch-and 1D diffusion–reaction simulations. Geochem. Trans., 13 (1) (2012), pp. 1-12,
CrossRef
Google scholar
|
J.P.M. Vink, P. Knops. Size-fractionated weathering of olivine, its CO2-sequestration rate, and ecotoxicological risk assessment of nickel release. Minerals, 13 (2023), p. 235,
CrossRef
Google scholar
|
M. Voigt, C. Marieni, A. Baldermann, I.M. Galeczka, D. Wolff-Boenisch, E.H. Oelkers, S.R. Gislason. An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochim. Cosmochim. Acta, 308 (2021), pp. 21-41,
CrossRef
Google scholar
|
H. Wang, X. Li, Y. Chen, Z. Li, D.W. Hedding, W. Nel, J. Ji, J. Chen. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, eastern China. Sci. Total Environ., 729 (2020), Article 139058,
CrossRef
Google scholar
|
J. Wang, N. Watanabe, K. Inomoto, M. Kamitakahara, K. Nakamura, T. Komai, N. Tsuchiya. Enhancement of aragonite mineralization with a chelating agent for CO2 storage and utilization at low to moderate temperatures. Sci. Rep., 11 (2021), p. 13956,
CrossRef
Google scholar
|
J. Wang, N. Watanabe, K. Inomoto, M. Kamitakahara, K. Nakamura, T. Komai, N. Tsuchiya. Sustainable process for enhanced CO2 mineralization of calcium silicates using a recyclable chelating agent under alkaline conditions. J. Environ. Chem. Eng., 10 (2022), Article 107055,
CrossRef
Google scholar
|
S.K. White, F.A. Spane, H.T. Schaef, Q.R.S. Miller, M.D. White, J.A. Horner, B.P. McGrail. Quantification of CO2 mineralization at the Wallula basalt pilot project. Environ. Sci. Technol., 54 (22) (2020), pp. 14609-14616,
CrossRef
Google scholar
|
D. Wolff-Boenisch, I.M. Galeczka. Flow-through reactor experiments on basalt-(sea) water-CO2 reactions at 90 °C and neutral pH. What happens to the basalt pore space under post-injection conditions?. Int. J. Greenh. Gas Control, 68 (2018), pp. 176-190,
CrossRef
Google scholar
|
D. Wolff-Boenisch, S. Wenau, S.R. Gislason, E.H. Oelkers. Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: implications for mineral sequestration of carbon dioxide. Geochim. Cosmochim. Acta, 75 (19) (2011), pp. 5510-5525,
CrossRef
Google scholar
|
W. Xiong, R.K. Wells, A.H. Menefee, P. Skemer, B.R. Ellis, D.E. Giammar. CO2 mineral trapping in fractured basalt. Int. J. Greenh. Gas Control, 66 (2017), pp. 204-217,
CrossRef
Google scholar
|
Y. Xu, S. Zhong. The Emeishan large igneous province: evidence for mantle plume activity and melting conditions. Geochemica., 30 (1) (2001), pp. 1-9, 10.19700/j.0379-1726.2001.01.002
|
G. Yang, Y. Li, P. Gu, B. Yang, L. Tong, H. Zhang. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Res., 21 (2012), pp. 1037-1049,
CrossRef
Google scholar
|
T. Yu, R. Gholami, A. Raza, K.A.N. Vorland, M. Mahmound. CO2 storage in chalks: What are we afraid of?. Int. J. Greenh. Gas Control, 123 (2023), Article 103832,
CrossRef
Google scholar
|
Y. Yu, X. Xu, X. Chen. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China. Min. and Petro., 100 (1–2) (2010), pp. 75-94,
CrossRef
Google scholar
|
Zhang, S., DePaolo, D. J., 2017. Rates of CO2 mineralization in geological carbon storage. Acc. Chem. Res. 50(9), 2075–2084. https://doi:
CrossRef
Google scholar
|
L. Zhang, R. Wen, C. Li, Y. Sun, H. Yang. Assessment of CO2 mineral storage potential in the terrestrial basalts of China. Fuel, 348 (2023), Article 128602,
CrossRef
Google scholar
|
W. Zhuang, X. Song, M. Liu, Q. Wang, J. Song, L. Duan, X.G. Li, H. Yuan. Potential capture and conversion of CO2 from oceanwater through mineral carbonation. Sci. Total Environ., 867 (2023), Article 161589,
CrossRef
Google scholar
|
/
〈 |
|
〉 |