Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China
Yanning Pan , Yunhua Liu , Zengqian Hou , Qiang Sun , Nianzhi Jiao , Guochen Dong , Jihua Liu , Gaoxue Yang , Huiting Zhang , Hailiang Jia , Hao Huang
Geoscience Frontiers ›› 2025, Vol. 16 ›› Issue (1) : 101961
Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China
Against the background of realizing the goal of “carbon peaking and carbon neutrality”, using basaltic rocks for carbon mineralization is one of the most promising approaches to reduce the rise in atmospheric CO2 concentrations. This study conducted a series of experiments to assess carbon mineralization in nine basalt samples from the main terrestrial basalt reservoirs in China within CO2-H2O/brine-rock systems at low temperatures (≤35 °C). The results indicate that the secondary carbonates formed in the CO2-H2O/brine-basalt system are predominantly calcite rather than Mg-carbonate minerals at low temperatures (≤35 °C). Hence, at low temperatures (≤35 °C), basalt rich in Ca-bearing minerals promotes the formation of stable carbonate minerals more effectively than basalt containing Mg-bearing minerals. Furthermore, under conditions of low temperatures (≤35 °C) and pressures of approximately 3 MPa, the results suggest that alkaline olivine basalt, with a higher content of Ca-minerals and typical alkaline minerals (nepheline and Na-sanidine), exhibits the highest pH value and the highest amount of calcite. Hence, the alkaline minerals, nepheline and Na-sanidine, serve as pH buffers to increase the pH and promote the precipitation of calcite within CO2-H2O– basalt systems at low temperatures (≤35 °C). Among the nine evaluated basalts, basalt from the Shandong Linqu-Changle volcanic basin exhibits the highest rate of carbon mineralization at low temperatures (≤35 °C). Hence, Cenozoic alkaline olivine basalt from Shandong Linqu-Changle volcanic basin is one of the most promising basalt reservoirs in China for future in- situ carbonation. As for ex- situ carbonation, compared with olivine, diopside or Ca-plagioclase may be more appropriate for increasing ocean negative emissions.
Basalt / Calcite / CO2 storage / Mineral carbonation / Negative emissions
| [1] |
A. Al-Yaseri, M. Ali, M. Ali, R. Taheri, D. Wolff-Boenisch. Western Australiabasalt-CO2-brine wettability at geo-storage conditions. J. Colloid Interface Sci., 603 (2021), pp. 165-171, |
| [2] |
D.J. Beerling, J.R. Leake, S.P. Long, J.D. Scholes, J. Ton, P.N. Nelson, M. Bird, E. Kantzas, L.L. Taylor, B. Sarkar, M. Kelland, E. DeLucia, I. Kantola, C. Muller, G.H. Rau, J. Hansen. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants, 4 (3) (2018), pp. 138-147, |
| [3] |
P.V. Brady, S.R. Gíslason. Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta, 61 (5) (1997), pp. 965-973, |
| [4] |
A. Chen, Z. Chen, Z. Qiu, L. Lin. Experimentally-calibrated estimation of CO2 removal potentials of enhanced weathering. Sci. Total Environ., 900 (2023), Article 165766, |
| [5] |
Y. Chen, T. Wu, X. Xu, S. Zhang. Discovery of mantle xenoliths bearing Miocene potassium-rich olivine basalt and its significance in Siziwangqi Area, Inner Mongolia. Geological Journal of China Universities, 10 (4) (2004), pp. 586-593 |
| [6] |
D.E. Clark, I.M. Galeczka, K. Dideriksen, M.J. Voigt, D. Wolff-Boenisch, S.R. Gislason. Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50 °C. Int. J. Greenh. Gas Control, 89 (2019), pp. 9-19, |
| [7] |
M.E.P. De Souza, I.M. Cardoso, A.M.X. de Carvalho, A.P. Lopes, I. Jucksch, A. Janssen. Rock powder can improve vermicompost chemical properties and plant nutrition: an on-farm experiment. Commun. Soil Sci. Plant Anal., 49 (1) (2018), pp. 1-12, |
| [8] |
S. Delerce, P. Bénézeth, J. Schott, E.H. Oelkers. The dissolution rates of naturally altered basalts at pH 3 and 120 °C: Implications for the in-situ mineralization of CO2 injected into the subsurface. Chem. Geol., 621 (2023), Article 121353, |
| [9] |
D.P. Edwards, F. Lim, R.H. James, C.R. Pearce, J. Scholes, R.P. Freckleton, D.J. Beerling. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol. Lett., 13 (4) (2017), pp. 1-7, |
| [10] |
S. Erol, T. Akın, A. Baser, Ö. Saraçoğlu, S. Akın. Fluid-CO2 injection impact in a geothermal reservoir: evaluation with 3-D reactive transport modeling. Geothermics, 98 (2022), Article 102271, |
| [11] |
R.L. Frost, H. Ruan. Dehydration and dehydroxylation of nontronites and ferruginous smectite. Thermochim. Acta, 346 (2000), pp. 63-72, |
| [12] |
G. Gadikota, J. Matter, P. Kelemen, A.H. Park. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys., 16 (10) (2014), pp. 4679-4693, |
| [13] |
I. Galeczka, D. Wolff-Boenisch, S. Gislason. Experimental studies of basalt-H2O-CO2 interaction with a high pressure column flow reactor: the mobility of metals. Energy Procedia, 37 (2013), pp. 5823-5833, |
| [14] |
S.J. Gerdemann, W.K. O’Connor, D.C. Dahlin, L.R. Penner, H. Rush. Ex situ aqueous mineral carbonation. Environ. Sci. Technol., 41 (7) (2007), pp. 2587-2593, |
| [15] |
R. Gholami, A. Raza, S. Iglauer. Leakage risk assessment of a CO2 storage site: a review. Earth Sci. Rev., 223 (2021), Article 103849, |
| [16] |
S.R. Gislason, E.H. Oelkers. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta, 67 (20) (2003), pp. 3817-3832, |
| [17] |
S.R. Gislason, E.H. Oelkers. Carbon storage in basalt. Science, 344 (6182) (2014), pp. 373-374, |
| [18] |
Z. Guo, H. Zou. Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling. Geosci. Front., 14 (2023), p. 10149, |
| [19] |
H. He, C. Deng, Y. Pan, D. Tao, Y. Luo, J. Sun, R. Zhu. New 40Ar/39Ar dating results from the Shanwang Basin, eastern China: Constraints on the age of the Shanwang Formation and associated biota. Phys. Earth Planet. Inter., 187 (2011), pp. 66-75, |
| [20] |
IPCC, 2021. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. |
| [21] |
R.S. Jayne, H. Wu, R.M. Pollyea. A probabilistic assessment of geomechanical reservoir integrity during CO2 sequestration in flood basalt formations. Greenh. Gases: Sci. Technol., 9 (5) (2019), pp. 979-998, |
| [22] |
N. Jiao, G.J. Herndl, D.A. Hansell, R. Benner, G. Kattner, S.W. Wilhelm, D.L. Kirchman, M.G. Weinbauer, T. Luo, F. Chen, F. Azam. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol., 8 (2010), pp. 593-599, |
| [23] |
N. Jiao, J. Liu, B. Edwards, Z. Lv, R. Cai, Y. Liu, X. Xiao, J. Wang, F. Jiao, R. Wang, X. Huang, B. Guo, J. Sun, R. Zhang, Y. Zhang, K. Tang, Q. Zheng, F. Azam, J. Batt, W.-J. Cai, C. He, G.J. Herndl, P. Hill, D. Hutchins, J. LaRoche, M. Lewis, H. MacIntyre, L. Polimene, C. Robinson, Q. Shi, C.A. Suttle, H. Thomas, D. Wallace, L. Legendre. Correcting a major error in assessing organic carbon pollution in natural waters. Sci. Adv., 7 (2022), Article eabc7318, |
| [24] |
N.C. Johnson, B. Thomas, K. Maher, R.J. Rosenbauer, D. Bird, G.E. Brown. Olivine dissolution and carbonation under conditions relevant for in situ carbon storage. Chem. Geol., 373 (2014), pp. 93-105, |
| [25] |
I.B. Kantola, M.D. Masters, D.J. Beerling, S.P. Long, E.H. DeLucia. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett., 13 (2017), pp. 1-7, |
| [26] |
P. Kelemen, S.M. Benson, H. Pilorǵe, P. Psarras, J. Wilcox. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Climate, 1 (2019), p. 9, |
| [27] |
S. Kikuchi, J. Wang, O. Dandar, M. Uno, N. Watanabe, N. Hirano, N. Tsuchiya. NaHCO3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt. Front. Environ. Sci., 11 (2023), Article 1138007, |
| [28] |
C. Klein, C.S. Hurlbut Jr. Manual of mineralogy (21st edition). John Wiley and Sons Inc., New York (1993), p. 596 |
| [29] |
P. Köhler, J.F. Abrams, C. Völker, J. Hauck, D.A. Wolf-Gladrow. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environ Res Lett., 8 (2013), Article 014009, |
| [30] |
K.P. Koltermann, V. Gouretski, K. Jancke. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). National Oceanography Centre, Southampton (2011) |
| [31] |
K.S. Lackner. Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Energy Environ., 27 (2002), pp. 193-232, |
| [32] |
K.S. Lackner, C.H. Wendt, D.P. Butt, E.L. Joyce, D.H. Sharp. Carbon dioxide disposal in carbonate minerals. Energy, 20 (1995), pp. 1153-1170, |
| [33] |
P. Lu, A. John, G. Zhang, A. Gysi, C. Zhu. Knowledge gaps and research needs for modeling CO2 mineralization in the basalt-CO2-water system: A review of laboratory experiments. Earth Sci. Rev., 254 (2024), Article 104813, |
| [34] |
A.J. Luhmann, B.M. Tutolo, C. Tan, B.M. Moskowitz, M.O. Saar, W.E. Seyfried Jr.. Whole rock basalt alteration from CO2-rich brine during flow-through experiments at 150 °C and 150 bar. Chem. Geol., 453 (2017), pp. 92-110, |
| [35] |
C. Marieni, J.M. Matter, D.A.H. Teagle. Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochim. Cosmochim. Acta, 272 (2020), pp. 259-275, |
| [36] |
J.M. Matter, M. Stute, S.Ó. Snæbjörnsdóttir, E.H. Oelkers, S.R. Gislason, E.S. Aradottir, B. Sigfusson, I. Gunnarsson, H. Sigurdardottir, E. Gunnlaugsson. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352 (6291) (2016), pp. 1312-1314, |
| [37] |
B.P. McGrail, H.T. Schaef, F.A. Spane, J.A. Horner, A.T. Owen, J.B. Cliff, O. Qafoku, C.J. Thompson, E.C. Sullivan. Wallula basalt pilot demonstration project: Post-injection results and conclusions. Energy Procedia., 114 (2017), pp. 5783-5790, |
| [38] |
F. Montserrat, P. Renforth, J. Hartmann, M. Leermakers, P. Knops, F.J.R. Meysman. Olivine dissolution in seawater: Implications for CO2 sequestration through enhanced weathering in coastal environments. Environ. Sci. Technol., 51 (7) (2017), pp. 3960-3972, |
| [39] |
N. Morimoto. Nomenclature of Pyroxene. Acta Mineralogica, 8 (4) (1988), pp. 289-305 |
| [40] |
E.H. Oelkers, S.R. Gislason, J. Matter. Carbon dioxide sequestration: mineral carbonation of CO2. Elements, 5 (2008), pp. 333-337, |
| [41] |
A.H.A. Park, L.S. Fan. CO2 mineral sequestration: Physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci., 59 (2004), pp. 5241-5247, |
| [42] |
R. Pereira, D. Gamboa. In situ carbon storage potential in a buried volcano. Geology, 51 (9) (2023), pp. 803-907, |
| [43] |
O.S. Pokrovsky, J. Schott. Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochim. Cosmochim. Acta, 68 (2004), pp. 31-45, |
| [44] |
I.M. Power, J. McCutcheon, A.L. Harrison, S.A. Wilson, G.M. Dipple, S. Kelly, C. Southam, G. Southam. Strategizing carbon-neutral mines: A case for pilot project. Minerals, 4 (2014), pp. 399-436, |
| [45] |
Rasool, M.H., Ahmad, M., 2023. Reactivity of basaltic minerals for CO2 sequestration via in situ mineralization: A review. Minerals 13, 1154. https://doi.org/ |
| [46] |
A. Raza, G. Glatz, R. Gholami, M. Mahmoud, S. Alafnan. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth Sci. Rev., 229 (2022), Article 104036, |
| [47] |
H. Ren, Y. Hu, J. Liu, Z. Zhang, L. Mou, Y. Pan, Q. Zheng, G. Li, N. Jiao. Response of a coastal microbial community to olivine addition in the Muping Marine Ranch, Yantai. Front. Microbiol., 12 (2022), Article 805361, |
| [48] |
P. Renforth, P.A.E. Pogge von Strandmann, G.M. Henderson. The dissolution of olivine added to soil: Implications for enhanced weathering. Appl. Geochem., 61 (2015), pp. 109-118, |
| [49] |
I. Rigopoulos, A.L. Harrison, A. Delimitis, I. Ioannou, A.M. Efstathiou, T. Kyratsi, E.H. Oelkers. Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Appl. Geochem., 91 (2018), pp. 197-207, |
| [50] |
T. Rinder, V.C. Hagke. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-Insights from a regional assessment. J. Clean. Prod., 315 (2021), Article 128178, |
| [51] |
M.P. Rosenqvist, M.W.J. Meakins, S. Planke, J.M. Millett, H.J. Kjoll, M.J. Voigt, B. Jamtveit. Reservoir properties and reactivity of the Faroe Islands Basalt Group: Investigating the potential for CO2 storage in the North Atlantic Igneous Province. Int. J. Greenh. Gas Control, 123 (2023), Article 103838, |
| [52] |
E. Saffou, A. Raza, R. Gholami, C. Aci, J.V.B. Donker, S. Salem, U. Zimmermann, M. Opuwari, L. Croukamp, W.R. Elingou. Full-scale simulation of a nearly depleted gas field in South Africa for carbon utilization and storage. Greenh. Gases: Sci. Technol., 12 (4) (2022), pp. 486-507, |
| [53] |
G.D. Saldi, G. Jordan, J. Schott, E.H. Oelkers. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200 °C as a function of pH, aqueous solution composition and chemical affinity. Geochim. Cosmochim. Acta, 83 (2012), pp. 93-109, |
| [54] |
H.S. Santos, H. Nguyen, F. Venancio, D. Ramteke, R. Zevenhoven, P. Kinnunen. Mechanisms of Mg carbonates precipitation and implications for CO2 capture and utilization/ storage. Inorg. Chem. Front., 10 (2023), Article 2507, |
| [55] |
R.D. Schuiling, P. Krijgsman. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change, 74 (2006), pp. 349-354, |
| [56] |
Seifritz, W., 1990. CO2 disposal by means of silicates. Nature 345 (6275), 486. https://doi.org/10. 1038/345486b0. |
| [57] |
T. Shibuya, M. Yoshizaki, Y. Masaki, K. Suzuki, K. Takai, M.J. Russell. Reactions between basalt and CO2-rich seawater at 250 and 350 ℃, 500 bars: implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem. Geol., 359 (2013), pp. 1-9, |
| [58] |
S.Ó. Snæbjörnsdóttir, S.R. Gislason. CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia, 86 (2016), pp. 371-380, |
| [59] |
S.Ó. Snæbjörnsdóttir, F. Wiese, T. Fridriksson, H. Ármansson, G.M. Einarsson, S.R. Gislason. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges. Energy Procedia, 63 (2014), pp. 4585-4600, |
| [60] |
S.Ó. Snæbjörnsdóttir, S.R. Gislason, I.M. Galeczka, E.H. Oelkers. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochim. Cosmochim. Acta, 220 (2018), pp. 348-366, |
| [61] |
S.Ó. Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S.R. Gislason, E.H. Oelkers. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ., 1 (2) (2020), pp. 90-102, |
| [62] |
S. Sun, M. Ao, K. Geng, J. Chen, T. Deng, J. Li, Z. Guan, B. Mo, T. Liu, W. Yang, Y. Tang, R. Qiu. Enrichment and speciation of chromium during basalt weathering: Insights from variably weathered profiles in the Leizhou Peninsula, South China. Sci. Total Environ., 822 (2022), Article 153304, |
| [63] |
P. Swoboda, T.F. Doring, M. Hamer. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ., 807 (2022), Article 150976, |
| [64] |
Y. Tang, H. Zhang, J. Ying. Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem. Geol., 233 (2006), pp. 309-327, |
| [65] |
Taylor, L.L., Quirk, J., Thorley, R.M.S., Kharecha, P.A., Hansen, J., Ridgwell, A., Lomas, M.R., Banwart, S.A., Beerling, D.J., 2016. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Chang. 6, 402–406. https://doi. org/10.1038/nclimate2882. |
| [66] |
J.G.M. Thom, G.M. Dipple, I.M. Power, A.L. Harrison. Chrysotile dissolution rates: implications for carbon sequestration. Appl. Geochem., 35 (2013), pp. 244-254, |
| [67] |
B.M. Tutolo, A. Awolayo, C. Brown. Alkalinity generation constraints on basalt carbonation for carbon dioxide removal at the gigaton-per-year scale. Environ. Sci. Technol., 55 (17) (2021), pp. 11906-11915, |
| [68] |
T.H. Van Pham, P. Aagaard, H. Hellevang. On the potential for CO2 mineral storage in continental flood basalts–PHREEQC batch-and 1D diffusion–reaction simulations. Geochem. Trans., 13 (1) (2012), pp. 1-12, |
| [69] |
J.P.M. Vink, P. Knops. Size-fractionated weathering of olivine, its CO2-sequestration rate, and ecotoxicological risk assessment of nickel release. Minerals, 13 (2023), p. 235, |
| [70] |
M. Voigt, C. Marieni, A. Baldermann, I.M. Galeczka, D. Wolff-Boenisch, E.H. Oelkers, S.R. Gislason. An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochim. Cosmochim. Acta, 308 (2021), pp. 21-41, |
| [71] |
H. Wang, X. Li, Y. Chen, Z. Li, D.W. Hedding, W. Nel, J. Ji, J. Chen. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, eastern China. Sci. Total Environ., 729 (2020), Article 139058, |
| [72] |
J. Wang, N. Watanabe, K. Inomoto, M. Kamitakahara, K. Nakamura, T. Komai, N. Tsuchiya. Enhancement of aragonite mineralization with a chelating agent for CO2 storage and utilization at low to moderate temperatures. Sci. Rep., 11 (2021), p. 13956, |
| [73] |
J. Wang, N. Watanabe, K. Inomoto, M. Kamitakahara, K. Nakamura, T. Komai, N. Tsuchiya. Sustainable process for enhanced CO2 mineralization of calcium silicates using a recyclable chelating agent under alkaline conditions. J. Environ. Chem. Eng., 10 (2022), Article 107055, |
| [74] |
S.K. White, F.A. Spane, H.T. Schaef, Q.R.S. Miller, M.D. White, J.A. Horner, B.P. McGrail. Quantification of CO2 mineralization at the Wallula basalt pilot project. Environ. Sci. Technol., 54 (22) (2020), pp. 14609-14616, |
| [75] |
D. Wolff-Boenisch, I.M. Galeczka. Flow-through reactor experiments on basalt-(sea) water-CO2 reactions at 90 °C and neutral pH. What happens to the basalt pore space under post-injection conditions?. Int. J. Greenh. Gas Control, 68 (2018), pp. 176-190, |
| [76] |
D. Wolff-Boenisch, S. Wenau, S.R. Gislason, E.H. Oelkers. Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: implications for mineral sequestration of carbon dioxide. Geochim. Cosmochim. Acta, 75 (19) (2011), pp. 5510-5525, |
| [77] |
W. Xiong, R.K. Wells, A.H. Menefee, P. Skemer, B.R. Ellis, D.E. Giammar. CO2 mineral trapping in fractured basalt. Int. J. Greenh. Gas Control, 66 (2017), pp. 204-217, |
| [78] |
Y. Xu, S. Zhong. The Emeishan large igneous province: evidence for mantle plume activity and melting conditions. Geochemica., 30 (1) (2001), pp. 1-9, 10.19700/j.0379-1726.2001.01.002 |
| [79] |
G. Yang, Y. Li, P. Gu, B. Yang, L. Tong, H. Zhang. Geochronological and geochemical study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Res., 21 (2012), pp. 1037-1049, |
| [80] |
T. Yu, R. Gholami, A. Raza, K.A.N. Vorland, M. Mahmound. CO2 storage in chalks: What are we afraid of?. Int. J. Greenh. Gas Control, 123 (2023), Article 103832, |
| [81] |
Y. Yu, X. Xu, X. Chen. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China. Min. and Petro., 100 (1–2) (2010), pp. 75-94, |
| [82] |
Zhang, S., DePaolo, D. J., 2017. Rates of CO2 mineralization in geological carbon storage. Acc. Chem. Res. 50(9), 2075–2084. https://doi: |
| [83] |
L. Zhang, R. Wen, C. Li, Y. Sun, H. Yang. Assessment of CO2 mineral storage potential in the terrestrial basalts of China. Fuel, 348 (2023), Article 128602, |
| [84] |
W. Zhuang, X. Song, M. Liu, Q. Wang, J. Song, L. Duan, X.G. Li, H. Yuan. Potential capture and conversion of CO2 from oceanwater through mineral carbonation. Sci. Total Environ., 867 (2023), Article 161589, |
/
| 〈 |
|
〉 |